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1 COMPUTATIONAL MODEL OF THE MEMBRANE INDENTATION
We model the basement membrane as a polymer-based, non-linear poroelastic material that we describe using the theory for
swelling gels developed in (1). In the following, we briefly summarize the governing equations, along with the boundary
conditions and the numerical formulation of the model.

1.1 Governing equations and boundary conditions
The displacement of the membrane’s polymer network with respect to a reference configuration B is described by the vector
field u. This field describes the state of the membrane together with the solvent concentration c per unit reference volume. The
solvent within the membrane (in this case, water) is additionally characterized by a chemical potential µ, which quantifies the
energy it carries. The driving force of solvent migration is given by the gradient of the chemical potential. The corresponding
solvent molar flux h (units mol/m2 · s) characterizes the relative motion of the solvent with respect to the polymer matrix. We
will use the symbol F = I + ∇u (with I the identity) for the deformation gradient and write J = det F for its determinant, and
F? = JF−T for its cofactor.

Swelling processes are governed by the equations of balance of forces and moments that, assuming inertia negligible, read:

divS = 0 , skwSFT = 0 , (1)

where S denotes the first Piola-Kirchhoff stress tensor, and by the balance of solvent mass:

Ûc = − divh , (2)

subject to the initial condition c = co. Here, co = (Jo − 1)/(ΩJo) is the solvent concentration per unit reference volume initially
present within the membrane in its equilibrium state, with Jo the volume ratio between the reference and the dry configuration
and Ω the solvent molar volume. The coupling between Eqs. 1-2 occurs both at the kinematic and at the constitutive levels.

From the viewpoint of kinematic coupling, the polymer matrix and the solvent are considered to be separately incompressible;
hence, the change in volume of the membrane is related to the change in solvent concentration:

J = 1 +Ω(c − co) . (3)

This constraint is enforced through the Lagrange multiplier p.
As concerns the constitutive equations, we prescribe the following Flory-Rehner representation for the free energy density

of the membrane (1, 2):

ψ(F, c) = ψe(F) + ψm(c) , (4)

where

ψe(F) =
Gd
2Jo
(J1/3

o F · F − 3) and ψm(c) = RTc
[
log

(
ΩJoc

1 +ΩJoc

)
+ χ

1
1 +ΩJoc

]
(5)

are the neo-Hookean elastic energy of the polymer network and the Flory-Huggins free energy of solvent-polymer mixing,
respectively. Here, Gd is the shear modulus of the dry polymer, R is the universal gas constant, T is the absolute temperature of
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the environment, and χ is the polymer-solvent mixing parameter. For the consistency with thermodynamical principles, the
corresponding constitutive equations are given by:

S =
∂ψe
∂F
− pF? , µ =

∂ψm
∂c
+Ωp , h = −

c D
RT
∇µ , (6)

where D is the diffusivity of the solvent within the membrane. Here, we have chosen a Darcy-like law to relate the water flux to
the gradient of chemical potential. The value of the model parameters used in the simulations are reported in Table S1.

In the reference configuration, because of the chemical equilibrium, the membrane’s chemical potential µo is homogeneous
and equals that of the external solvent. Specifically, we consider an external solvent in equilibrium with its vapor, so that
µo = µe = 0 J/mol. Moreover, the reference configuration is stress-free, hence it is identified by the conditions F = I, µ = µo
and S = 0, which together determine the swelling ratio Jo as the solution of the equation:

log
(
1 −

1
Jo

)
+

1
Jo
+

χ

J2
o
+

GdΩ

RT
1

J1/3
o
= 0 , (7)

which coincides with Eq. 6 of the main text upon introducing the initial water volume fraction φo = 1 − 1/Jo. As fitting
parameters for model calibration, we choose λo, χ and D. In particular, once λo and χ are known, the incremental shear
modulus G = Gd/J

1/3
o with respect to the reference configuration can be readily computed from:

G = −
RT
Ω

[
log φo + 1 − φo + χ(1 − φo)

