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SUMMARY

Late-phase clinical trials investigatingmetformin as a
cancer therapy are underway. However, there re-
mains controversy as to the mode of action of met-
formin in tumors at clinical doses. We conducted a
clinical study integrating measurement of markers
of systemic metabolism, dynamic FDG-PET-CT,
transcriptomics, and metabolomics at paired time
points to profile the bioactivity of metformin in pri-
mary breast cancer. We show metformin reduces
the levels of mitochondrial metabolites, activates
multiple mitochondrial metabolic pathways, and in-
creases 18-FDG flux in tumors. Two tumor groups
are identified with distinct metabolic responses, an
OXPHOS transcriptional response (OTR) group for
which there is an increase in OXPHOS gene
transcription and an FDG response group with
increased 18-FDG uptake. Increase in proliferation,
as measured by a validated proliferation signature,
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suggested that patients in the OTR group were resis-
tant to metformin treatment. We conclude that mito-
chondrial response to metformin in primary breast
cancer may define anti-tumor effect.

INTRODUCTION

Metformin can reduce proliferation of cancer cell lines in vitro and

in vivo, and this effect has been ascribed to inhibition of mito-

chondrial complex 1 (Wheaton et al., 2014). However, the doses

of metformin used have typically been 10- to 1,000-fold greater

than peak plasma level in humans (Dowling et al., 2012). Hence

controversy remains as to whether metformin’s effects on tumor

metabolism at clinical doses are determined by its direct effects

onmitochondria or through its action on systemicmetabolism via

AMPK-dependent inhibition of hepatic gluconeogenesis and

subsequent reduced circulating glucose and insulin levels.

Several window trials have used immunohistochemistry to

investigate metformin’s clinical effects in breast, endometrial,

and prostate cancer. A number have shown that metformin
er 6, 2018 Crown Copyright ª 2018 Published by Elsevier Inc. 679
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Figure 1. Trial Design and Imaging Analysis
(A) Study design. Shortly after diagnosis, patients with untreated primary breast cancer received 13–21 days of slow release metformin at escalating dose levels

(500 mg for days 1–3, 1,000 mg for days 4–6, and 1,500 mg thereafter) with core biopsies taken pre- and post-metformin before proceeding to neoadjuvant

chemotherapy.

(B) Change in the FDG flux constant KFDG-2cpt of the primary tumor in individual patients (left panel) and overall (lower right panel) pre- and post-metformin (n = 36,

paired t test; data shown are means ± SEM). Upper right panel: static PET-CT images in coronal plane pre- and post-metformin are from an individual with an

increase in KFDG-2cpt following metformin; note increased uptake in axillary lymph nodes (circled).

(C) Median fold change and interquartile range for metabolites pre- and post-metformin. Metabolites with statistically significant absolute change on Wilcoxon

signed rank test are shown in red with p values (n = 29).

See also Figure S1 and Tables S1–S3.
can reduce the proliferation marker Ki67, but no singular mech-

anism has been clearly demonstrated. Activation of AMPK sug-

gestive of an energy stress has been observed, while other

studies have demonstrated reduced pAKT consistent with

decreased insulin signaling (Dowling et al., 2015; Hadad et al.,

2011; Schuler et al., 2015). Recently published work by Liu

et al. comparing the metabolite profile of ten ovarian tumor sam-

ples from patients on metformin versus ten control samples (pa-

tients not on metformin) demonstrated decreases in the levels of

some TCA cycle intermediates and short-chain acyl-carnitines.

In addition, the response tometformin seen in the humanmetab-

olite profiles could be recapitulated in amousemodel and in vitro

when nutrient concentrations were limited (Liu et al., 2016). To

date, this is the most convincing clinical evidence that metformin

has significant andmeasurablemitochondrial effects at standard

therapeutic doses. Here, we present the results of a clinical study

that integrates tumor metabolomic profiling with dynamic imag-

ing, transcriptomics, and systemic metabolic markers to further

dissect the effects of metformin on systemic and breast tumor

metabolism.
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We recruited 40 female patients with treatment-naive primary

breast cancer to the study. Before and after a 13- to 21-day

course of metformin, patients underwent a dynamic fluoro-

deoxy-D-glucose positron emission tomography-computed to-

mography (FDG-PET-CT) scan, breast core biopsies from the

primary tumor under ultrasound guidance, and blood samples

to assay host metabolic markers of the insulin axis (Figure 1A).

See Table S1 for details of study entry criteria and Table S2 for

tumor features. See Supplemental Information for further detail.

RESULTS AND DISCUSSION

Metformin Increases FDG Flux into Primary Breast
Tumors
Pre-clinical data have shown that inhibition of oxidative phos-

phorylation (OXPHOS) by metformin increases dependence on

glycolysis (Ben Sahra et al., 2010; Birsoy et al., 2014; Wheaton

et al., 2014). The FDG radio-tracer is a marker of tissue glucose

utilization. Kinetics analysis of FDG uptake time courses ob-

tained from dynamic PET images potentially provides more



consistent measures of tumor tracer uptake, adjusted for varia-

tions in tracer inflow to the tumor, than standard static FDG-

PET-CT (Dunnwald et al., 2011). Using an irreversible two-tissue

compartment model describing rates of FDG transport and

phosphorylation (STAR Methods), we observed an increase in

FDG flux (KFDG) into the primary breast cancer following metfor-

min (Figure 1B) but no change in the static uptake measures

SULmax and SULmean for tumor (standardized uptake values

normalized for lean body mass) (Figures S1A and S1B; Table

S3). There was no change in nodal SULmax for patients with

FDG avidity within ipsilateral axillary lymph nodes (Figure S1C).

There was a significant correlation between change in KFDG in

the primary tumor and change in SULmax in the axillary nodes

(Figure S1D).

The above findings infer that metformin treatment leads to

increased glucose uptake by breast tumors and this would be

consistent with a switch to glycolytic metabolism. In addition,

the analysis emphasizes the sensitivity of dynamic FDG-PET

over static scanning in identifying subtle pharmacodynamic

changes in glucose metabolism. If normal tissues such as liver

absorbed more FDG in response to metformin, FDG activity

concentrations in the blood would fall, potentially reducing

FDG uptake by the tumor. However, the compartment model/

flux constant approach describes tumor FDG uptake after allow-

ing for differences across the whole time course of the dynamic

scan in levels of blood-borne tracer flowing into the tumor, deter-

mined from imaged activity concentrations in the descending

aorta. It is possible that it is precisely because this model con-

trols for the flow of tracer into the tumor that we see a significant

change in the flux constant and not standardized uptake values

on static PET scanning.

