

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Assessing C-reactive protein/albumin ratio as a new predictor of Polycystic Ovary Syndrome: a case-control study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021860
Article Type:	Research
Date Submitted by the Author:	22-Jan-2018
Complete List of Authors:	Kalyan, Shirin; University of British Columbia, Medicine; Goshtasebi, Azita; University of British Columbia, Medicine Sarray, Sameh; Arabian Gulf University Joannou, Angela; University of British Columbia, Medicine Almawi, Wassim; El-Manar University
Keywords:	polycystic ovary syndrome, inflammation, C-reactive protein, albumin, pathophysiology

2		
3	1	Assessing C-reactive protein/albumin ratio as a new predictor of Polycystic Ovary
4	-	
5	2	Syndrome: a case-control study
6 7	-	
8	3	
9	4	Short title: CRP/Albumin as a predictor of PCOS
10	5	
11	6	
12	7	Shirin Kalyan ¹ *, Azita Goshtesabi ¹ , Sameh Sarray ^{2,3} , Angela Joannou ¹ , Wassim Almawi ³
13	8	
14	9	
15	10	¹ CeMCOR, Division of Endocrinology, Department of Medicine, University of British
16	11	Columbia, Vancouver, BC, Canada
17	12	
18	13	² Arabian Gulf University, Department of Medical Biochemistry, Manama Bahrain
19	14	
20	15	³ Faculty of Sciences, El-Manar University, Tunis, Tunisia.
21		
22	16	
23	17	
24 25	18	
25	19	*Corresponding author:
20	20	Dr. Shirin Kalyan
28	21	
29	22	Rm 4139, Diamond Health Care Centre
30	23	Rm 4139, Diamond Health Care Centre Division of Endocrinology Department of Medicine University of British Columbia Email: <u>shirin.kalyan@ubc.ca</u>
31	24	Department of Medicine
32	25	University of British Columbia
33	26	
34	27	Email: <u>shirin.kalyan@ubc.ca</u>
35	28	
36	29	
37	30	
38	31	Keywords: polycystic ovary syndrome, inflammation, pathophysiology, C-reactive protein,
39	32	albumin
40 41	33	
41	34	Word count: 2409 (main article)
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53 54		
54 55		
55 56		
57		
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

35 36	Abstract
37	Objective: Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting
38	approximately one in seven women who experience androgen excess, menstrual cycle
39	irregularities, frequent anovulation, and a tendency for central obesity and insulin resistance.
40	Chronic subclinical inflammation is now recognized as being common in the context of
41	PCOS, which led to the postulation that PCOS may fundamentally be an inflammatory
42	process. This study aimed to: 1) evaluate serum CRP/albumin ratio as a predictor of PCOS;
43	2) compare the relationship between CRP/albumin and PCOS to classical predictors of the
44	syndrome.
45	Design: Case-control study.
46	Setting: Adult obstetrics/gynaecology, endocrinology and outpatient clinics; university
47	hospital in Bahrain.
48	Participants: 200 premenopausal women with a diagnosis of PCOS, and 119 ethnically-
49	matched eumenorrheic premenopausal women.
50	Main Outcome Measures: CRP/albumin ratio, anthropometric measures, insulin resistance,
51	androgen excess.
52	Results: Independent of body mass index (BMI), receiver operating characteristic (ROC)
53	curve for CRP/albumin ratio as predictor of PCOS was 0.865 (95% CI: 0.824–0.905), which
54	was more sensitive than CRP alone. Binary regression analysis showed that CRP/albumin
55	ratio outperformed classical markers, free androgen index and insulin resistance, in predicting
56	PCOS for every BMI category.
57	Conclusion: CRP/albumin ratio, a marker for inflammation related to metabolic dysfunction,
58	better predicts PCOS than either androgen excess or insulin resistance. Inflammation is
59	known to be influenced by adiposity, but relative to controls, women with PCOS have higher
	2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	60	levels of CRP/albumin irrespective of BMI. These findings support the view that
4 5 6	61	inflammation plays a central role in the pathophysiology of PCOS.
7 8	62	
9 10	63	
11 12	64	Article Summary
13 14	65	Strengths and limitations of this study
15 16	66	• This analysis addressed previous limitations of studies, namely small sample sizes,
17 18 10	67	heterogeneous populations, and confounding factors (such as BMI), that have
19 20 21	68	attempted to show PCOS is an inflammatory process
22 23	69	• The relationship between inflammation and PCOS was assessed using CRP/albumin
24 25	70	ratio, which may be a better marker for inflammation in the context of metabolic
26 27	71	dysfunction
28 29	72	• Limitation: study used waist circumference as a substitute for visceral adiposity; gold
30 31 32	73	standard is computed tomography (CT) or magnetic resonance imaging (MRI)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	74	
56 57		
58 59		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i of peer retrem only integrating openion geomatication about guidelines. Antim

75	Introduction
, 0	introduction

Polycystic ovary syndrome (PCOS) is the most common reproductive disorder, affecting 5 to 15 % of premenopausal women worldwide 1,2 . The prevalence of PCOS is increasing 1 , which may partly be attributed to improved diagnosis, as well as an increase in environmental factors that may predispose to the development of this complex metabolic condition. PCOS is characterized by androgen excess, menstrual irregularities, ovulatory disturbances, and is often associated with central obesity and insulin resistance ³⁻⁵. As such, women with PCOS are at an increased risk for a number of health issues, including infertility, cardiovascular disease and diabetes ^{3, 6, 7}. Possibly related to the constellation of endocrine and metabolic dysfunction they experience, women with PCOS are also found to have greater chronic subclinical inflammation⁸⁻¹¹, which is often clinically assessed by measuring serum levels of C-reactive protein (CRP). CRP is a liver-derived acute phase protein produced in response to IL-6 secreted from activated cells such as macrophages and adipocytes ^{12, 13}. A meta-analysis of 31 studies concluded that systemic CRP levels are 96% higher in women with PCOS compared to control women¹⁴. Collectively, these findings have given rise to the speculation that inflammation may play a pivotal role in the pathophysiology of PCOS $^{8-10}$. Elevated serum CRP levels are linked to several health risk factors experienced by women with PCOS, particularly insulin resistance and heightened risk of type 2 diabetes ^{7, 15, 16}. Chronic inflammation also contributes to endothelial dysfunction, exacerbating the development of atherosclerotic plaques, triggering the onset of cardiovascular disease (CVD) ¹⁷. As such inflammation has been associated with both CVD and coronary artery disease in women with PCOS¹⁰.

Page 5 of 22

1 2

BMJ Open

2
3
4 5
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ ו כר
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
23
24 25
25
26
2/
28
29
30
31
32
33
34 35
35
36 37 38 39
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
52
52 53
54 55
55
56
57
58
59
60

98	In contrast to CRP, albumin is a negative acute phase response protein produced by the liver.
99	Serum levels of albumin are reduced in individuals experiencing chronic inflammation ¹⁸ . In
100	addition to its role as a binding molecule for sex steroids ¹⁹ , albumin also provides the
101	majority of the total antioxidant capacity of normal plasma ¹⁸ . The ratio of serum CRP levels
102	over serum albumin (CRP/albumin) was found to be strongly associated with more severe
103	metabolic dysfunction in premenopausal women with induced alterations to their ovarian
104	hormone status ²⁰ . CRP/albumin ratio was also found to be significantly higher in
105	premenopausal women with PCOS relative to controls, and adversely predicted their bone
106	quality ²¹ . Given the ability of CRP/albumin to simultaneously capture chronic inflammation
107	and metabolic dysfunction in premenopausal women, we hypothesized that CRP/albumin
108	ratio would, in itself, serve as a strong predictor of PCOS in a cohort of similarly aged
109	women. This case-control study investigated CRP/albumin ratio along with classical markers,
110	androgen excess and insulin resistance, in their ability to predict PCOS in 319 premenopausal
111	Bahraini Arab women.
112	Banraini Arab women.
113	Methods
114	Study subjects
115	Women with PCOS ($n = 200$) were recruited from adult obstetrics/gynecology,
116	endocrinology and outpatient clinics in Manama, Bahrain. Women without PCOS (n = 119)
117	were ethnically-matched, eumenorrheic university employees and students, and healthy
118	volunteers representative of the Bahraini population. Women serving as controls were
119	examined in the follicular phase of their menstrual cycle, and had their testosterone levels
120	were within range. A diagnosis of PCOS was based on the 2003 Rotterdam Criteria, which
121	requires two of the three following criteria to be met: ultrasound evidence of polycystic
	requires two of the three following criteria to be met. ultrasound evidence of polycystic

ovarian morphology, anovulation, and hyperandrogenism ²². Exclusion criteria included 122

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 21
∠ ı 22
22
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 20 21 22 32 4 25 26 27 28 9 30 12 33 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 5 6 7 8 9 10 11 2 3 4 5 5 6 7 8 9 10 11 2 3 4 5 5 6 7 8 9 20 21 22 23 24 5 26 27 28 29 30 31 22 33 33 33 33 33 33 33 33 33 33 33 33
25
26
27
28
29
30
31
32
33
34
35
36
3/
38
39 40
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 56
50
57 58
58 59
59 60
00

1

123	hyperprolactinemia, non-classical adrenal hyperplasia, androgen-producing tumors, 21-
124	hydroxylase deficiency, Cushing's syndrome, and active thyroid disease. Additional
125	exclusion criteria included extremes of body mass index (BMI; $<18 \text{ kg/m}^2 \text{ or }>45 \text{ kg/m}^2$),
126	recent/present illness, and treatment affecting carbohydrate metabolism or hormonal levels,
127	for three months or longer before inclusion the study. Women using anti-hypertensive, oral
128	contraceptive, anti-inflammatory, and lipid-lowering drugs were also excluded. Demographic
129	information, along with detailed personal and family history of diabetes, hypertension,
130	infertility, hypercholesterolemia, and ischemic heart disease were obtained from all
131	participants. This study was conducted in accord with the Helsinki II Declaration guidelines,
132	and all participants gave written informed consent to participate. Study approval was
133	obtained from the Bahraini Ministry of Health and Arabian Gulf University Research and
134	Ethics Committees (IRB number: 35-PI-01/15) and the Clinical Research Ethics Board of the
135	University of British Columbia (H16-02101).
136	Biochemical analysis
137	Biochemical analysis
138	Peripheral venous fasting blood samples were obtained between 7:00 and 9:00 am following
139	an overnight (> 12 h) fast during the early follicular phase of the menstrual cycle (days 2 ± 5)
140	for control women, or women with PCOS who did not present with menstrual irregularities,

141 or any day for women with PCOS with menstrual irregularities. Serum samples were

142 analyzed for sex hormone binding globulin (SHBG) by sandwich ELISA (R&D Systems,

143 Minneapolis, MN); assay sensitivity was 0.01 nmol/ml, and inter-assay and intra-assay

144 precision (CV %) were 5.3% and 4.3%, respectively.