2] , (8)

while the incremental bulk modulus K obtained by linearizing the constitutive equations is (3):

K = −
G
3
+
RT
Ω

(
1
φo
− 2χ

)
(1 − φo)

2 . (9)

For symmetry reasons, 1/4 of the membrane was chosen as the computational domain (see Fig. 6b in the main text); the
corresponding zero normal displacement and zero normal solvent-flux boundary conditions were imposed on the symmetry
planes. The substrate was assumed to be rigid, frictionless, and impermeable, which amounts to prescribing zero normal
displacement and zero normal solvent flux on the bottom surface of the membrane. Apart from the boundaries in contact
with the substrate and the indenter, the free surface of the membrane was assumed to be in chemical equilibrium with the
surrounding water bath at all times, i.e. µ = µe.

The indentation procedure was modeled as follows. Starting from the equilibrium state of free swelling with µ = µo,
the indenter was vertically displaced at constant speed v = 50 µm/s and brought into contact with the membrane, until the
indentation depth δ as measured experimentally was reached. The indenter was modeled as a rigid body. A penalty formulation
was employed to describe frictionless contact between the membrane and the spherical indenter, i.e. the normal contact pressure
pc = −kd for d ≤ 0 (pc = 0 for d > 0) was applied on the contact region Sc of the membrane surface, with k the penalty factor
and d the distance between the surface of the indenter and the top surface of the membrane.

1.2 Weak form of the governing equations and numerical procedures
In order to solve the problem set in the previous paragraphs by means of the finite element method, we recast the governing
equations 11, 2, and 3 in weak form. Then, the weak formulation of the problem reads: find u, c, p and g such that the following
equations ∫

B

S · ∇ũ =
∫
Sc

s · ũ ,
∫
B

(− Ûc µ̃ + h · ∇µ̃) −
∫
Sf

(g µ̃) = 0 , (10)∫
B

(J − 1 −Ωc +Ωco) p̃ = 0 ,
∫
Sf

(µ(c, p) − µe) g̃ = 0 , (11)

hold for arbitrary test fields (indicated with a superposed tilde) compatible with the Dirichlet boundary conditions. Here,
s = −pcn is the contact traction, with n the outward unit normal to the current contact surface Sc, and g is the Lagrange
multiplier enforcing the chemical equilibrium on the free surface Sf of the membrane. The weak form of the governing equations
is complemented by the constitutive relations 6. Equations 10-11 and the corresponding boundary conditions were implemented



Table S1: Parameter values used in the numerical simulations.

Parameter Value Description
h (160 − 450) nma Membrane thickness
L 100h Membrane in-plane length
λo 4.2 − 5b Initial swelling stretch of the membrane
χ 0.42 − 0.48b Solvent-polymer mixing parameter
D (0.01 − 1.5) × 10−7 m2/sb Solvent diffusivity
Ω 1.8 × 10−5 m3/mol Solvent molar volume
T 298K Ambient temperature
r 0.5, 3.5 µm Indenter radius
v 50 µm/s Indentation speed
δ (90 − 180) nma Indentation depth

a. Variable. Value selected according to experiment.
b. Fitting parameter.

into the finite element software COMSOL Multiphysics v5.2a using the Weak Form PDE mode (see (4) for details regarding the
solvers). Specifically, quadratic shape functions were used for u, c and g, while the pressure field p was discretized using linear
shape functions to get a reliable approximation of the volume constraint. The implicit, variable-order (from 1 to 5), adaptive
step-size BDF solver was used for time-stepping. A quasi-Newton algorithm was employed to solve iteratively the non-linear
algebraic system resulting from the finite element discretization at each time step. The direct solver MUMPS was chosen for
the solution of the linearized algebraic system at each iteration. The mesh consisted of triangular elements for the surface of
the indenter, and of prism and hexahedra for the membrane, corresponding to a total of about 4 × 104 degrees of freedom.
Local mesh refinement over the contact area between the indenter and the membrane was performed to ensure convergence and
accuracy of the solution.