Two Tumor Groups with Distinct Metabolic Responses
to Metformin
We did not observe changes in the levels of the TCA cycle inter-

mediates citrate, succinate, fumarate, and malate in contrast to

Liu et al. (2016), or aspartate, a key marker of electron transport

chain integrity (Figure 1C). Ornithine is condensed with carba-

moyl phosphate to produce citrulline in the only intra-mitochon-

drial reaction of the urea cycle and citrulline levels decreased

(mean log2FC = �0.53; p = 0.007). Some investigators have

observed an increase in the ADP/ATP and AMP/ATP ratios typi-

cally under in vitro nutrient-deprived conditions but there was no

significant increase in intratumoral ADP/ATP or AMP/ATP ratios

post-metformin (Figure S1E), and this is consistent with metab-

olomic data from ovarian tumors published in Liu et al. (2016).

The discordance in findings with metabolomic profiling from

pre-clinical studies may reflect the heterogeneity inherent in a

study analyzing clinical samples and the difficulty of making

very precise measurements when there may be only small

changes in the levels of these metabolites. Mitochondrial

dysfunction under the tissue culture conditions described in

the literature cited above is likely to be greater than in our study.

Indeed, Gaude et al. (2018) showed that, at lower levels of mito-

chondrial dysfunction, there was little or no decrease in TCA cy-

cle metabolites and aspartate. Uptake from the stroma in an

in vivo system may help maintain aspartate levels (for example,

Birsoy et al., 2015 used a cell line lacking in the transporter

SLC1A3, which was expressed at the mRNA level in our clinical
samples). In contrast to findings in some other studies (Dowling

et al., 2015; Hadad et al., 2011) tumor immunohistochemistry

demonstrated no change in AMPK phosphorylation following

metformin (paired t test, p = 0.801) (Figure S1F). There was no

correlation between change in pAMPK and change in KFDG

(Figure S1G).

Whole-transcriptome RNA sequencing pre- and post-metfor-

min revealed significant upregulation of several pathways linked

to metabolism (Figure 2A) and more specifically to mitochondrial

pathways and disease (Table S4). This included four KEGGpath-

ways that we predicted would be targeted by metformin based

on extensive pre-clinical data (Birsoy et al., 2014; Fendt et al.,

2013; Liu et al., 2016; Mullen et al., 2011; Wheaton et al.,

2014): oxidative phosphorylation (KEGG:00190); TCA cycle

(KEGG:00020); glycolysis and gluconeogenesis (KEGG:00010);

and alanine, aspartate, and glutamate metabolism

(KEGG:00250). Taking all genes that were significantly up- or

downregulated from these pathways we observed that for one

hierarchical cluster of patients fold change in expression was

strikingly increased for this set of genes (OXPHOS responders

or OTR [OXPHOS transcriptional response]). All patients in the

OTR group were estrogen receptor-positive (Figure 2B).

Coherent with this observation, unsupervised hierarchical clus-

tering of the expressed nuclear whole transcriptome showed

that patients in the OTR group also clustered together in this

analysis (Figure S2A). Notably, clustering of the OTR group

also occurred for expressed genes of the mitochondrial tran-

scriptome (Figure S2B). For patients with limited OTR there

was evidence of increased glucose uptake defined by an in-

crease in KFDG (FDG responders or FR) in contrast to the

OTR group.

Consistent with mitochondrial targeting it has recently been

shown that metformin treatment leads to a decrease in the levels

of short-chain acyl-carnitines in ovarian cancer (Liu et al., 2016).

Metabolomic profiling of paired pre- and post-metformin sam-

ples showed that acetyl- and propionylcarnitine levels decrease

(mean log2FC =�1.32, p = 0.046 and log2FC =�1.01, p = 0.039,

respectively). Acetylcarnitine is a short-chain acyl-carnitine

derived from glucose carbons (Schooneman et al., 2013) and,

in contrast to the OTR group, their FR counterparts were able

to maintain acetylcarnitine levels (Figure 2C). There was a strong

correlation between change in KFDG and change in acetylcarni-

tine levels (Figure 2D). Figure S2C shows the interquartile range

and median fold change for metabolites in the OTR and FR

groups. It is unclear why intratumoral acetylcarnitine levels drop-

ped, and this finding is at odds with Chen et al. (2016), who

showed that complex 1 inhibition in a cell line model resulted

in a severalfold increase in acetylcarnitine levels within whole

cells and mitochondria. However, this may be due to the discor-

dance between the very different environmental conditions and

strength of mitochondrial inhibition in our clinical study

compared with cell line models. In addition, Chen et al. only as-

sayed the mitochondrial matrix, and used a different complex 1

inhibitor in a non-breast cancer model. Notably, carnitine o-ace-

tyltransferase, which catalyzes the bidirectional conversion of

acetylcarnitine to acetyl-coenzyme A (CoA) within both mito-

chondria and peroxisomes, was differentially upregulated in

the OTR group (all Figure 3A). Hence, we speculate that altered

flux in this pathway may be a consequence of metformin
Cell Metabolism 28, 679–688, November 6, 2018 681



Figure 2. Metformin Alters Levels of Mitochondrial Metabolites and Increases OXPHOS Relevant Gene Transcription in a Subset of Patients

(A and B) Circos plot to show all significantly upregulated metabolic pathways in the KEGG database. The width of the outer and inner circles show the mean

relative abundances for the broadest hierarchy and secondary hierarchy. The bars in the innermost circle represent the mean relative abundances for genes

encoding proteins within the individual pathways. The curved lines link genes that are shared among different pathways as indexed by KEGG (A). Heatmap of

differentially expressed genes from the following KEGG pathways: oxidative phosphorylation (KEGG:00190); TCA cycle (KEGG:00020); glycolysis and gluco-

neogenesis (KEGG:00010); alanine, aspartate, and glutamate metabolism (KEGG:00250). Each row represents a gene and each column represents a single

patient (n = 36). Colors reflect the fold change for each gene post-metformin: red, upregulation; blue, downregulation. Samples were visually clustered using

hierarchical clustering. OXPHOS transcriptional response (OTR) and FDG response (FR) groups shown. Shown below is heatmap of change in significantly

altered metabolites and KFDG-2cpt (all post minus pre) for same individual patients (B).

(C) Scatterplot to show for the OTR and FR groups change in KFDG-2cpt and acetylcarnitine levels for the breast primary tumor (both post minus pre). Data shown

are means ± SEM, unpaired t test.

(D) Correlation between change in KFDG-2cpt and acetylcarnitine (both post minus pre). Spearman’s rank correlation coefficient and significance are shown.

See also Figure S2 and Table S4.
treatment. The positive correlation between change in FDG

flux and intratumoral acetylcarnitine levels possibly reflects

increased flux of glucose carbons toward acetyl-CoA. To fully

understand the effects of metformin and mitochondrial defects
682 Cell Metabolism 28, 679–688, November 6, 2018
on acyl-carnitine metabolism will require further work in pre-clin-

ical models.