145 Serum luteinizing hormone (LH), follicular stimulating hormone (FSH), thyroid stimulating

146 hormone (TSH), testosterone, glucose (ADVIA Centaur, Bayer Vital, Fernwald, Germany),

147 and insulin (IMMULITE 2000, DPC Biermann, Bad Nauheim, Germany), were measured by

60

BMJ Open

2 3	148	automated chemiluminescence immunoassays. Free (FT) and bioactive (BT) testosterone and
4 5	149	free androgen index (FAI) were determined using Free & Bioavailable Testosterone
6 7 8	150	Calculator (www.issam.ch/freetesto.htm). Concentrations of serum albumin were analyzed
8 9 10	151	by photospectrometry with albumin bromocresol purple assay on a COBAS c701 Chemistry
11 12	152	Analyzer (Roche Diagnostics, Dubai, UAE). Insulin resistance (IR) was estimated by the
13 14	153	homeostasis model assessment (HOMA-IR), defined as fasting serum insulin (IU/mL) ×
15 16	154	fasting plasma glucose (mmol/L)/22.5.
17 18		
19	155	Measurement of plasma high sensitivity CRP levels was done by latex-enhanced
20 21	156	nephelometry on a BN II Nephelometer (Dade Behring, Milan, Italy). Samples were assayed
22 23	157	in duplicate in each analytical run; the lower limit of detection was 0.15 mg/L, and the assay
24 25 26	158	range was 0.175–11.0 mg/L (initial dilution). Serial serum dilutions were made in measuring
20 27 28	159	high CRP (>30 mg/L) levels. Percentile CRP values were estimated for comparison
29 30	160	purposes. Statistical analysis
31		
32 33	161	Statistical analysis
34 35	162	The core outcome set of variables included assessment of CRP/albumin as a predictor of
36 37	163	PCOS while controlling for relevant factors, such as BMI and age, and to subsequently
38 39	164	compare the strength of the relationship between CRP/albumin and PCOS with classical
40 41	165	predictors of the syndrome, androgen excess and insulin resistance. Baseline characteristics
42 43	166	were compared using the Mann-Whitney U test and the independent samples t-test for the
44 45	167	continuous variables, and the χ^2 test for categorical variables. Numerical variables are
46 47		presented as mean \pm standard deviation (SD). Because distribution of CRP/albumin levels
48	168	presented as mean \pm standard deviation (SD). Because distribution of CKP/alounnin levels
49 50	169	was skewed to the right, correlations between CRP/albumin ratio and other continuous
51 52	170	variables were assessed using Spearman's rho. Univariate general linear models were applied
53 54	171	to test independent associations between CRP/albumin ratio and other independent variables.
55 56		
57		
58		7
59		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4 5
6 7
/ 8
o 9
, 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 31
32
32 33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 54
54 55
55 56
56 57
57 58
58 59
60
00

1

172	The optimal cut-off level for the CRP/albumin ratio was determined by a receiver operating
173	characteristic (ROC) curve analysis, and the areas under the curve (AUC) were measured and
174	compared to assess the power of a model to identify patients who experienced metabolic
175	disturbances. Cut-off values showing the greatest accuracy were determined using a
176	sensitivity/specificity versus criterion value plot. Quartiles of CRP and CRP/albumin ratio
177	were calculated separately in PCOS and control groups; and since 25% quartile of CRP value
178	in patient group was very close to standard value of normal level of CRP, we decided to use
179	25 quartile values for CRP and CRP/albumin ratio in PCOS group as cut-off values for the
180	two predictors respectively.
181	Using the calculated cut-off values, regression analysis was performed to determine how well
182	each variable predicted PCOS. To fully explore the role of the CRP/albumin ratio as a
183	biomarker in the prediction of metabolic disturbances, CRP and CRP/albumin ratio were
184	additionally assessed as binary variables. Subjects were categorized into two groups based on
185	the cut-off values and their means (SD) for metabolic markers. Insulin resistance (HOMA-
186	IR), free testosterone, total adiponectin, BMI and TSH were compared between subjects with
187	normal values, and those who had higher than normal values. P-values <0.05 were considered
188	as statistically significant. All statistical analyses were performed using the IBM SPSS
189	statistics software program version 22 (IBM, Armonk, NY).
190	
191	Results
192	Study subjects
193	The sociodemographic, anthropometric, clinical, and biochemical characteristics of the 200
194	women with PCOS and 119 controls women are summarized in Table 1. Relative to controls,

195 women with PCOS had fewer pregnancies and live births (p<0.001), were more likely to

BMJ Open

196	have insulin resista	nce (p<0.001), a	nd differed in ec	lucation attainm	ent with those	with	
197	PCOS, having a hig	gher number of h	high school and p	oost-secondary	graduates (p=0	0.012).	
198	Metabolic characte	pristics					
199	The proportion of w	vomen with a BI	MI greater than 3	30 kg/m ² were h	igher in the P	COS cohort	
200	than controls (p<0.0	001), but the wa	ist-to-hip ratio w	as not significa	ntly different (Table 1).	
201	Serum levels of adi	ponectin, an adi	pocyte-associate	d protein that te	ends to be inve	rsely linked	ł
202	to visceral adiposity	y ²³ , was marked	ly lower in wom	en with PCOS	compared to c	ontrols.	
203	Fasting plasma glue	cose, cholesterol	, HDL, LDL and	ł triglyceride le	vels did not di	ffer	
204	significantly betwee	en women with a	and without PCC	DS. However, in	dices of insuli	n resistance	;
205	and insulin sensitiv	ity (HOMA-IR a	and QUICKI) in	dicated that wor	nen with PCO	S had	
206	greater impaired re	gulation of insul	in compared to c	controls (Table	1).		
207	Table 1: Demogra	phic, clinical ar	nd hormonal ch	aracteristics of	study popula	tion:	
208	women with polyc	ystic ovary syn	drome (PCOS)	and controls.			
209	Data are presented	as means (standa	ard deviation).				
		All	PCOS	Controls	Mean	95 % CI	ofN
		(N=319)	(N=200)	(N=119)	difference	Diffe	renc
					5	lower	
							1

	All	PCOS	Controls	Mean	95 % CI	of Mean
	(N=319)	(N=200)	(N=119)	difference	Difference	
				5.	lower	upper
Age (yrs)	27.9 (6.4)	28.4 (5.9)	27.2 (7.2)	1.24	-0.22	2.71
BMI (kg/m ²)	28 (5.9)	29 (6.3)	26.5 (5)	2.53	1.19	3.87
Waist/hip ratio	0.94 (0.09)	0.94 (0.09)	0.93 (0.09)	0.0067	-0.017	0.031
Menarche (yrs)	12.5 (1.4)	12.5 (1.5)	12.4 (1.2)	0.12	-0.21	0.45
HOMA.IR	3.2 (0.18)	3.8 (0.26)	2.1 (0.2)	1.67	0.94	2.4
QUICKI	0.6 (0.006)	0.57 (0.008)	0.65 (.01)	-0.078	-0.10	-0.05
Total adiponectin	33.8 (1.4)	28.4 (1.3)	44.6 (2.9)	-16.25	-21	-10
(ng/L)						

Albumin (g/L)	37.3 (0.46)	32.7 (0.46)	45 (0.35)	-12.22	-13.52	-10.93
CRP (mg/L)	11.1 (1.1)	15.5 (1.6)	3.6 (0.85)	11.89	7.61	16.17
CRP/Alb ratio	0.36 (0.04)	0.53 (0.06)	0.08 (0.02)	0.45	0.29	0.61
SHBG (nmol/L)	60.1 (1.5)	52.2 (1.4)	72 (2.8)	-19.72	-26.5	-13.93
Free testosterone	0.025 (0.001)	0.029 (0.001)	0.017 (0.001)	0.011	0.007	0.015
index						

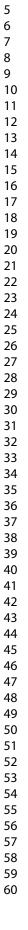
211 BMI: Body Mass Index, HOMA.IR: Homeostatic Model Assessment for Insulin Resistance,
212 QUICKI: Quantitative insulin sensitivity check index, CRP: C-reactive protein, SHBG: Sex
213 hormone binding hormone.

- *Reproductive hormone characteristics*
- 215 There were no statistically significant differences in plasma levels of estradiol, progesterone,
- total testosterone, prolactin, FSH, LH and DHES between women with and without PCOS.
- **217** Free testosterone was higher and SHBG lower in women with PCOS (**Table 1**).
- *C-reactive protein (CRP)/albumin ratio as a predictor of polycystic ovary syndrome (PCOS)*
- 219 stratified by body mass index (BMI)
- 220 Women with PCOS had markedly higher levels of CRP and lower levels of serum albumin
- relative to controls (p<0.001; **Table 1**). ROC curve analysis showed that the CRP/albumin
 - ratio had greater discriminatory power to differentiate between women with PCOS and
- 223 controls (AUC: 0.865, 95% CI: 0.824-0.905) compared to CRP alone (AUC: 0.820, 95% CI:
- 224 0.773-0.867); Figure 1. This greater efficacy of CRP/albumin ratio to discriminate between
- cases and controls was also evident when taking into account the presence of insulin
- resistance at every measure of sensitivity; for a sensitivity level of 75%, CRP/albumin ratio
- had a specificity of 85% compared to 69% for CRP alone.

