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In this Supporting Material, we provide more details for derivation and numerical simulations. Ad-
ditional data and figures are also included to support the results and conclusions given in the main
text.

1. Normalization of the controlling equations
We integrate two typical intercellular social interactions — local alignment (LA) and contact inhibition

of locomotion (CIL) into our active vertex model to investigate collective cell dynamics in a coherent cell
monolayer. In the main text, we have given the controlling equation for the time evolution of vertices’
positions, ri(t), as

dri
dt

=
1

γ
fUi +

∑
J∈Ci

v0pJ

nJ
+
∑
J∈Ci

εTη
T
J (t)

nJ
. (S1)

From the potential energy given by Eq. (1) in the main text, the potential force fUi can be derived as

fUi = −
∑
J∈Ci

1

2
Ka(AJ −A0)

[
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]
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∑
J∈Ci

KcLJ
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+
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∑
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Λ
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|ri − rj |

, (S2)

where k denotes a unit vector normal to the cell monolayer; the summation
∑

J∈Ci
computes over all

cells Ci sharing vertex i, and j1 and j2 are the neighboring vertices of vertex i in cell J ; the summation∑
j∈Vi

is made over all neighboring vertices Vi of vertex i. Substituting (S2) into (S1), we obtain
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(S3)

Besides, the cell polarity pJ = (cos θJ , sin θJ) is mediated by LA and CIL, and evolves as

dθJ
dt

=
µa

nJ

∑
K∈CJ

sin(θ
(vel)
K − θJ) +

µc

nJ

∑
K∈CJ

sin(αJ,K − θJ) + εRη
R
J (t). (S4)

We normalize the governing equations for the vertices’ positions (i.e. (S3)) and the polarity directions
of cells (i.e. (S4)) through the length scale l =

√
A0 and the time scale τ = γ/(KaA0). The normalized

equations can be written as
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and
dθJ

dt̃
=
µ̃a

nJ

∑
K∈CJ
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R
J (t̃), (S6)
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where the dimensionless parameters are defined as

r̃i =
ri√
A0

, t̃ =
t

τ
, ÃJ =

AJ

A0
, L̃J =

LJ√
A0

,

K̃c =
Kc

KaA0
, Λ̃ =

Λ

KaA
3/2
0

, ṽ0 =
v0τ√
A0

, µ̃a = µaτ, µ̃c = µcτ,

ε̃T =
εT
√
τ√

A0

, η̃T
J = ηT

J

√
τ , ε̃R = εR

√
τ , η̃RJ = ηRJ

√
τ .

(S7)

2. Estimation of the dimensionless parameters
According to experimental measurements (1), the viscosity of biological tissues is in the order of 104−

105 N · s ·m−2, leading to an estimation of the friction coefficient γ ∼ 0.01−0.1 N · s ·m−1. Taking the cell
areal stiffness Ka ∼ 105− 107 N ·m−3 for epithelial tissues (2, 3), and the reference area A0 = 900 µm2,
we have the estimation of the length scale and the time scale used for normalization as l =

√
A0 ∼ 30µm

and τ = γ/(KaA0) ∼ 100 s, respectively. The cell contraction force is in the range of 1 − 10 nN for
epithelial cell sheets (4), corresponding to the cell contraction modulus Kc ∼ 10−5 − 10−4 N ·m−1. The
intercellular tension is of the order Λ ∼ 10−9 − 10−8 N, as estimated from experimental measurements
on biological tissues (1). Therefore, we have the estimation of dimensionless cell contractile modulus
K̃c = Kc/(KaA0) ∼ 0.01− 0.1 and the dimensionless intercellular tension Λ̃ = Λ/(KaA

3/2
0 ) ∼ 0.01− 0.1.

Besides, the cell protrusive force is of the order 1 nN (5), resulting in a self-propelled velocity v0 ∼
10−8 − 10−7 m · s−1, with its dimensionless form of the order ṽ0 = v0τ/

√
A0 ∼ 0.01− 0.1. Consequently,

we use the following values for the dimensionless parameters in our study: K̃c = 0.02, Λ̃ = 0.1, ṽ0 = 0.1.
Besides, the intensities of LA and CIL (in their dimensionless forms) are assumed to be of the order
µ̃a = 0.1 and µ̃c = 1.0, respectively. Moreover, to focus on the roles of LA and CIL in regulating collective
cell dynamics in a confluent cell monolayer, we set the noises εT = 0 and εR = 0 for simplicity.
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Supplemental figures
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Fig. S1. Typical velocity fields of collective cell migration obtained from our active vertex model. The
arrows denote velocity vectors of cells and the color code indicates magnitude of cell velocity. Parameters values:
(A) µa = 0.05 and µc = 1.0; (B) µa = 0.1 and µc = 0; and (C) µa = 0.0 and µc = 1.0.
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Fig. S2. Intrinsic vortex density in confluent cell monolayers. The vortex density ρvortex approaches a constant
for large enough system (Ncell → +∞). Data are mean ± SD.
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Fig. S3. The frequency of cell neighbor exchange regulated by intercellular social interactions. Phase
diagrams of the frequency of cell neighbor exchange kT1 under the regulation of LA (µa) and CIL (µc).
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Fig. S4. Giant density fluctuations in confluent cell monolayers are not restricted to emerge in the highly
ordered state of collective motions, but take place in a state with the motion order in a rather broad range.
(A) Phase diagrams of the order parameter φv regulated by LA (µa) and CIL (µc). Here, the order parameter is
defined as φv =

〈∣∣(1/Ncell)
∑

J vJ/|vJ |
∣∣〉

t
. The ordered phase and disordered phase are distinguished at φv = 0.8.

(B) Scatter diagram of the scaling exponent for number fluctuations βNF versus the motion order φv.
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