Maintaining aspartate levels has been shown to be a key resis-

tance mechanism to electron transport chain inhibition and



(legend on next page)
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biguanides (Birsoy et al., 2015; Cardaci et al., 2015; Sullivan

et al., 2015). There was no difference in aspartate metabolite

levels between the FR and OTR groups (Figures 1C and S3A).

However, several genes involved in aspartate metabolism were

significantly upregulated and it was striking that the increase in

expression of three of the five genes that encode for units of

the malate-aspartate shuttle (GOT2, MDH1, and MDH2) was

significantly greater in the OTR group compared with the FR

group (Figure 3A). Dependency on glutamine as a source of cit-

rate for either lipid or aspartate biosynthesis has been shown to

be a key resistance mechanism to metformin and other mito-

chondrial insults (Birsoy et al., 2015; Fendt et al., 2013; Mullen

et al., 2011) and we observed increased expression of multiple

genes that regulate glutaminemetabolism. Two key checkpoints

in this process were differentially upregulated in the OTR group,

mitochondrial isocitrate dehydrogenase (IDH2) and the citrate

transporter, SLC25A1, which delivers glutamine-derived citrate

to the cytosol where it is cleaved by ATP citrate lyase to oxaloac-

etate and acetyl-CoA for aspartate and lipid synthesis, respec-

tively (Figure 3A). Previous work has also shown that both

isoforms of isocitrate dehydrogenase, IDH1 and IDH2, support

growth in cells that use glutamine-dependent reductive carbox-

ylation. Hence, tumors harboring IDH mutations may be more

susceptible to biguanide therapy.

Systemic Response to Metformin Does Not Correlate
with Change in Intratumoral Assays
Metformin has been shown to modulate a number of systemic

metabolic and inflammatory markers in diabetic populations. In

our study metformin lowered circulating levels of serum glucose,

insulin, c-peptide, and an insulin resistance score (homeostatic

model assessment or HOMA), but not leptin, adiponectin,

C-reactive protein, tumor necrosis factor a, or interleukin-6 (Fig-

ures 3B and S3B; Table S5). However, there were no significant

differences between the OTR and FR groups in pre-/post-met-

formin changes in levels of any of these circulating metabolic

markers (Figure S3C). There was a marked overlap in genes

whose change in expression correlated with change in KFDG

and change in acetylcarnitine (hypergeometric test,

p < 0.00001), but little corresponding overlap with genes related

to change in c-peptide, glucose, insulin, or HOMA (Figures 3C

and S3D). Eighteen of the genes correlating with change in

KFDG and acetylcarnitine were KEGG-annotated metabolism

genes most notably associated with oxidative phosphorylation,

carbohydrate, amino acid, and nucleotide metabolism pathways

(Table S6). There was an increase in pAKT expression on tumor

immunohistochemistry (paired t test, p = 0.026), but no correla-

tion between change in pAKT expression and change in c-pep-
Figure 3. Effect of Metformin on Systemic Metabolism

(A) Change in expression of genes involved in regulation of aspartate/malate shutt

are means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.

(B) Pre- and post-metformin serum glucose, insulin, insulin growth factor-1 level

metabolic marker, p value shown (paired t test, n = 40).

(C) Venn diagram to show overlap of all genes whose change in expression corr

KFDG-2cpt or tumor acetylcarnitine.

(D and E) Correlation between peak serummetformin levels (2 hr post dose) and tu

pre) and GLUT1 expression (log2FC) for the breast primary tumor (E). Spearman

See also Figure S3 and Tables S5 and S6.
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tide, glucose, insulin, or HOMA, and no significant difference

between the FR and OTR groups (Figures S3E–S3G). There

was also no difference in pAMPK expression between the FR

and OTR groups (Figure S3G).

The increase in tumor pAKT expression was unexpected and

not consistent with a decrease in insulin receptor signaling or

findings in prior studies. AKT activation increases ATP levels in

cells and has been identified in a number of studies as being a

key player in the regulation of both glycolysis and oxidative

phosphorylation (Robey andHay, 2009). Recent work has shown

that mitochondrial AKT activation occurs in the context of tumor

energy and hypoxic stress, switching metabolism toward glycol-

ysis (Chae et al., 2016). However, we cannot exclude metfor-

min’s systemic effects on host metabolism being a significant

factor in modulating tumor metabolism and proliferation, and

indeed we would expect a decrease in insulin levels to have

some effect on tumor intracellular signaling. Our study only re-

cruited patients with normal systemic glucose levels, and for pa-

tients with diabetes or glucose intolerance any effect on insulin

signaling via the hypoglycemic activity of metformin is likely to

be greater.

We then investigated the relationship between tumor metfor-

min levels and metabolic response. Although serum and tumor

levels were significantly correlated with each other (Figure 3D)

they did not differ between the OTR and FR groups (Figure S4A).

Previously published pre-clinical data suggested that expression

of the organic cation transporter, OCT1 (encoded by gene

SLC22A1), is required for tumor uptake of metformin and meta-

bolic response (Chandel et al., 2016; Dowling et al., 2016). There

was no significant correlation between baseline OCT1 gene

expression and tumor metformin levels but notably the patient

with highest tumor metformin levels also had the greatest

expression of tumor OCT1 (Figure S4B). Furthermore, there

was no difference in baseline OCT1 expression between the

OTR and FR groups (Figure S4C). Baseline OCT1 expression

did correlate with change in KFDG, although the relevance of

this finding is unclear given that there was no such relationship

with tumor metformin levels (Figure S4D).

Glucose transporter gene expression may determine the

sensitivity of cell lines to biguanides (Birsoy et al., 2014). Expres-

sion of the glucose transporter, GLUT1 (encoded by gene

SLC2A1), has previously been shown to correlate with uptake

of FDG on PET-CT (Bos et al., 2002), and in our study change

in KFDG positively correlated with the change in expression of

GLUT1 (Figure 3E). However, there was no significant difference

in GLUT1 expression between the two groups although there

was for another glucose transporter, GLUT4 (encoded by gene

SLC2A4) (Figure S4E).
le and oxidative and reductive metabolism, unpaired t test (n = 36). Data shown

s, and HOMA score for individual patients. Significant decrease for each host

elated with either change in systemic levels of circulating c-peptide or tumor

mor metformin levels (D). Correlation between change in KFDG-2cpt (post minus

’s rank correlation coefficient and significance are shown for (D) and (E).