BMJ Open

1 2	
2 3	
4	
5	
6	
7 8	
9	
10	
11	
12 13	
13 14	
15	
16	
17 18	
19	
20	
21	
22 23	
23 24	
25	
26	
27 28	
29	
30	
31 32	
32 33	
34	
35	
36 37	
38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
48	
49	
50 51	
51 52	
53	
54	
55 56	
56 57	
58	
59	
60	

arkers was subseque RP/albumin values v COS diagnosis, BMI lue, women with PC assical predictors of RP/albumin ratio as	ently performed. Varial were included in a gene f, and CRP/albumin lev COS have markedly ele FPCOS, free androgen	bles found to be univa eral linear model testir vels. The model reveal evated CRP/albumin le	inical and biochemical riately linked to ng the relationship amou led that for any given B evels (p<0.001, Figure stance, were compared	
RP/albumin values v COS diagnosis, BMI lue, women with PC assical predictors of RP/albumin ratio as	vere included in a gene , and CRP/albumin lev COS have markedly ele FPCOS, free androgen	eral linear model testir vels. The model reveal evated CRP/albumin le	ng the relationship amon led that for any given B evels (p<0.001, Figure	
COS diagnosis, BMI lue, women with PC assical predictors of RP/albumin ratio as	a, and CRP/albumin lev COS have markedly ele FPCOS, free androgen	vels. The model reveal evated CRP/albumin le	led that for any given B evels (p<0.001, Figure	
lue, women with PC assical predictors of RP/albumin ratio as	COS have markedly ele FPCOS, free androgen	evated CRP/albumin le	evels (p<0.001, Figure	
assical predictors of RP/albumin ratio as	PCOS, free androgen		4 · C	
RP/albumin ratio as		index and insulin resi	stance, were compared	
	predictors of PCOS in			
MI categories: <25 k		a binary regression ar	alysis stratified by thre	
	xg/m^2 [normal], 25 – 29	9.9 kg/m ² [overweight	t], >30 kg/m ² [obese]);	
able 2. A CRP/albu	min ratio of ≥0.097 ou	tperformed both insul	in resistance and free	
drogen index in pre-	dicting PCOS for ever	y BMI category (Tabl	e 2).	
able 2: Summary of	f binary Regression A	nalysis for Variable	s Predicting PCOS wi	
		4.		
	Odds F	Ratio (95% Confidence I	Interval)	
	BMI < 25	BMI 25-29.9	$BMI \geq 30$	
	(normal)	(overweight)	(obese)	
CRP/Albumin Rat	lio ¹		2,	
< 0.097	1	1	1	
≥0.097	11.21 (3.28-39.75)	19.32 (5.07-72.17)	34.5 (7.75-153.52)	
Insulin Resistance	2			
No	1	1	1	
Borderline	3.34 (0.645-17.33)	5.58 (0.907-34.41)	3.13 (0.53-18.48)	
Yes	9.21 (1.63-51.93)	8.81 (1.75-44.31)	17.94 (1.81-177.61)	
Free Androgen Ind	dex ³			
1	drogen index in pre able 2: Summary o e Odds Ratio of ea CRP/Albumin Rat < 0.097 ≥0.097 Insulin Resistance No Borderline Yes	drogen index in predicting PCOS for every able 2: Summary of binary Regression A e Odds Ratio of each risk factor adjuste Odds H BMI < 25 (normal) CRP/Albumin Ratio ¹ < 0.097 1 ≥ 0.097 1 Insulin Resistance ² No 1 Borderline 3.34 (0.645-17.33) Yes 9.21 (1.63-51.93)	(normal)(overweight)CRP/Albumin Ratio1 < 0.097 1 ≥ 0.097 11.21 (3.28-39.75)19.32 (5.07-72.17)Insulin Resistance2No11Borderline3.34 (0.645-17.33)5.58 (0.907-34.41)Yes9.21 (1.63-51.93)8.81 (1.75-44.31)	


1

1

1

<3.95

	≥3.95	2.28 (.536-9.75)	0.86 (.22-3.35)	3.79 (0.59-24.42)
242				
243	¹ Cut-off values were	derived from the sensit	tivity and specificity a	analysis of the receiver
244	operating characteris	tic curve		
245	² Categories of insulin	n resistance based on no	ormal values used for	HOMA-IR
246	³ Cut-off values from	normal laboratory refer	rence ranges for free a	androgen index
247				
248	Discussion			
249	This study demonstra	ated that CRP/albumin	ratio is a better predic	tor of PCOS than both f
250	androgens and insuli	n resistance in 319 ethn	ically-matched preme	enopausal women, and the
251	relationship was inde	pendent of BMI. Despi	te being the most con	nmon reproductive disor
252	to affect women, the	etiology of PCOS has a	remained elusive to da	ate. In the absence of a
253	definitive cure, treatr	nent has focused on syn	nptom management,	and a goal to prevent the
254	progression of seriou	s health conditions, suc	ch as type 2 diabetes a	nd CVD, for which wor
255	with PCOS are at hei	ghtened risk. Chronic l	ow-grade inflammation	on has emerged as a
256	common underlying	state in women with PC	COS, and a likely dire	ct contributor to insulin
257	resistance and heart of	lisease risk. This has ra	ised the question whe	ther PCOS is fundamen
258	an inflammatory con	dition ^{8, 10, 24} .		
259	Small sample sizes, h	eterogeneous populatio	ons, and an inability to	o correct for confoundin
260	factors, such as BMI	and use of oral contrac	eptives, both of whicl	n influence inflammator
261	markers such as CRF	²¹ , has in part hampere	ed efforts in assigning	inflammation as truly a
262	defining feature of P	COS. This current analy	ysis has overcome sor	ne of the main issues in
263	assessing the indeper	ident relationship betwo	een PCOS and chroni	c low-grade inflammatio
264	This was accomplish	ed by accounting for m	any of the confounding	ng variables and by using
265	more refined marker	for inflammation, the C	CRP/albumin ratio. wł	nich may have greater

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
1	
4	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
50	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	

60

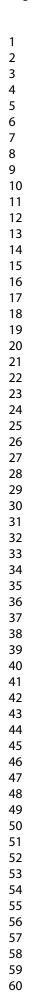
266	specificity and sensitivity for inflammation associated with metabolic dysfunction. The
267	CRP/albumin ratio was first found to be useful in assessing cardiometabolic and
268	inflammatory status following ovariectomy surgery ²⁰ . It was subsequently used to show the
269	influence of chronic subclinical inflammation on bone quality in women with PCOS ²¹ .
270	Although CRP is used to predict cardiovascular risk and is associated with metabolic
271	disorders associated with obesity and insulin resistance ²⁵⁻²⁸ , it has been criticized for being
272	too general and non-specific a marker for inflammation ²⁹ .
273	When compared to CRP alone, we found that the CRP/albumin ratio had an improved ROC
274	curve for predicting PCOS. Serum albumin, which is commonly measured to assess liver
275	function and malnutrition, is not widely considered as an analyte of interest for PCOS.
276	However, this study showed for the first time that albumin is markedly reduced in women
277	with PCOS relative to controls. This may, at least in part, be due to albumin being a negative
278	acute phase protein ¹⁸ . It is also possible that there is increased oxidation and glycation of
279	albumin in women with PCOS - which can impact the structure, function and metabolism of
280	the protein ¹⁸ . As one of the most abundant serum proteins, among albumin's many roles is
281	the transport of hormones ¹⁹ . Thus, reduced albumin levels can potentially contribute to
282	higher free androgens in women with PCOS and exacerbation of disease phenotype.
283	This analysis was limited by a lack of a more sensitive measure of visceral adiposity; the gold
284	standard being imaging with computed tomography (CT) or magnetic resonance imaging
285	(MRI) ³⁰ . Furthermore, the case-control design limited the ability to assess how CRP/albumin
286	performs in predicting health outcomes in women with PCOS. Prospective studies are now
287	needed to determine the use of CRP/albumin in predicting the progression of disorders linked
288	to chronic inflammation and metabolic dysfunction that women with PCOS are at increased
289	risk. These include not only cardiovascular disease and diabetes, but also depression ³¹⁻³⁴ .
290	Importantly, CRP/albumin ratio may be particularly useful in assessing the effectiveness of

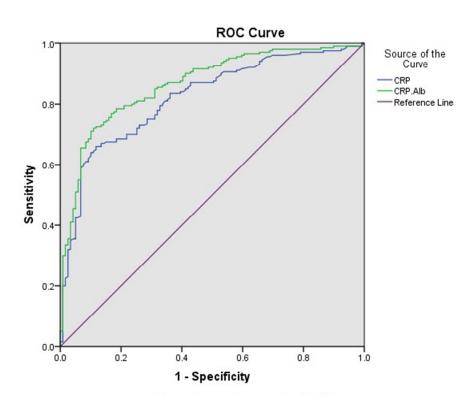
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ । วา	
∠∠ วว	
23	
4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 23 24 25 26 27 28 9 20 20 20 20 20 20 20 20 20 20 20 20 20	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
34 35 36 37 38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	
60	