For given values of the model parameters, the solution of equations 10-11 allows to evaluate the indentation force, i.e.
the integral of the contact traction over Sc, as a function of time. This was then compared with the experiments to calibrate
the model parameters λo, D and χ. In particular, a least-square fitting procedure was employed for such a calibration. The
cost functional, i.e. the squared distance between the numerical and experimental force-time curves, exhibits several local
minima, which correspond to different sets of optimal fitting parameters. To ensure that the global minimizer was found in the
optimization procedure, after a preliminary sampling of the parameter space, the range of the fitting parameters was restricted,
and the optimization was performed multiple times starting from 100 randomly generated points within such range. In each
optimization run, the gradient-free BOBYQA optimization algorithm was employed to perform the least-square fitting. After
completing the optimization runs, the minimizer corresponding to the lowest value of the cost function was selected.
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2 FORCE-RELAXATION CURVES: COMPARISON BETWEEN EXPERIMENTAL DATA AND
NUMERICAL RESULTS
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Figure S1: Force-relaxation curves: comparison between experimental (dots) and numerical (lines) results for four different
membranes (a-d) and for different values of both indenter radius R: 3.5 µm (blue), 0.5 µm (red), and force setpoint F: 1 nN
(solid lines), 0.5 nN (dashed lines). Dots and shaded areas correspond to the spatial averages and the standard deviations of the
indentation force, respectively, as computed from experimental data.

3 EFFECT OF WATER PRESSURE ON MEMBRANE PERMEABILITY
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Figure S2: Water diffusivity as a function of the maximum water pressure in the membrane recorded during each indentation
test. Dots represent data from numerical simulations. The red line is a power-law fit to the data: 0.0013 · p−1.686

max .



4 EFFECT OF OSCILLATING COMPRESSIVE BODY LOAD ON SOLVENT FLUX AND MEMBRANE
VOLUME

Figure S3: (a) Solvent pressure within (red curve) and outside (blue curve) the membrane. (b) Surface-averaged solvent flux
(red curve, negative values meaning outward flux) computed on the boundary of the membrane in contact with the external
solvent. Relative volume change of the membrane (blue curve):

∫
B
Ω(c − co) dV/

∫
B
dV

.

In this simulation, a membrane with thickness L = 300 nm is subject to an oscillating compressive body load −(pe(t)/L)e3,
pe(t) = pmax/2[1− cos(2π f t)], in the direction e3 of the thickness, with peak pressure magnitude pmax = 500 Pa and frequency
f = 1 Hz. This body load mimics inertia loads associated to suckling during lactation (5, 6). The geometry and boundary
conditions are taken as for indentation simulations (except for the contact with the indenter, which is here absent); the other
model parameters are chosen as λo = 4.6, χ = 0.488, D = 7.5 × 10−8m2/s, which correspond to a typical membrane in our
indentation experiments. The external fluid pressure (red curve in Fig. S3a) is supposed to vary according to pe, so that applied
traction on the top surface of the membrane is −pee3 and the external chemical potential is µe = Ωpe. As reported in Fig. S3a,
the volume-averaged fluid pressure µ/Ω within the membrane (blue curve) closely follows the time course of the external
pressure, with a slightly different period due to the non-equilibrium in solvent transport and a greater amplitude, which drives
solvent exchange with the exterior. Such an exchange may be quantified by evaluating the surface-averaged solvent flux (Fig. S3b,
red curve, negative values meaning outward flux), which reaches a peak absolute value of 1 × 10−2 mol/m2 · s. In particular, in
the first half of a period (approximately) the membrane expels fluid due to the overpressure developing as a consequence of the
compressive body load; the expelled fluid is then mostly regained in the second half of the period, when the average inner
pressure is lower than the external pressure. The relative volume change of the membrane, i.e., the ratio between the volume of
fluid exchanged with the exterior and the initial volume of the membrane, is depicted in Fig. S3b (blue curve) and reaches a
maximum of 22%.
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