Figure 4. Effect of Metformin on Proliferation

Left panel: heatmap of genes from the proliferation signature. Each row represents a gene and each column represents a single patient. Colors reflect the fold

change for each gene post-metformin: red, upregulation; blue, downregulation. Samples were visually clustered using hierarchical clustering. Right upper panel:

pre- and post-metformin expression of signatures for individual patients (n = 36); right lower panel, scatterplot to show change in expression of signatures for the

OTR and FR groups. Data shown are means ± SEM, unpaired t test (n = 36).
OTR to Metformin Relates to Change in a Proliferation
Metagene
Several clinical studies have shown that metformin can reduce

breast, prostate, and endometrial cancer cell proliferation (Ha-

dad et al., 2011; Joshua et al., 2014; Laskov et al., 2014; Mitsu-

hashi et al., 2014; Niraula et al., 2012; Schuler et al., 2015). We

explored the effect of metformin on a validated human breast
cancer proliferation signature (Desmedt et al., 2008) and overall

observed no significant change following metformin treatment

(Figure 4). However, it was striking that an increase in metagene

expression occurred in the OTR group, while, in contrast, there

was a decrease for several patients in the FR group, the change

in metagene expression consequently differing significantly be-

tween the two groups (Figure 4). Under in vitro low-glucose
Cell Metabolism 28, 679–688, November 6, 2018 685



conditions the ability for cell lines to upregulate OXPHOS pre-

dicts for sensitivity to biguanides (Birsoy et al., 2014), and our

data suggest that a reactive increase in OXPHOS and aspartate

synthesis gene transcription may be critical for resistance to

metformin. None of the circulating or tumor immunohistochem-

ical markers, metformin levels, KFDG, or significantly altered me-

tabolites correlated with change in expression of the proliferation

metagene (Figure S4F).

Conclusion and Perspectives
Our work outlines two types of breast cancer metabolic

response to metformin and links the effects of metformin on

mitochondrial metabolism with its effects on breast cancer pro-

liferation at a transcriptional level. Tumors that were able to up-

regulate OXPHOS gene transcription in response to metformin

showed an increase in their proliferation score suggestive of

resistance following metformin treatment.

The upregulation of multiple transcriptomic pathways involved

in mitochondrial metabolism and decrease in levels of several in-

tratumoral mitochondrial metabolites is suggestive of metformin

interfering with mitochondrial metabolism. Furthermore, the

increased expression of multiple genes regulating glycolysis

and glucose transport alongside our imaging data is consistent

with mobilization of glucose metabolism in response to metfor-

min. The upregulation of key regulatory genes for glycolysis,

aspartate, and glutamine metabolism in response to metformin

may represent a mechanism of resistance and confirms the

potential of previously proposed strategies to target these path-

ways, for example, by combining biguanideswith glutaminase in-

hibitors or dichloroacetate (Fendt et al., 2013; Haugrud et al.,

2014). Estrogen receptor expressionmay also act as a biomarker

to distinguish the two types of metabolic response. Among the

most likely determinants for resistance in our view are mitochon-

drial defects (for example, mutations in complex 1 genes), and

this would be consistent with in vitro data (Birsoy et al., 2014).

Hence, we propose that translational work within ongoing phase

3 trials should investigate whether mitochondrial mutations her-

ald biguanide sensitivity and clinical outcome. However, we

emphasize that early dynamicmonitoring of responsemaydetect

the heterogeneity that cannot be detectable at baseline.

There have been a number of other window studies designed

to assess metformin’s pharmacodynamic effects in several

different tumor types and it is important to note the differences

to this study. Most of these trials have used immunohistochem-

ical approaches on a wide range of markers, but in particular

Ki67, AMPK, and markers of apoptosis with discrepant results

(Dowling et al., 2015; Hadad et al., 2011; Schuler et al., 2015).

The most in-depth clinical study to date to use metabolomic ap-

proaches, Liu et al. (2016), suggested some evidence of mito-

chondrial interference but, in contrast to our study, did not

take serial biopsies to allow identification of differential types

of response and was limited to effectively one assay. In addition,

Liu et al. assayed samples taken from ten patients with ovarian

cancer who happened to be receiving metformin for diabetes

while using control samples from non-diabetic patients with a

lower mean bodymass index. Hence, this was a comparison be-

tween two patient groups with distinct host metabolism (Liu

et al., 2016). In contrast, this study only recruited from a non-dia-

betic population, the focus of ongoing phase 3 trials.
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These data are consistent with several of the observations

seen previously using in vitro and in vivo models but it is still un-

certain whether these perturbations are enough for metformin to

deliver clinical benefit to patients. A recent substudy of the

ALTTO phase 3 adjuvant breast cancer trial reported a strong as-

sociation between metformin and improved overall survival in

diabetic patients (Sonnenblick et al., 2017). Our observations

make the case for the continued clinical study of metformin

and more potent biguanides (Zhang et al., 2016) in non-diabetic

patients. The results of ongoing phase 3 trials are awaited (Gilles-

sen et al., 2016; Goodwin et al., 2015).

Limitations of Study
This study had no control arm and hence it is possible that some

of the observations could be related to the passage of time or

interventions (e.g., biopsies). Given the nature of this clinical

translational study the analysis especially relies on correlative

evaluation and hence we cannot rule out a link between the sys-

temic effects of metformin and significant changes in tumor

metabolism and proliferation. Although 40 patients are a sub-

stantial number for an involved pharmacodynamic study of this

type, correlations across the assays were not able to be carried

out across the full cohort for varied reasons (technical difficulties

with some scans and insufficient sample to carry out all assays,

etc.) and increased recruitment would provide greater power for

the analyses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

pAMPK thr172 residue Cell Signaling Technologies RRID: AB_331250

pAKT ser473 residue Cell Signaling Technologies RRID: AB_2315049

Critical Commercial Assays

IL-6 Invitrogen BMS213HS

TNF-alpha Invitrogen BMS223HS

NEBNext mRNA Library Prep Master Mix Set New England Biolabs E6110

Deposited Data

Analysed RNASeq data This paper http://dx.doi.org/10.17632/cytrpb62f2.1

Software and Algorithms

RNASeq analysis R-project v3.3.1

Imaging analysis Matlab N/A

Other statistical analyses GraphPad PRISM v6.0

Other

Metformin Bristol-Myers Squibb Glucophage XR

ClinicalTrials.gov Identifier N/A NCT01266486
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Simon Lord (simon.

lord@oncology.ox.ac.uk).

METHOD DETAILS

Clinical Study Design and Patient Selection
Patients were recruited from themedical oncology breast cancer clinic over a period of 30months betweenMay 2011 and November

2013 in three UK centres, Oxford, Luton and Dundee. Informed consent was obtained from all patients. The study was prospectively

approved by the NHS Oxfordshire Research Ethics Committee A and registered with the ClinicalTrials.gov identifier: NCT01266486.

All patients at the point of recruitment had been referred with a view to neoadjuvant chemotherapy, had histologically confirmed

breast cancer and gave informed consent. In all cases the primary breast cancer was in situ and no patients had received any prior

treatment for breast cancer. See Table S1 for a list of key eligibility criteria. In total 41 patients were recruited and had evaluable data.