1 2 291 new interventions targeting inflammation in women with PCOS as a novel approach to 292 managing the condition and its long-term health consequences. 293 *Conclusion:* CRP/albumin ratio, a marker for inflammation related to metabolic dysfunction, 294 is a better predictor of PCOS than either androgen excess or insulin resistance. Inflammation 295 is known to be influenced by adiposity, but relative to controls, women with PCOS have 296 higher levels of CRP/albumin ratio irrespective of BMI. This supports the view that 297 inflammation may play a central role in the pathophysiology of PCOS. 298 299 Funding 300 The analysis presented was supported by an operating grant provided by the Vancouver 301 Coastal Health Research Institute in support of Dr. Shirin Kalyan. 302 Acknowledgements 303 The authors would like to thank all the women who participated in this research. Without 304 their support and time, this work would not be possible. 305 **Competing Interests Statement** 306 SK is Director of Scientific Innovation at Qu Biologics Inc., a clinical-stage biotechnology 307 company. All other authors have no conflict of interest to declare. 308 **Author Contributions** 309 SK designed the study, interpreted the data and wrote the first draft of the manuscript. AG 310 performed the statistical analysis and helped interpret the analysis. SS and WA collected all 311 the data, performed the biochemical analysis and managed the clinical operations of the 312 study. AJ assisted with literature review and manuscript preparation. All authors reviewed 313 and approved the final manuscript. 314

1 2 3 4	315	
5 6 7	316	References
8 9	317	1. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary
10 11 12	318	syndrome. Clin Epidemiol. 2013 Dec 18;6:1-13.
13 14	319	2. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and
15 16 17	320	features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol
18 19 20	321	Metab. 2004 Jun;89(6):2745-9.
21 22	322	3. Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women's health aspects of
23 24	323	polycystic ovary syndrome (PCOS): The amsterdam ESHRE/ASRM-sponsored 3rd PCOS
25 26 27	324	consensus workshop group. Fertil Steril. 2012 Jan;97(1):28,38.e25.
28 29 30	325	4. Azziz R, Carmina E, Dewailly D, et al. The androgen excess and PCOS society criteria for
30 31 32	326	the polycystic ovary syndrome: The complete task force report. Fertil Steril. 2009
33 34 35	327	Feb;91(2):456-88.
36 37 38	328	5. Azziz R. PCOS: A diagnostic challenge. Reprod Biomed Online. 2004 06;8(6):644-8.
39 40	329	6. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for
41 42 43	330	type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: A
44 45	331	prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999
46 47 48	332	01;84(1):165-9.
49 50	333	7. Marciniak A, Nawrocka Rutkowska J, Brodowska A, Wisniewska B, Starczewski A.
51 52	334	Cardiovascular system diseases in patients with polycystic ovary syndrome - the role of
53 54	335	inflammation process in this pathology and possibility of early diagnosis and prevention. Ann
55 56 57	336	Agric Environ Med. 2016 Dec 23;23(4):537-41.
57 58 59		15
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	


337 8. Shorakae S, Teede H, de Courten B, Lambert G, Boyle J, Moran LJ. The emerging role of 338 chronic low-grade inflammation in the pathophysiology of polycystic ovary syndrome. Semin 339 Reprod Med. 2015 Jul;33(4):257-69. 340 9. Ojeda-Ojeda M, Murri M, Insenser M, Escobar-Morreale HF. Mediators of low-grade 341 chronic inflammation in polycystic ovary syndrome (PCOS). Curr Pharm Des. 2013 Feb 20. 342 10. Duleba AJ, Dokras A. Is PCOS an inflammatory process? Fertil Steril. 2012 Jan;97(1):7-343 12. 11. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic 344 345 inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001 346 Jun;86(6):2453-5. 12. Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Invest. 2003 347 348 Jun;111(12):1805-12. 349 13. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: Molecular links between 350 obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2031-41. 351 14. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers 352 in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil Steril. 2011 Mar 353 1;95(3):1048,58.e1-2. 354 15. Samy N, Hashim M, Sayed M, Said M. Clinical significance of inflammatory markers in 355 polycystic ovary syndrome: Their relationship to insulin resistance and body mass index. Dis 356 Markers. 2009;26(4):163-70.


Page 17 of 22		BMJ Open
1		
2 3	357	16. Hughan KS, Tfayli H, Warren-Ulanch JG, Barinas-Mitchell E, Arslanian SA. Early
4 5	358	biomarkers of subclinical atherosclerosis in obese adolescent girls with polycystic ovary
6 7 8 9	359	syndrome. J Pediatr. 2016 Jan;168:104,11.e1.
10 11	360	17. Carvalho LM, Ferreira CN, Soter MO, et al. Microparticles: Inflammatory and
12 13	361	haemostatic biomarkers in polycystic ovary syndrome. Mol Cell Endocrinol. 2017 Mar
14 15 16	362	5;443:155-62.
17 18	363	18. Levitt DG, Levitt MD. Human serum albumin homeostasis: A new look at the roles of
19 20 21	364	synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum
22 23 24	365	albumin measurements. Int J Gen Med. 2016 Jul 15;9:229-55.
25 26	366	19. Zeginiadou T, Kolias S, Kouretas D, Antonoglou O. Nonlinear binding of sex steroids to
27 28	367	albumin and sex hormone binding globulin. Eur J Drug Metab Pharmacokinet. 1997 Jul-
29 30 31	368	Sep;22(3):229-35.
32 33 34	369	20. Kalyan S, Hitchcock CL, Sirrs S, Pudek M, Prior JC. Cardiovascular and metabolic
35 36	370	effects of medroxyprogesterone acetate versus conjugated equine estrogen after
37 38	371	premenopausal hysterectomy with bilateral ovariectomy. Pharmacotherapy. 2010
39 40 41	372	May;30(5):442-52.
42 43	373	21. Kalyan S, Patel MS, Kingwell E, Cote HCF, Liu D, Prior JC. Competing factors link to
44 45 46	374	bone health in polycystic ovary syndrome: Chronic low-grade inflammation takes a toll. Sci
47 48 49	375	Rep. 2017 Jun 13;7(1):3432,017-03685-x.
50 51	376	22. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus, Workshop Group. Revised
52 53	377	2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary
54 55 56	378	syndrome. Fertil Steril. 2004 01;81(1):19-25.
57 58 59		17

1		
2 3	379	23. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: Action, regulation and association to
4 5 6	380	insulin sensitivity. Obes Rev. 2005 Feb;6(1):13-21.
7 8 9	381	24. Dimitriadis GK, Kyrou I, Randeva HS. Polycystic ovary syndrome as a proinflammatory
10 11 12	382	state: The role of adipokines. Curr Pharm Des. 2016;22(36):5535-46.
13 14 15	383	25. Cardoso CR, Leite NC, Salles GF. Prognostic importance of C-reactive protein in high
16 17	384	cardiovascular risk patients with type 2 diabetes mellitus: The rio de janeiro type 2 diabetes
18 19 20	385	cohort study. J Am Heart Assoc. 2016 Oct 26;5(11):e004554.
21 22	386	26. Chen TH, Gona P, Sutherland PA, et al. Long-term C-reactive protein variability and
23 24 25	387	prediction of metabolic risk. Am J Med. 2009 Jan;122(1):53-61.
26 27	388	27. Rutter MK, Meigs JB, Sullivan LM, D'Agostino RB S, Wilson PW. C-reactive protein,
28 29	389	the metabolic syndrome, and prediction of cardiovascular events in the framingham offspring
30 31 32	390	study. Circulation. 2004 Jul 27;110(4):380-5.
33		
34 35	391	28. Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: A
36 37 38	392	systematic review and meta-analysis. Obes Rev. 2013 Mar;14(3):232-44.
39 40 41	393	29. Kraus VB, Jordan JM. Serum C-reactive protein (CRP), target for therapy or trouble?
42 43	394	Biomark Insights. 2007 Feb 7;1:77-80.
44 45 46	395	30. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral
40 47 48	396	adiposity: A critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012
49 50 51 52	397	Jan;85(1009):1-10.
53 54		
55		
56 57		
58		18
59		18

2		
3	398	31. Faugere M, Micoulaud-Franchi JA, Faget-Agius C, Lancon C, Cermolacce M, Richieri R.
4 5 6	399	Quality of life is associated with chronic inflammation in depression: A cross-sectional study.
7 8 9	400	J Affect Disord. 2017 Nov 14;227:494-7.
10 11	401	32. Chirinos DA, Murdock KW, LeRoy AS, Fagundes C. Depressive symptom profiles,
12 13	402	cardio-metabolic risk and inflammation: Results from the MIDUS study.
14 15 16	403	Psychoneuroendocrinology. 2017 Aug;82:17-25.
17 18 19	404	33. Barry JA, Kuczmierczyk AR, Hardiman PJ. Anxiety and depression in polycystic ovary
20 21 22	405	syndrome: A systematic review and meta-analysis. Hum Reprod. 2011 Sep;26(9):2442-51.
23 24	406	34. Dokras A, Clifton S, Futterweit W, Wild R. Increased risk for abnormal depression scores
25 26	407	in women with polycystic ovary syndrome: A systematic review and meta-analysis. Obstet
27 28 29	408	Gynecol. 2011 Jan;117(1):145-52.
30 31 32	409	
33 34 35	410	
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51		
52 53		
54 55		
56		
57 58		19
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	411	
5 4 5	412	Figure Legends
6 7	413	Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate
8 9 10	414	against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in
11 12	415	differentiating women with and without PCOS. The area under the curve (AUC) for
13 14	416	CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.
15 16	417	
17 18 19	418	Figure 2. Scatter plot analysis showing the age-adjusted CRP/albumin values by body mass
20 21	419	index (BMI) in women with PCOS and controls.
22 23	420	
24		
25 26		
20		
28		
29		
30		
31 32		
32 33		
34		
35		
36		
37		
38 39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55		
56 57		
57 58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Diagonal segments are produced by ties.

Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in differentiating women with and without PCOS. The area under the curve (AUC) for CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.

165x132mm (96 x 96 DPI)

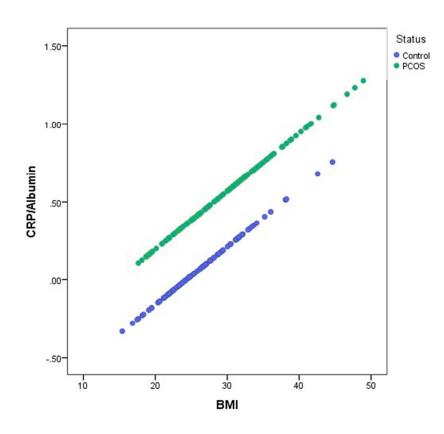


Figure 2. Scatter plot analysis showing the age-adjusted CRP/albumin values by body mass index (BMI) in women with PCOS and controls.

166x133mm (96 x 96 DPI)

BMJ Open

Assessing C-reactive protein/albumin ratio as a new predictor of Polycystic Ovary Syndrome: a case-control study of women from Bahraini medical clinics

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021860.R1
Article Type:	Research
Date Submitted by the Author:	16-May-2018
Complete List of Authors:	Kalyan, Shirin; University of British Columbia, Medicine; Goshtasebi, Azita; University of British Columbia, Medicine Sarray, Sameh; Arabian Gulf University Joannou, Angela; University of British Columbia, Medicine Almawi, Wassim; El-Manar University
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Diabetes and endocrinology
Keywords:	polycystic ovary syndrome, inflammation, C-reactive protein, albumin, pathophysiology

1		
2		
3	1	Assessing C-reactive protein/albumin ratio as a new predictor of Polycystic Ovary
4		
5	2	Syndrome: a case-control study of women from Bahraini medical clinics
6	_	······································
7	3	
8	4	Short title: CRP/Albumin as a predictor of PCOS
9		Short the. CKF/Albuinn as a predictor of PCOS
10	5	
11	6	
12	7	Shirin Kalyan ¹ *, Azita Goshtesabi ¹ , Sameh Sarray ^{2,3} , Angela Joannou ¹ , Wassim Almawi ³
13	8	
14	9	
15	10	¹ CeMCOR, Division of Endocrinology, Department of Medicine, University of British
16	11	Columbia, Vancouver, BC, Canada
17	12	
18	13	² Arabian Gulf University, Department of Medical Biochemistry, Manama Bahrain
19	14	Thuolain Sun Sintersky, Department of Medical Dioenennosty, Manania Danian
20	15	³ Faculty of Sciences, El-Manar University, Tunis, Tunisia.
21	15	racuity of Sciences, EP-Manar Oniversity, runis, runisia.
22	10	
23	16	
24	17	
25	18	
26	19	*Corresponding author:
27	20	Dr. Shirin Kalyan
28	21	
29	22	Rm 4139, Diamond Health Care Centre Division of Endocrinology Department of Medicine University of British Columbia Email: <u>shirin.kalyan@ubc.ca</u>
30	23	Division of Endocrinology
31	24	Department of Medicine
32	25	University of British Columbia
33	26	
34	20	Email: <u>shirin.kalyan@ubc.ca</u>
35	28	Email: <u>simm.karyan@ube.ea</u>
36		
37	29	
38	30	
39	31	Keywords: polycystic ovary syndrome, inflammation, pathophysiology, C-reactive protein,
40	32	albumin
41	33	
42	34	Word count: 2409 (main article)
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		1
59		

35 36	Abstract
37	Objective: Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting
38	approximately one in seven women who experience androgen excess, menstrual cycle
39	irregularities, frequent anovulation, and a tendency for central obesity and insulin resistance.
40	Chronic subclinical inflammation is now recognized as being common in the context of
41	PCOS, which led to the postulation that PCOS may fundamentally be an inflammatory
42	process. This study aimed to: 1) evaluate serum CRP/albumin ratio as a predictor of PCOS;
43	2) compare the relationship between CRP/albumin and PCOS to variables classically
44	associated with the syndrome.
45	Design: Case-control study.
46	Setting: Adult obstetrics/gynaecology, endocrinology and outpatient clinics; university
47	hospital in Bahrain.
48	Participants: 200 premenopausal women with a diagnosis of PCOS, and 119 ethnically-
49	matched eumenorrheic premenopausal women.
50	Main Outcome Measures: CRP/albumin ratio, anthropometric measures, insulin resistance,
51	androgen excess.
52	Results: Independent of body mass index (BMI), receiver operating characteristic (ROC)
53	curve for CRP/albumin ratio as predictor of PCOS was 0.865 (95% CI: 0.824-0.905), which
54	was more sensitive than CRP alone. Binary regression analysis showed that CRP/albumin
55	ratio outperformed classical correlates, free androgen index and insulin resistance, in
56	predicting PCOS for every BMI category.
57	Conclusion: CRP/albumin ratio, a marker for inflammation related to metabolic dysfunction,
58	better predicts PCOS than either androgen excess or insulin resistance. Inflammation is
59	known to be influenced by adiposity, but relative to controls, women with PCOS have higher
	2

1		
2 3	60	levels of CRP/albumin irrespective of BMI. These findings support the view that
4 5 6	61	inflammation plays a central role in the pathophysiology of PCOS.
7 8	62	
9 10	63	
11 12	64	Article Summary
13 14	65	Strengths and limitations of this study
15 16	66	• This analysis addressed previous limitations of studies, namely small sample sizes,
17 18 10	67	heterogeneous populations, and confounding factors (such as BMI), that have
19 20 21	68	attempted to show PCOS is an inflammatory process
22 23	69	• The relationship between inflammation and PCOS was assessed using CRP/albumin
24 25	70	ratio, which may be a better marker for inflammation in the context of metabolic
26 27	71	dysfunction
28 29	72	• Limitation: study used waist circumference as a substitute for visceral adiposity; gold
30 31 32	73	standard is computed tomography (CT) or magnetic resonance imaging (MRI)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	74	
56 57		
58 59		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i of peer retrem only integrating openion geomatication about guidelines. Antim

75	Introduction
76	Polycystic ovary syndrome (PCOS) is the most common reproductive disorder, affecting 5 to
77	15 % of premenopausal women worldwide, [1, 2] and the prevalence of PCOS appears to be
78	increasing. [1] This rise may partly be attributed to improved diagnosis as well as to an
79	increase in environmental factors that predispose to the development of this complex
80	metabolic condition. PCOS is characterized by androgen excess, menstrual irregularities,
81	ovulatory disturbances, and is often associated with central obesity and insulin resistance. [3-
82	5] As such, women with PCOS are at an increased risk for a number of health issues,
83	including infertility, cardiovascular disease and diabetes. [3, 6, 7]
84	Possibly related to the constellation of endocrine and metabolic dysfunction they experience,
85	women with PCOS are also found to have greater chronic subclinical inflammation, [8-11]
86	which is often clinically assessed by measuring serum levels of C-reactive protein (CRP).
87	CRP is a liver-derived acute phase protein produced in response to IL-6 secreted from
88	activated cells such as macrophages and adipocytes. [12, 13] A meta-analysis of 31 studies
89	concluded that systemic CRP levels are 96% higher in women with PCOS compared to
90	control women. [14] Collectively, these findings have given rise to the speculation that
91	inflammation may play a pivotal role in the pathophysiology of PCOS. [8-10]
92	Elevated serum CRP levels are linked to several health risk factors experienced by women
93	with PCOS, particularly insulin resistance and heightened risk of type 2 diabetes. [7, 15, 16]
94	Chronic inflammation also contributes to endothelial dysfunction, exacerbating the
95	development of atherosclerotic plaques, triggering the onset of cardiovascular disease (CVD).
96	[17] As such inflammation has been associated with both CVD and coronary artery disease in
97	women with PCOS. [10]

Page 5 of 24

1 2

BMJ Open

2	
4	
5	
6	
7	
8	
9	
10 11	
12	
13	
14	
12 13 14 15 16	
16	
17	
18 19	
20	
21	
22	
23	
24	
25 26	
26 27	
27	
29	
30	
31	
32	
33 24	
34 35 36	
36	
37	
38	
39	
40 41	
41 42	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	
60	

98	In contrast to CRP, albumin is a negative acute phase response protein produced by the liver.
99	Serum levels of albumin are reduced in individuals experiencing chronic inflammation. [18]
100	In addition to its role as a binding molecule for sex steroids, [19] albumin also provides the
101	majority of the total antioxidant capacity of normal plasma. [18] The ratio of serum CRP
102	levels over serum albumin (CRP/albumin) was found to be strongly associated with more
103	severe metabolic dysfunction in premenopausal women with induced alterations to their
104	ovarian hormone status. [20] CRP/albumin ratio was also found to be significantly higher in
105	premenopausal women with PCOS relative to controls, and adversely predicted their bone
106	quality. [21] Given the ability of CRP/albumin to simultaneously capture chronic
107	inflammation and metabolic dysfunction in premenopausal women, we hypothesized that
108	CRP/albumin ratio would, in itself, serve as a strong predictor of PCOS in a cohort of
109	similarly aged women. This case-control study investigated CRP/albumin ratio along with
110	classical markers, androgen excess and insulin resistance, in their ability to predict PCOS in
111	319 premenopausal Bahraini Arab women.
112	

113 Methods

114 *Patient and public involvement*

The development of the research question and the study's setting was influenced by the wish
many women in Bahrain have to bear children. Infertility is a consequence of PCOS, [22] and
the combination of both can impact women's health-related quality of life. [23] Patients were
not involved in the design of the study or the recruitment. Study participants will not be recontacted by the study investigators; however, the results of this study will be disseminated to
the Bahraini community through press releases of the open access publication. *Study subjects*