See Table S2 for numbers of patients with sufficient data for paired analysis for each assay. All patients were female and the median

age at study entry was 49 years (range 27 – 67 years). Median body mass index at study entry was 28.1 (range 19.6 – 45.3).

Metformin was given in the Glucophage XR formulation in an escalating dose once daily for a minimum of 13 days and a maximum

of 21 days (500mg for days 1–3, 1000mg for days 4–6 and 1500mg thereafter). The day prior to commencingmetformin a core biopsy

was taken under ultrasound guidance from the periphery of the primary tumour. Within 1minute of this procedure the biopsymaterial

was snap frozen in liquid nitrogen prior to storage at -80�C. Prior to metabolomics analysis biopsy samples were divided and one

portion used for broad metabolomics analysis and the other to generate a lipid profile.

PET-CT Protocol
The radiotracer, 2-deoxy-2-(18F)fluoro-D-glucose (18[F]-FDG), was used for all examinations. Prior to scanning, patients were fasted

overnight for at least 8 hours but could drink water. Patients’ blood glucose was checked just prior to the scan with a portable blood

glucosemonitor to ensure it was <7mmol/L. All scans took place on either a 3Dmode time of flight GEDiscovery 690 64-slice PET-CT

system (GE Healthcare, Milwaukee) or Siemens Biograph mCT-128 (Siemens Healthcare, Germany).

A dynamic acquisition of the breast tumour (and any lymph nodes within the PET field of view) was initiated with the patient imaged

supine. Patients were injected with 18[F]-FDG (3 MBq/kg, up to a maximum of 400 MBq) 30 seconds into PET imaging, which
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continued for 45 minutes. The 45 minutes of data were then reconstructed as a sequence of images describing average activity con-

centrations during a series of time frames (1x30s, 12x5s, 6x10s, 5x30s, 10x60s, 6x300s).

50 minutes after injection, a static PET scan was performed from skull base to mid-thigh, acquiring data for four minutes at each

bed position. Thus the primary breast cancer was scanned at approximately 60minutes post injection, in addition to the dynamic PET

scanning from 0-45 minutes. Prior to each PET acquisition a CT scan was performed for localization and PET attenuation correction,

using a pitch of 0.984, 120 kV, automA with a noise index of 25.

The PET images were reconstructed on a matrix of 5.535.533.3 mm3 voxels using filtered back projection for the dynamic

sequence, and iterative reconstruction for the static scan. See Supplemental Information for further details of static and kinetic anal-

ysis of imaging.

Static PET-CT Analysis
Tumour volumes were delineated on the 60-minute static FDG-PET scans by a nuclear medicine radiologist working on a

Hermes workstation and using Hybrid viewer software (Hermes Medical Solutions AB, Stockholm, Sweden). Maximum and

mean standardized uptake values (SUV) within each tumour volume were normalized by lean body mass (LBM) and reported as

SULmean=SUVmean*LBM/BW and SULmax=SUVmax*LBM/BW respectively, where

LBMHume =

�
0:32810 3 BW + 0:33929 3 H 3 29:5336 ðMalesÞ
0:29569 3 BW + 0:41813 3 H3 43:2933 ðFemalesÞ

and BW and H are the body weight in kg and height in cm (Hume, 1966).

Dynamic PET-CT Analysis
The tumour volume contoured on a static PET-CT image was transferred to the corresponding 0-45 minute dynamic FDG-PET scan

by co-registering the two image sets. Time-activity curves (TACs) describing time-courses of mean tumour FDG activity concentra-

tion within the tumour were then calculated for the tumour regions of the dynamic scans. Time-courses of blood-borne tracer con-

centrations were similarly obtained from regions defined in the descending aorta (average 42 ± 4 slices with mean volume of 32 ±

11 cm3), and used to describe tracer inflow into tumours (‘input functions’, IF).

Kinetic analysis of tumour FDG uptake was carried out for 36/40 patients, using irreversible 2- and 3-tissue compartment models

(Bertoldo et al., 2001). Tumour TACS for the remaining four patients were not analysed as they showed pronounced discontinuities,

likely due to movement during scanning. The compartment models characterize FDG transport and intracellular phosphorylation us-

ing a small number of parameters, and enable modelled tumour TACs to be calculated directly from IFs. The models were fitted by

adjusting the parameters to achieve the best weighted least-squares match between modelled and measured tumour TACs

(Liu et al., 2014).

The 2-tissue compartment model (2cpt) provided better descriptions of tumour TAC data, judged by the Akaike and Bayesian in-

formation criteria (AIC and BIC) used alongside a runs-test. From each fit, estimated values and associated statistical uncertainties

were obtained for the model parameters vB, K1, k2 and k3, which respectively describe the fractional tumour blood volume and rate-

constants for FDG transport back and forth between the vasculature and tumour cells, and for intra-cellular phosphorylation. Uncer-

tainties on these fitted parameters are quite large due to statistical noise in dynamic PET images. Flux constants KFDG, numerically

equal to K1k2/(k2+k3), were also calculated. Conceptually KFDG describes the rate of intra-cellular FDG phosphorylation when a

steady-state unit concentration of FDG exists in the blood, and statistically it is estimated substantially more precisely than the in-

dividual model rate-constants. Figure S5 summarizes the analysis. Significances of differences in model parameters before and after

metformin were assessed using paired t-test and Wilcoxon signed rank test. Only changes in KFDG proved significant.

It was not useful to kinetically analyse FDG uptake time-courses in the axillary nodes, since the small nodal volumes led to a high

degree of noise on the time-courses and fitted kinetics parameters including the flux constant. All patients included in the axillary

node analysis who had lymph node avidity had evidence at pre-treatment biopsy or surgery of metastatic breast carcinoma involve-

ment within the axillary nodes with the exception of 3 patients for whom no biopsy or surgical data was available.

Mass Spectrometry Analysis of Clinical Samples for Metabolomic Profile
Breast cancer tissue was pulverised via mechanical disruption (IKA Ultra-Turrax T-8 homogenizor) prior to hydrophilic extraction of

intracellular metabolites from tissue using a methanol/acetonitrile/water (50/30/20) extraction solution (250 mL of extraction solution

per 10mg homogenised tissue). Following thorough mixing, the samples were centrifuged for 10 minutes at 10,000G and the super-

natant stored at -80�C prior to mass spectrometry analysis.

For the LC separation, column A the sequant Zic-pHilic (150 mm3 2.1 mm i.d. 5 mm) with the guard column (20 mm3 2.1 mm i.d.

5 mm) from HiChrom, Reading, UK. Mobile phase A: 20 mM ammonium carbonate plus 0.1% ammonia hydroxide in water. Mobile

phase B: acetonitrile. The flow rate was kept at 180 mL/minute and gradient as follow: 0–1 minutes 70% of B, 16 minutes 38% of B,

16.5 minutes 70% of B, 25 minutes 70% of B. The mass spectrometer (Thermo Q-Exactive Orbitrap) was operated in a polarity

switching mode. Experimenters analysing samples frommetabolomics experiments were blinded to the experimental interventions.

Samples were randomised in order to avoid machine drifts.
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Analysis of RNASeq Data
Next generation sequencing of ‘Poly (A) targeted’ mRNA, including library preparation, was carried out by the Oxford Genomics

Centre core facility at theWelcome Trust Centre for HumanGenetics. TheNEBNextmRNA Library PrepMasterMix Set (NewEngland

Biolabs) was used for preparation of the expression libraries and the Illumina HiSeq 2000 system used to carry out the sequencing.

Paired-read were aligned to human reference genome GRCh38, including transcriptomic information, by Bowtie 2.2.6 and Tophat

v2.1. The fold change of normalized expression level, FPKM (Fragments Per Kilobase of transcript per Million mapped reads), for

each gene was then estimated from those aligned reads using Cuffdiff 2.2.1. Non-parametric rank product (R package and version)

was used to discover the genes with consistent statistically significant fold change (probability of false positive < 0.05) between pre-

and post-metformin treatment, among all patients were selected. This approach was preferred with respect to EdgeR (Anders and

Huber, 2010) and Deseq (McCarthy et al., 2012; Robinson et al., 2010) as in datasets with high variability and paired samples (pre and

post- treatment) non parametric methods tend to work better in our previous studies (Mehta et al., 2016); however analysis with

EdgeR (version 3.16.5) and Deseq (version 1.26.0) was also done and did not change the main conclusions.

Measurement of Circulating Markers
Patient serum samples were collected after fasting overnight just prior to the breast core biopsy (and for the post-metformin sample 2

hours post-dose). Fasting glucose, insulin, c-peptide, c-reactive protein, leptin and adiponectin weremeasured using NHS biochem-

istry services to standardised and validated protocols. The homeostasis model assessment (HOMA) was calculated using the

following equation: (glucose mmol/L * insulin mU/L)/22.5.

IL-6 and TNF-alpha were measured in duplicate by High Sensitivity enzyme linked immunosorbent assay (ELISA) (Invitrogen).

These assays utilise two amplification steps, allowing for the detection of low levels of cytokines present in serum and plasma

samples.

Immunohistochemistry
Staining for p-AMPK (1 in 200, thr172 residue, Cell Signaling Technologies #2535) and pAKT (1 in 100, ser473 residue, Cell Signaling

Technologies #4060), was performed on a Leica Bond-max autostainer in the GCP laboratory, Department of Pharmacology, Uni-

versity of Oxford. For pAMPK, cell pellet controls were generated using MCF7 cells treated with either 20 mMCompound C (negative

control) or 250 mMAICAR (positive control) for 24 hours prior to harvesting. For pAKT, cell pellet controls were generated using serum

starved MCF7 cells either untreated (negative control) or treated with IGF-1 (positive control) for 30 minutes prior to harvesting and

the generation of a formalin fixed, paraffin embedded cell pellet block.

Quantitative scoring of the staining of complete tumour sections was evaluated by two accredited pathologists using high power

fields the intensity of the immunostaining was classified into 4 categories: 0, no immunostaining present; 1, weak staining; 2, mod-

erate staining; and 3, strong staining and the percentage of positive cells at each intensity was then classified into 4 groups; 1 (0-10%

positive cells), 2 (11% to 50% positive cells), 3 (51% to 80% positive cells) or 4 (81 to 100% positive cells). The H-score of immuno-

reactivity was obtained by multiplying the intensity and percentage scores.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing for dynamic PET-CT and gene expression profiling are reported above. Absolute difference in metabolites was analysed

using paired non-parametric method (Wilcoxon Signed Rank Sum). All other differences in measurements pre- and post-metformin

were compared using paired t-tests. Correlation analyses between gene expression scores, metabolites, metformin levels, circu-

lating metabolic markers and KFDG were performed using non-parametric methods (Spearman’s rank correlation coefficient). Differ-

ences inmeasurements between theOTR and FR groupswere examined using an unpaired two-tailed t-test. Statistical tests for each

analysis are defined in figure legends. In all cases a p-value <0.05 was considered significant. Analysis of RNASeq and Metabolomic

data was carried out using non-parametric approaches and hence the data was not required to follow an underlying distribution.

Kinetic model fits to the tumour TACs extracted from dynamic PET scans were runs-tested as a non-parametric check on fit quality.

Significances of pre/post metformin differences in PET tracer kinetics parameters and normalised static uptake values were as-

sessed using a parametric t-test and a non-parametric Wilcoxon signed rank test, the assumption of normally-distributed data un-

derlying the t-test being rejectable with p<.05 for all variables except K1 according to the Shapiro-Wilk test. Statistical packages,

GraphPad PRISM v6.0, R v3.3.1 and Matlab were used for analyses.

Sample Size Estimation
Based on our and others’ previous analyses of microarray data, a minimum of 20 cases with paired measurements at two time points

were estimated to be sufficient to observe expression changes of at least 1.7-fold in genes showing a coefficient of variation at each

time point up to 50% with a significance level after multiple test correction of p=0.05 (taking into account filtering of not expressed

transcripts) and an 80% power. This estimate assumed uniformity of drug response. However, double the number was desirable for

higher significance and considering correlation with baseline expression and response.
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DATA AND SOFTWARE AVAILABILITY

The RNASeq gene expression data reported in this paper have been reported in Mendeley data with address http://dx.doi.org/10.

17632/cytrpb62f2.1.

ADDITIONAL RESOURCES

ClinicalTrials.gov Identifier: NCT01266486.
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Fig. S1. Effect of metformin on standardised uptake value of primary breast tumour. 

Related to Figure 1. 

Change in the (A) maximum and (B) mean standardised uptake value normalised to lean body 

mass of the primary tumour in individual patients (upper panel) and overall (lower panel; data 

shown are mean ± SEM) pre- and post-metformin (n=36). (C): Change in maximum 

standardised uptake value normalised to lean body mass of axillary nodes in individual 

patients pre- and post-metformin (n=27). (D): Correlation between change in KFDG-2cpt (post-

metformin minus pre-metformin) and SULMax for the breast primary tumour, respectively, and 

change in SULMax for FDG avid axillary lymph nodes. Spearman’s rank correlation coefficient 

and significance, are shown. (E): ATP/AMP and ATP/ADP ratios pre- and post-metformin 

(n=29); data shown are mean ± SEM. (F): Change in pAMPK of primary tumour measured by 

immunohistochemistry in individual patients pre- and post-metformin (n=32; red = increase, 

blue = decrease and green = no change). (G): Correlation between change in KFDG-2cpt and 

pAMPK for the breast primary tumour (both post-metformin minus pre-metformin). 