1		
2 3	122	Women with PCOS ($n = 200$) were recruited from adult obstetrics/gynecology,
4 5 6	123	endocrinology and outpatient clinics in Manama, Bahrain. Women without PCOS (n = 119)
7 8	124	were ethnically-matched, eumenorrheic university employees and students, and healthy
9 10	125	volunteers representative of the Bahraini population. The sample size was based on the
11 12	126	ability to detect differences between cases and controls with 10% precision (two-tailed t-test
13 14	127	with a=0.05) and 80% power, taking into account the estimated prevalence of PCOS in
15 16	128	Bahrain of 7.5-8.0% (unpublished data; Bahraini Ministry of Health) and Z-value for 95% CI
17 18	129	(confidence interval). Women serving as controls were examined in the follicular phase of
19 20	130	their menstrual cycle and had their testosterone levels were within range. A diagnosis of
21 22 23	131	PCOS was based on the 2003 Rotterdam Criteria, which requires two of the three following
23 24 25	132	criteria to be met: ultrasound evidence of polycystic ovarian morphology, anovulation, and
26 27	133	hyperandrogenism. [24] Exclusion criteria included hyperprolactinemia, non-classical adrenal
28 29	134	hyperplasia, androgen-producing tumors, 21-hydroxylase deficiency, Cushing's syndrome,
30 31	135	and active thyroid disease. Additional exclusion criteria included extremes of body mass
32 33	136	index (BMI; <18 kg/m ² or >45 kg/m ²), recent/present illness, and treatment affecting
34 35	137	carbohydrate metabolism or hormonal levels, for three months or longer before inclusion the
36 37 38	138	study. Women using anti-hypertensive, oral contraceptive, anti-inflammatory, and lipid-
39 40	139	lowering drugs were also excluded. Demographic information, along with detailed personal
41 42	140	and family history of diabetes, hypertension, infertility, hypercholesterolemia, and ischemic
43 44	141	heart disease were obtained from all participants. This study was conducted in accord with
45 46	142	the Helsinki II Declaration guidelines, and all participants gave written informed consent to
47 48	143	participate. Study approval was obtained from the Bahraini Ministry of Health and Arabian
49 50	144	Gulf University Research and Ethics Committees (IRB number: 35-PI-01/15) and the Clinical
51 52	145	Research Ethics Board of the University of British Columbia (H16-02101).
53 54 55	146	
55 56	1.0	

BMJ Open

2 3	147	Biochemical analysis
4 5	148	Peripheral venous fasting blood samples were obtained between 7:00 and 9:00 am following
6 7 8	149	an overnight (> 12 h) fast during the early follicular phase of the menstrual cycle (days 2 ± 5)
9 10	150	for control women, or women with PCOS who did not present with menstrual irregularities,
11 12	151	or any day for women with PCOS with menstrual irregularities. Serum samples were
13 14	152	analyzed for sex hormone binding globulin (SHBG) by sandwich ELISA (R&D Systems,
15 16 17	153	Minneapolis, MN); assay sensitivity was 0.01 nmol/ml, and inter-assay and intra-assay
18 19	154	precision (CV %) were 5.3% and 4.3%, respectively.
20 21 22	155	Serum luteinizing hormone (LH), follicular stimulating hormone (FSH), thyroid stimulating
23 24	156	hormone (TSH), testosterone, glucose (ADVIA Centaur, Bayer Vital, Fernwald, Germany),
25 26	157	and insulin (IMMULITE 2000, DPC Biermann, Bad Nauheim, Germany), were measured by
27 28	158	automated chemiluminescence immunoassays. Free (FT) and bioactive (BT) testosterone and
29 30	159	free androgen index (FAI) were determined using Free & Bioavailable Testosterone
31 32	160	Calculator (www.issam.ch/freetesto.htm). Concentrations of serum albumin were analyzed
33 34 25	161	by photospectrometry with albumin bromocresol purple assay on a COBAS c701 Chemistry
35 36 37	162	Analyzer (Roche Diagnostics, Dubai, UAE). Insulin resistance (IR) was estimated by the
38 39	163	homeostasis model assessment (HOMA-IR), defined as fasting serum insulin (IU/mL) \times
40 41	164	fasting plasma glucose (mmol/L)/22.5. HOMA-IR values were characterized as Normal
42 43	165	(insulin-sensitive) if <2.40; Borderline if between 2.40-3.50, and High (insulin-resistant) if >
44 45	166	3.50.
46 47 48 49	167	
50 51	168	Measurement of plasma high sensitivity CRP levels was done by latex-enhanced
52 53	169	nephelometry on a BN II Nephelometer (Dade Behring, Milan, Italy). Samples were assayed
54 55	170	in duplicate in each analytical run: the lower limit of detection was 0.15 mg/L and the assay

in duplicate in each analytical run; the lower limit of detection was 0.15 mg/L, and the assay

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16 17	
17	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
25 26 27	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35 36 37	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
UU	

171 range was 0.175–11.0 mg/L (initial dilution). Serial serum dilutions were made in measuring
172 high CRP (>30 mg/L) levels. Percentile CRP values were estimated for comparison
173 purposes.

174 Statistical analysis

175 The core outcome set of variables included assessment of CRP/albumin as a predictor of 176 PCOS while controlling for relevant factors, such as BMI and age, and to subsequently 177 compare the strength of the relationship between CRP/albumin and PCOS with variables 178 known to strongly link to the syndrome, namely androgen excess and insulin resistance. The 179 Shapiro-Wilk test was used to evaluate the distribution of the variables, and many variables 180 for the PCOS cohort were flagged as being non-normally distributed. However, upon testing 181 for skewness, we found the values for asymmetry and kurtosis fell between -2 to +2 for all. 182 Thus, we used parametric tests, as suggested, [25] given the sample sizes were >30. We 183 reassessed the validity of our analysis by running the Mann–Whitney U test in addition to 184 student t test for variables we had detected as being non-normal and confirmed that the 185 results were similar. Baseline characteristics were compared using the Mann-Whitney U test 186 and the independent samples t-test for the continuous variables, and the χ^2 test for categorical 187 variables. Numerical variables are presented as mean \pm standard deviation (SD). Because 188 distribution of CRP/albumin levels was skewed to the right, correlations between 189 CRP/albumin ratio and other continuous variables were assessed using Spearman's rho. 190 Univariate general linear models were applied to test independent associations between 191 CRP/albumin ratio and other independent variables. 192 The optimal cut-off level for the CRP/albumin ratio was determined by a receiver operating 193 characteristic (ROC) curve analysis, and the areas under the curve (AUC) were measured and 194 compared to assess the power of a model to identify patients who experienced metabolic

195 disturbances. Cut-off values showing the greatest accuracy were determined using a

Page 9 of 24

2 3	196	sensitivity/specificity versus criterion value plot. Quartiles (i.e. 0-25%, 26-50%, 51-75%, and				
4 5	197	76-100%) of CRP and CRP/albumin ratio were calculated separately in PCOS and control				
6 7 8	198	groups. Because the 25% quartile of CRP value in the PCOS cohort was similar to the				
9 10	199	standard normal values of CRP, we used the 25% quartile of CRP and CRP/albumin ratio as				
11 12	200	the cut-off point for both predictors				
13 14 15	201	Using the calculated cut-off values, regression analysis was performed to determine how well				
16 17	202	each variable predicted PCOS. To fully explore the role of the CRP/albumin ratio as a				
18 19	203	biomarker in the prediction of metabolic disturbances, CRP and CRP/albumin ratio were				
20 21	204	additionally assessed as binary variables. Subjects were categorized into two groups based on				
22 23 24	205	the cut-off values and their means (SD) for metabolic markers. Insulin resistance (HOMA-				
24 25 26	206	IR), free testosterone, total adiponectin, BMI and TSH were compared between subjects with				
27 28	207	normal values, and those who had higher than normal values. P-values <0.05 were considered				
29 30	208	as statistically significant. All statistical analyses were performed using the IBM SPSS				
31 32	209	statistics software program version 22 (IBM, Armonk, NY).				
33 34	24.0	Basulta				
35 36	210					
37	211	Results				
38 39	212	Study subjects				
40 41 42	213	The sociodemographic, anthropometric, clinical, and biochemical characteristics of the 200				
42 43 44	214	women with PCOS and 119 controls women are summarized in Table 1. Relative to controls,				
45 46	215	women with PCOS had fewer pregnancies and live births (p<0.001), were more likely to				
47 48	216	have insulin resistance (p<0.001), and differed in education attainment with those with				
49 50	217	PCOS, having a higher number of high school and post-secondary graduates (p=0.012).				
51 52 53 54 55	218	Metabolic characteristics				
56 57						
58						

219 The proportion of women with a BMI greater than 30 kg/m^2 were higher in the PCOS cohort

- than controls (p < 0.001), but the waist-to-hip ratio was not significantly different (**Table 1**).
- 221 Serum levels of adiponectin, an adipocyte-associated protein that tends to be inversely linked
- to visceral adiposity, [26] was markedly lower in women with PCOS compared to controls.
- Fasting plasma glucose, cholesterol, HDL, LDL and triglyceride levels did not differ
- significantly between women with and without PCOS. However, indices of insulin resistance
- and insulin sensitivity (HOMA-IR and QUICKI) indicated that women with PCOS had
- 226 greater impaired regulation of insulin compared to controls (**Table 1**).

227 Table 1: Demographic, clinical and hormonal characteristics of study population:

228 women with polycystic ovary syndrome (PCOS) and controls.