Spearman’s rank correlation coefficient and significance, are shown. 

 

 

 

 

 

 

 

 

 



 

 

Fig. S2. Heatmaps of all expressed nuclear and mitochondrial encoded genes following 

metformin. Related to Figure 2. 

Heatmaps of all expressed nuclear (A) and mitochondrial (B) encoded genes following 

metformin. Each row represents a gene and each column represents a single patient. Colours 

reflect the fold change for each gene post-metformin: Red = up-regulation, Blue = down-

regulation. Samples were visually clustered using hierarchical clustering (n=36). Patients in 

OTR (orange) and FR (green) groups shown below. (C): Median log FC and interquartile range 

for metabolites in OXPHOS transcriptional response (OTR) and FDG response groups. 



 

 

 

 



Fig. S3. Relationship between systemic effects of metformin and tumour metabolic 

response. Related to Figure 3. 

(A): Scatter plot to show change in tumour aspartate levels for the OTR and FR groups (post-

metformin minus pre-metformin). Data shown are mean ± SEM and p-value on unpaired t-

test (n=29). (B): Pre- and post-metformin levels of serum leptin, adiponectin, C-reactive 

protein, tumour necrosis factor-alpha and interleukin-6 for individual patients (n=40). (C): 

Scatter plots to show for the OTR and FR groups change in the systemic metabolic markers, 

serum glucose, serum insulin, serum c-peptide, HOMA, leptin and adiponectin, and the 

systemic inflammatory markers, C-reactive protein, tumour necrosis factor-alpha and 

interleukin-6 (all post-metformin minus pre-metformin). Data shown are mean ± SEM and p-

value on unpaired t-test (n=36). (D): Venn diagram to show overlap of all genes whose change 

in expression correlated with change in tumour KFDG-2cpt and tumour acetylcarnitine and either 

HOMA, or systemic levels of circulating glucose or insulin. (E): Change in pAKT of primary 

tumour measured by immunohistochemistry in individual patients pre- and post-metformin 

(n=32; red = increase, blue = decrease and green = no change). (F): Relationship between 

change in tumour pAKT and circulating metabolic markers (all post-metformin minus pre-

metformin). Spearman’s rank correlation coefficient and significance, are shown (n=27). (G): 

Scatter plots to show change in pAKT and pAMPK of primary tumour for the OTR and FR 

groups (both post-metformin minus pre-metformin). Data shown are mean ± SEM and p-

value on unpaired t-test (n=32). (H): Examples of pAKT immunohistochemical staining for 

individual patients, upper panel:  increase after metformin; lower panel: no change after 

metformin. 

 





Fig. S4. Relationship between systemic effects of metformin and tumour 

metabolic/proliferation response. Related to Figure 3. 

(A): Scatter plots to show serum (n=35) and tumour metformin levels (n=29) for the OTR and 

FR groups. Data shown are mean ± SEM, on unpaired t-test. (B): Correlation between tumour 

metformin levels and OCT1 baseline expression, patient with highest OCT1 expression and 

metformin level indicated Venn diagram to show overlap of all genes whose change in 

expression correlated with change in tumour KFDG-2cpt and tumour acetylcarnitine and either 

HOMA, or systemic levels of circulating glucose or insulin. (C): Scatter plot to show baseline 

OCT1 gene expression for the OTR and FR groups. Data shown are mean ± SEM, on unpaired 

t-test. (n=36) (D): Relationship between change in tumour KFDG-2cpt and OCT1, OCT2, tumour 

and serum metformin levels (all post-metformin minus pre-metformin). Spearman’s rank 

correlation coefficient and significance, are shown. (E): Scatter plot to show for the OXPHOS 

transcriptional response group (OTR) and FDG response group (FR) change in GLUT1, GLUT3, 

and GLUT4 expression (log2FC) for the breast primary tumour (GLUT2 not expressed in most 

tumours). Data shown are mean ± SEM, unpaired t-test (n=36). (F): Relationship between 

change in proliferation gene signature (log2FC) with circulating or tumour 

immunohistochemical markers, metformin levels, KFDG, or significantly altered tumour 

metabolites. Spearman’s rank correlation coefficient and significance, are shown. 

 

 



 

 

Fig. S5. Mechanism and modelling of 18F-FDG. Related to ‘Dynamic PET-CT analysis’ of 

STAR methods section. 

(A) 18F-FDG tumour uptake occurs via: ①  trans-capillary exchange; ②  diffusion 

through the tumour interstitium; ③  trans-membrane transport to tumour intracellular 

spaces; and ④  intracellular phosphorylation of 18F-FDG. (B): two- and three-tissue 

compartment models describing 18F-FDG tumour uptake. (C): example of an image-derived 

blood input function, and (D): fit of the irreversible 2-tissue compartment model (continuous 

curve) to FDG uptake time-course data (dots) extracted from dynamic images for one patient.  

 



 

SUPPLEMENTAL TABLES: 

 
Inclusion criteria Exclusion criteria 

Women with a histology proven in situ primary 
breast cancer ≥2 cm in diameter 

 

Radiotherapy, major surgery, significant 
traumatic injury, endocrine therapy, 

immunotherapy, chemotherapy or experimental 
therapy during four weeks prior to starting or 

during trial 
Eastern Cooperative Oncology Group (ECOG) 

performance status 0–1 
 

Pregnancy or breast feeding 
 

Age >18 years 
 

History of type 1 or type 2 diabetes 
 

Fasting or random serum glucose less than 7.0 
mmol/L 

Treatment with metformin in the past year 
 

No prior treatment for breast cancer and 
scheduled to commence neoadjuvant 

chemotherapy in <3 weeks time 

Estimated glomerular filtration rate <45ml/min 
 

Have given written informed consent and are 
capable of cooperating with protocol 

 

Acute or chronic metabolic acidosis 
 

Adequate bone marrow, renal and liver function 
 

Known hypersensitivity to metformin 
 

 

Table S1. List of key inclusion and exclusion criteria. Related to Figure 1. 

  



 

  Number of patients 

Recruitment and 
samples analysed 

Total patient recruitment to study 41 
Number of paired PET-CT scans available for 

analysis 36 

Number of paired 
tumour samples with 
sufficient material for 

analysis 

Metabolomics 29 

RNASeq 36 

ER/HER2 status 
 
 

ER positive 32 
ER negative 9 

HER2 positive 8 
HER2 negative 33 

Triple negative (ER negative and HER2 negative) 8 

Tumour type 

Ductal carcinoma 32 
Lobular carcinoma 7 

Mixed ductal and lobular carcinoma 2 
Grade 1 2 
Grade 2 24 
Grade 3 15 

Median tumour size (on magnetic resonance 
imaging) 49mm (range 30–147) 

Patient 
characteristics 

Median age at study entry 49 years (range 27–67) 
Median body mass index 28.1 (range 19.6–45.3 

 

Table S2. Tumour and patient characteristics (for the 29 paired samples included in the 

general metabolomics analysis). Related to Figure 1. 