229 Data are presented as means (standard deviation).

	All	PCOS	Controls	Mean	95 % CI of Mean	
	(N=319)	(N=200)	(N=119)	difference	Difference	
		4			lower	upper
Age (yrs)	27.9 (6.4)	28.4 (5.9)	27.2 (7.2)	1.24	-0.22	2.71
BMI (kg/m ²)	28 (5.9)	29 (6.3)	26.5 (5)	2.53	1.19	3.87
Waist/hip ratio	0.94 (0.09)	0.94 (0.09)	0.93 (0.09)	0.0067	-0.017	0.031
Menarche (yrs)	12.5 (1.4)	12.5 (1.5)	12.4 (1.2)	0.12	-0.21	0.45
HOMA.IR	3.2 (0.18)	3.8 (0.26)	2.1 (0.2)	1.67	0.94	2.4
QUICKI	0.6 (0.006)	0.57 (0.008)	0.65 (.01)	-0.078	-0.10	-0.05
Total adiponectin	33.8 (1.4)	28.4 (1.3)	44.6 (2.9)	-16.25	-21	-10
(ng/L)						
Albumin (g/L)	37.3 (0.46)	32.7 (0.46)	45 (0.35)	-12.22	-13.52	-10.93
CRP (mg/L)	11.1 (1.1)	15.5 (1.6)	3.6 (0.85)	11.89	7.61	16.17
CRP/Albumin ratio	0.36 (0.04)	0.53 (0.06)	0.08 (0.02)	0.45	0.29	0.61

of 24	BMJ Open							
	SHBG (nmol/L)	60.1 (1.5)	52.2 (1.4)	72 (2.8)	-19.72	-26.5	-13.93	
	Free testosterone	0.025 (0.001)	0.029 (0.001)	0.017 (0.001)	0.011	0.007	0.015	
	index							
230								
231	BMI: Body Mass Index, HOMA.IR: Homeostatic Model Assessment for Insulin Resistance,							
232	QUICKI: Quantitat	tive insulin sensi	tivity check inde	ex, CRP: C-react	tive protein, S	SHBG: Sex		
233	hormone binding hormone.							
234	Reproductive horm	one characterist	tics					
235				n plasma levels o	f estradiol, pr	ogesterone.		
236	There were no statistically significant differences in plasma levels of estradiol, progesterone, total testosterone, prolactin, FSH, LH and DHES between women with and without PCOS.							
237	Free testosterone was higher and SHBG lower in women with PCOS (Table 1).							
	Free residucione was inglier and SFIDO lower ill women with FCOS (Table 1).							
238	C-reactive protein (CRP)/albumin ratio as a predictor of polycystic ovary syndrome (PCOS)							
239	stratified by body mass index (BMI)							
240	Women with PCOS had markedly higher levels of CRP and lower levels of serum albumin							
241	relative to controls (p<0.001; Table 1). ROC curve analysis showed that the CRP/albumin							
242	ratio had greater discriminatory power to differentiate between women with PCOS and							
243	controls (AUC: 0.865, 95% CI: 0.824-0.905) compared to CRP alone (AUC: 0.820, 95% CI:							
244	0.773-0.867); Figure 1. This greater efficacy of CRP/albumin ratio to discriminate between							
245	cases and controls was also evident when taking into account the presence of insulin							
246	resistance at every measure of sensitivity; for a sensitivity level of 75%, CRP/albumin ratio							
247	had a specificity of 85% compared to 69% for CRP alone.							
248	Spearmen correlati	on analysis betw	een CRP/album	in ratios and clin	nical and bioc	hemical		
249	Spearmen correlation analysis between CRP/albumin ratios and clinical and biochemical							
	markers was subsequently performed. Variables found to be univariately linked to							
230	250 CRP/albumin values were included in a general linear model testing the relationship amongst							
						11		
	For pee	r review only - htt	p://bmjopen.bmj.	com/site/about/g	uidelines.xhtm	h		

PCOS diagnosis, BMI, and CRP/albumin levels. The model revealed that for any given BMI value, women with PCOS have markedly elevated CRP/albumin levels (p<0.001, Figure 2). Variables that are known to strongly associate with PCOS, namely free androgen index and insulin resistance, were compared to CRP/albumin ratio as predictors of PCOS in a binary regression analysis stratified by three BMI categories: $<25 \text{ kg/m}^2$ [normal], $25 - 30 \text{ kg/m}^2$ [overweight], $>30 \text{ kg/m}^2$ [obese]); **Table 2**. A CRP/albumin ratio of ≥ 0.097 outperformed both insulin resistance and free androgen index in predicting PCOS for every BMI category (Table 2).

Table 2: Summary of binary Regression Analysis for Variables Predicting PCOS with

the Odds Ratio of each risk factor adjusted for other variables in the model

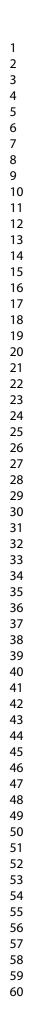
	Odds I	Ratio (95% Confidence	Interval)
	BMI < 25	BMI 25-30	$BMI \ge 30$
	(normal)	(overweight)	(obese)
CRP/Albumin Ra	tio ¹	2	I
< 0.097	1	1	1
≥0.097	11.21 (3.28-39.75)	19.32 (5.07-72.17)	34.5 (7.75-153.52)
Insulin Resistance	2	I	
No	1	1	1
Borderline	3.34 (0.645-17.33)	5.58 (0.907-34.41)	3.13 (0.53-18.48)
Yes	9.21 (1.63-51.93)	8.81 (1.75-44.31)	17.94 (1.81-177.61)
Free Androgen In	dex ³	1	1
<3.95	1	1	1
≥3.95	2.28 (.536-9.75)	0.86 (.22-3.35)	3.79 (0.59-24.42)

BMJ Open

2 3	264	¹ Cut-off values were derived from the sensitivity and specificity analysis of the receiver
4 5	265	operating characteristic curve
6 7 8	266	² Categories of insulin resistance based on normal values used for HOMA-IR
8 9 10	267	³ Cut-off values from normal laboratory reference ranges for free androgen index
11 12	268	
13 14	269	Discussion
15 16	270	This study demonstrated that CRP/albumin ratio is a better predictor of PCOS than both free
17 18	271	androgens and insulin resistance in 319 ethnically-matched premenopausal women, and this
19 20 21	272	relationship was independent of BMI. Despite being the most common reproductive disorder
22 23	273	to affect women, the etiology of PCOS has remained elusive to date. In the absence of a
24 25	274	definitive cure, treatment has focused on symptom management, and a goal to prevent the
26 27	275	progression of serious health conditions, such as type 2 diabetes and CVD, for which women
28 29	276	with PCOS are at heightened risk. Chronic low-grade inflammation has emerged as a
30 31	277	common underlying state in women with PCOS, and a likely direct contributor to insulin
32 33 34	278	resistance and heart disease risk. This has raised the question whether PCOS is fundamentally
35 36	279	an inflammatory condition. [8, 10, 27]
37 38 39	280	Small sample sizes, heterogeneous populations, and an inability to correct for confounding
40 41	281	factors, such as BMI and use of oral contraceptives, both of which influence inflammatory
42 43	282	markers such as CRP, [21] has in part hampered efforts in assigning inflammation as truly a
44 45	283	defining feature of PCOS. This current analysis has overcome some of the main issues in
46 47	284	assessing the independent relationship between PCOS and chronic low-grade inflammation.
48 49 50	285	This was accomplished by accounting for many of the confounding variables and by using a
50 51 52	286	more refined marker for inflammation, the CRP/albumin ratio, which may have greater
53 54	287	specificity and sensitivity for inflammation associated with metabolic dysfunction. The
55 56	288	CRP/albumin ratio was first found to be useful in assessing cardiometabolic and
57 58		13

	289	inflammatory status following ovariectomy surgery. [20] It was subsequently used to show	
	290	the influence of chronic subclinical inflammation on bone quality in women with PCOS. [21]	
	291	Although CRP is used to predict cardiovascular risk and is associated with metabolic	
)	292	disorders associated with obesity and insulin resistance, [28-31] it has been criticized for	
1 2	293	being too general and non-specific a marker for inflammation. [32]	
2 3 4 5 5	294	When compared to CRP alone, we found that the CRP/albumin ratio had an improved ROC	
5 7	295	curve for predicting PCOS. Serum albumin, which is commonly measured to assess liver	
3 9	296	function and malnutrition, is not widely considered as an analyte of interest for PCOS.	
)	297	However, this study showed for the first time that albumin is markedly reduced in women	
2 3 4 5 5	298	with PCOS relative to controls. This may, at least in part, be due to albumin being a negative	
5	299	acute phase protein. [18] It is also possible that there is increased oxidation and glycation of	
7 3	300	albumin in women with PCOS - which can impact the structure, function and metabolism of	
)	301	the protein. [18] As one of the most abundant serum proteins, among albumin's many roles is	
1 2	302	the transport of hormones. [19] Thus, reduced albumin levels can potentially contribute to	
2 3 4	303	higher free androgens in women with PCOS and exacerbation of disease phenotype.	
5	304	This analysis was limited by a lack of a more sensitive measure of visceral adiposity; the gold	
3	305	standard being imaging with computed tomography (CT) or magnetic resonance imaging	
) 	306	(MRI). [33] Furthermore, the case-control design limited the ability to assess how	
2 2			
4	307	CRP/albumin performs in predicting health outcomes in women with PCOS. Prospective	
5 5 7	308	studies are now needed to determine the use of CRP/albumin in predicting the progression of	
7 3	309	disorders linked to chronic inflammation and metabolic dysfunction that women with PCOS	
€)	310	are at increased risk. These include not only cardiovascular disease and diabetes, but also	
1 2	311	depression. [34-37] Importantly, CRP/albumin ratio may be particularly useful in assessing	
5 4 5	312	the effectiveness of new interventions targeting inflammation in women with PCOS as a	
5 7	313	novel approach to managing the condition and its long-term health consequences.	
3		14	

BMJ Open


1		
2 3 4	314	Conclusion: CRP/albumin ratio, a marker for inflammation related to metabolic dysfunction,
5	315	is a better predictor of PCOS than either androgen excess or insulin resistance. Inflammation
7 8	316	is known to be influenced by adiposity, but relative to controls, women with PCOS have
9 10	317	higher levels of CRP/albumin ratio irrespective of BMI. This supports the view that
11 12	318	inflammation may play a central role in the pathophysiology of PCOS.
13 14	319	
15 16	320	Funding Statement
17 18 19	321	The analysis presented was supported by an operating grant provided by the Vancouver
20 21	322	Coastal Health Research Institute in support of Dr. Shirin Kalyan.
22 23	323	Data Sharing Statement
24 25	324	Due to subject confidentiality, the complete data cannot be made publicly available.
26 27	325	However, researchers who would like controlled access to the data are welcome to contact
28 29	326	Dr. Wassim Y. Almawi at: wassim.almawi@outlook.com.
30 31	327	Acknowledgements
32 33 34	328	The authors would like to thank all the women who participated in this research. Without
35 36	329	their support and time, this work would not be possible.
37 38	330	Competing Interests Statement
39 40	331	SK is Director of Scientific Innovation at Qu Biologics Inc., a clinical-stage biotechnology
41 42	332	company. All other authors have no conflict of interest to declare.
43 44	333	Author Contributions
45 46 47	334	SK designed the study, interpreted the data and wrote the first draft of the manuscript. AG
47 48 49	335	performed the statistical analysis and helped interpret the analysis. SS and WA collected all
50 51	336	the data, performed the biochemical analysis and managed the clinical operations of the
52 53	337	study. AJ assisted with literature review and manuscript preparation. All authors reviewed
54 55	338	and approved the final manuscript.
56 57	339	
58		15