 
Dynamic Imaging 

Variable 
p-value 

Paired t-test Wilcoxon Mann-Whitney 
K1 0.145 0.162 0.341 
k2 0.055 0.128 0.521 
k3 0.343 0.053 0.392 
Kflux (KFDG-2cpt(min-
1) 

0.041 0.027 0.510 

SUVmean 0.918 0.271 0.356 
TBRmean 0.255 0.540 0.540 
MRglu 0.141 0.285 0.285 

 

Table S3. P-values for all dynamic imaging variables using 3 different statistical tests, 2-tailed 

paired t-test; 2-sided Wilcoxon signed rank test; Mann-Whitney U-test. Related to Figure 1. 



Pathway KEGG ID p-value* 
Peroxisome 04146 <0.001 
Arginine & proline metabolism 00330 <0.001 
Valine, leucine & isoleucine degradation 00280 <0.001 
Pyruvate metabolism 00620 0.001 
Glutathione metabolism 00480 0.002 
Citrate cycle 00020 0.004 
Propanoate metabolism 00640 0.005 
Fatty acid degradation 00071 0.005 
Alanine & aspartate & glutamate metabolism 00250 0.005 
Cysteine & methionine metabolism 00270 0.007 
Lysine degradation 00310 0.009 
Glycine, serine & threonine metabolism 00260 0.011 
Huntingdon’s disease 05016 0.016 
Histidine metabolism 00340 0.023 
PPAR signalling pathway 00320 0.030 
Oxidative phosphorylation 00190 0.033 
Ascorbate & aldarate metabolism 00053 0.033 
Alzheimer’s disease 05010 0.034 
Glycolysis & gluconeogenesis 00010 0.040 

 
Table S4. List of KEGG pathways linked to mitochondrial metabolism that were significantly 

upregulated following metformin treatment. * corrected Hypergeometric p-value. Related to 

Figure 2. 

 
Circulating marker Pre-metformin Post-metformin p-value* 
 Mean SEM Mean SEM 
Glucose (mmol/L) 4.94 0.08 4.82 0.45 0.032 
Insulin (mU/L) 81.0 8.01 70.2 6.93 0.005 
C-peptide (nmol/L) 0.59 0.04 0.50 0.03 <0.001 
HOMA score 2.60 0.28 2.17 0.22 0.006 
Leptin (ng/ml) 24.3 3.05 24.1 3.08 0.847 
Adiponectin (ug/ml) 8.26 0.49 7.92 0.48 0.100 
C-reactive protein (mg/L) 2.75 0.54 3.76 1.12 0.210 
Tumour necrosis factor alpha 
(pg/ml) 

0.74 0.16 0.60 0.10 0.341 

Interleukin 6 (pg/ml) 1.50 0.26 1.82 0.40 0.184 
 
Table S5. List of circulating markers tested. SEM, standard error of mean. * 2-tailed paired t-

test. Related to Figure 3.  



Gene Full name Brite hierarchy 

COX7B cytochrome c 
oxidase subunit 7B 
 

Energy metabolism 
 

Oxidative 
phosphorylation 

NDUFA4 NDUFA4, 
mitochondrial 
complex associated 
 

Energy metabolism 
 

Oxidative 
phosphorylation 

NDUFS4 NADH:ubiquinone 
oxidoreductase 
subunit S4 

Energy metabolism Oxidative 
phosphorylation 

AMY2B amylase, alpha 2B 
(pancreatic) 

Carbohydrate 
metabolism 

Starch and sucrose 
metabolism 

FBP1 fructose-
bisphosphatase 1 
 

Carbohydrate 
metabolism 
 

Glycolysis / 
Gluconeogenesis 
Pentose phosphate 
pathway 
Fructose and 
mannose 
metabolism 

GALK1 galactokinase 1 
 

Carbohydrate 
metabolism 

Galactose 
metabolism 
Amino sugar and 
nucleotide sugar 
metabolism 

GYS1 glycogen synthase 1 
 

Carbohydrate 
metabolism 

Starch and sucrose 
metabolism 

MGAM2 maltase-
glucoamylase 2 
(putative) 
 

Carbohydrate 
metabolism 

Galactose 
metabolism 
Starch and sucrose 
metabolism 

PLCG1 phospholipase C 
gamma 1 

Carbohydrate 
metabolism 

Inositol phosphate 
metabolism 

DNMT3B DNA 
methyltransferase 3 
beta 
 

Amino acid 
metabolism 
 

Cysteine and 
methionine 
metabolism 

GCLC glutamate-cysteine 
ligase catalytic 
subunit 
 

Amino acid 
metabolism 

Cysteine and 
methionine 
metabolism 
Glutathione 
metabolism 

POLR2J2 Purine metabolism 



RNA polymerase II 
subunit J2 
 

Nucleotide 
metabolism 
 

Pyrimidine 
metabolism 

POLR3GL RNA polymerase III 
subunit G like 
 

Nucleotide 
metabolism 
 

Purine metabolism 
Pyrimidine 
metabolism 

UBP1 beta-
ureidopropionase 1 

Nucleotide 
metabolism 

Pyrimidine 
metabolism 

Metabolism of other 
amino acids 

beta-Alanine 
metabolism 

Metabolism of 
cofactors and 
vitamins 

Pantothenate and 
CoA biosynthesis 
 

Xenobiotics 
biodegradation and 
metabolism 

Drug metabolism - 
other enzymes 
 

HGSNAT heparan-alpha-
glucosaminide N-
acetyltransferase 
 

Glycan biosynthesis 
and metabolism 

Glycosaminoglycan 
degradation 

MAN2A2 mannosidase alpha 
class 2A member 2 
 

Glycan biosynthesis 
and metabolism 

N-Glycan 
biosynthesis 
 

ST3GAL1 ST3 beta-galactoside 
alpha-2,3-
sialyltransferase 1 
 

Glycan biosynthesis 
and metabolism 
 

Mucin type O-glycan 
biosynthesis 
Glycosaminoglycan 
biosynthesis - 
keratan sulfate 
Glycosphingolipid 
biosynthesis - globo 
and isoglobo series 
Glycosphingolipid 
biosynthesis - 
ganglio series 

NADSYN1 NAD synthetase 1 
 

Metabolism of 
cofactors and 
vitamins 

Nicotinate and 
nicotinamide 
metabolism 

 
Table S6. List of all KEGG annotated metabolism genes whose change in expression correlated 

with both change in tumour KFDG-2cpt and tumour acetylcarnitine levels. Related to Figure 3. 
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