1 2			
3	340	References Cited	
4			
5			
6	341	1 Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary	
7	342	syndrome. Clin Epidemiol 2013;6:1-13 doi:10.2147/CLEP.S37559 [doi].	
8			
9	343	2 Azziz R, Woods KS, Reyna R, et al. The prevalence and features of the polycystic ovary	
10	344	syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745-9	
11 12	345	doi:10.1210/jc.2003-032046.	
12			
14	346	3 Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women's health aspects of	
15	347	polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS	
16	348	Consensus Workshop Group. Fertil Steril 2012;97:28,38.e25	
17	349	doi:10.1016/j.fertnstert.2011.09.024; 10.1016/j.fertnstert.2011.09.024.	
18			
19	350	4 Azziz R, Carmina E, Dewailly D, et al. The Androgen Excess and PCOS Society criteria	
20	351	for the polycystic ovary syndrome: the complete task force report. Fertil Steril 2009;91:456	-
21	352	88 doi:10.1016/j.fertnstert.2008.06.035; 10.1016/j.fertnstert.2008.06.035.	
22			
23 24	353	5 Azziz R. PCOS: a diagnostic challenge. Reprod Biomed Online 2004;8:644-8.	
24			
26	354	6 Legro RS, Kunselman AR, Dodson WC, et al. Prevalence and predictors of risk for type 2	,
27	355	diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a	
28	356	prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999;84:165	-
29	357	9.	
30			
31	358	7 Marciniak A, Nawrocka Rutkowska J, Brodowska A, et al. Cardiovascular system disease	s
32	359	in patients with polycystic ovary syndrome - the role of inflammation process in this	
33	360	pathology and possibility of early diagnosis and prevention. Ann Agric Environ Med	
34 25	361	2016;23:537-41 doi:10.5604/12321966.1226842 [doi].	
35 36			
37	362	8 Shorakae S, Teede H, de Courten B, et al. The Emerging Role of Chronic Low-Grade	
38	363	Inflammation in the Pathophysiology of Polycystic Ovary Syndrome. Semin Reprod Med	
39	364	2015;33:257-69 doi:10.1055/s-0035-1556568 [doi].	
40			
41	365	9 Ojeda-Ojeda M, Murri M, Insenser M, et al. Mediators of Low-Grade Chronic	
42	366	Inflammation in Polycystic Ovary Syndrome (PCOS). Curr Pharm Des 2013.	
43			
44	367	10 Duleba AJ, Dokras A. Is PCOS an inflammatory process?. <i>Fertil Steril</i> 2012;97:7-12	
45	368	doi:10.1016/j.fertnstert.2011.11.023 [doi].	
46 47			
48	369	11 Kelly CC, Lyall H, Petrie JR, et al. Low grade chronic inflammation in women with	
49	370	polycystic ovarian syndrome. J Clin Endocrinol Metab 2001;86:2453-5	
50	371	doi:10.1210/jcem.86.6.7580 [doi].	
51			
52	372	12 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. <i>J Clin Invest</i>	
53	373	2003;111:1805-12 doi:10.1172/JCI18921 [doi].	
54			
55 56	374	13 Lau DC, Dhillon B, Yan H, et al. Adipokines: molecular links between obesity and	
56 57	375	atheroslcerosis. Am J Physiol Heart Circ Physiol 2005;288:H2031-41 doi:01058.2004 [pii].	
57			16
59			10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
1			

1		
2		
3	376	14 Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers
4 5	377 378	in polycystic ovary syndrome: a systematic review and metaanalysis. <i>Fertil Steril</i> 2011;95:1048,58.e1-2 doi:10.1016/j.fertnstert.2010.11.036; 10.1016/j.fertnstert.2010.11.036.
6	570	2011,95.1048,58.e1-2 doi.10.1010/j.ieitilistert.2010.11.050, 10.1010/j.ieitilistert.2010.11.050.
7	379	15 Samy N, Hashim M, Sayed M, et al. Clinical significance of inflammatory markers in
8	380	polycystic ovary syndrome: their relationship to insulin resistance and body mass index. <i>Dis</i>
9	381	Markers 2009;26:163-70 doi:10.3233/DMA-2009-0627 [doi].
10		, L J
11 12	382	16 Hughan KS, Tfayli H, Warren-Ulanch JG, et al. Early Biomarkers of Subclinical
12	383	Atherosclerosis in Obese Adolescent Girls with Polycystic Ovary Syndrome. J Pediatr
14	384	2016;168:104,11.e1 doi:10.1016/j.jpeds.2015.09.082 [doi].
15		
16	385	17 Carvalho LM, Ferreira CN, Soter MO, et al. Microparticles: Inflammatory and
17	386	haemostatic biomarkers in Polycystic Ovary Syndrome. <i>Mol Cell Endocrinol</i> 2017;443:155-
18 19	387	62 doi:S0303-7207(17)30021-7 [pii].
20	388	18 Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of
21	389	synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum
22	390	albumin measurements. <i>Int J Gen Med</i> 2016;9:229-55 doi:10.2147/IJGM.S102819 [doi].
23	550	
24	391	19 Zeginiadou T, Kolias S, Kouretas D, et al. Nonlinear binding of sex steroids to albumin
25 26	392	and sex hormone binding globulin. Eur J Drug Metab Pharmacokinet 1997;22:229-35.
27		
28	393	20 Kalyan S, Hitchcock CL, Sirrs S, et al. Cardiovascular and metabolic effects of
29	394	medroxyprogesterone acetate versus conjugated equine estrogen after premenopausal
30	395	hysterectomy with bilateral ovariectomy. <i>Pharmacotherapy</i> 2010;30:442-52
31	396	doi:10.1592/phco.30.5.442.
32 33	207	
34	397	21 Kalyan S, Patel MS, Kingwell E, et al. Competing Factors Link to Bone Health in Palvanatia Overse Sundrema: Charge Law, Canda Inflammatian Talvas a Tall. Sai Ban
35	398 399	Polycystic Ovary Syndrome: Chronic Low-Grade Inflammation Takes a Toll. <i>Sci Rep</i> 2017;7:3432,017-03685-x doi:10.1038/s41598-017-03685-x [doi].
36	333	2017,7.3432,017-03083-x doi.10.1036/841376-017-03083-x [doi].
37	400	22 Chang RJ. The reproductive phenotype in polycystic ovary syndrome. Nat Clin Pract
38 39	401	Endocrinol Metab 2007;3:688-95 doi:ncpendmet0637 [pii].
40		
41	402	23 Schmid J, Kirchengast S, Vytiska-Binstorfer E, et al. Infertility caused by PCOShealth-
42	403	related quality of life among Austrian and Moslem immigrant women in Austria. Hum
43	404	Reprod 2004;19:2251-7 doi:10.1093/humrep/deh432 [doi].
44		
45 46	405	24 The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus, Workshop Group. Revised
47	406	2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary
48	407	syndrome. <i>Fertil Steril</i> 2004;81:19-25.
49	408	25 George D, Mallery P. SPSS for Windows Step by Step: A Simple Guide and Reference:
50	408	Allyn & Bacon 2010.
51 52	405	Allyli & Dacon 2010.
52 53	410	26 Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to
53	411	insulin sensitivity. Obes Rev 2005;6:13-21 doi:OBR159 [pii].
55		· · · · · · · · · · · · · · · · · · ·
56		
57		
58 59		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

27 Dimitriadis GK, Kyrou I, Randeva HS. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines. Curr Pharm Des 2016;22:5535-46 doi:CPD-EPUB-77340 [pii]. 28 Cardoso CR, Leite NC, Salles GF. Prognostic Importance of C-Reactive Protein in High Cardiovascular Risk Patients With Type 2 Diabetes Mellitus: The Rio de Janeiro Type 2 Diabetes Cohort Study. J Am Heart Assoc 2016;5:e004554 doi:e004554 [pii]. 29 Chen TH, Gona P, Sutherland PA, et al. Long-term C-reactive protein variability and prediction of metabolic risk. Am J Med 2009;122:53-61 doi:10.1016/j.amjmed.2008.08.023 [doi]. 30 Rutter MK, Meigs JB, Sullivan LM, et al. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004;110:380-5 doi:10.1161/01.CIR.0000136581.59584.0E [doi]. 31 Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev 2013;14:232-44 doi:10.1111/obr.12003 [doi]. 32 Kraus VB, Jordan JM. Serum C-Reactive Protein (CRP), Target for Therapy or Trouble?. Biomark Insights 2007;1:77-80. 33 Shuster A, Patlas M, Pinthus JH, et al. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 2012;85:1-10 doi:10.1259/bjr/38447238 [doi]. 34 Faugere M, Micoulaud-Franchi JA, Faget-Agius C, et al. Quality of life is associated with chronic inflammation in depression: A cross-sectional study. J Affect Disord 2017;227:494-7 doi:S0165-0327(17)30792-9 [pii]. 35 Chirinos DA, Murdock KW, LeRoy AS, et al. Depressive symptom profiles, cardio-metabolic risk and inflammation: Results from the MIDUS study. *Psychoneuroendocrinology* 2017;82:17-25 doi:S0306-4530(16)30877-0 [pii]. 36 Barry JA, Kuczmierczyk AR, Hardiman PJ. Anxiety and depression in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod 2011;26:2442-51 doi:10.1093/humrep/der197; 10.1093/humrep/der197. 37 Dokras A, Clifton S, Futterweit W, et al. Increased risk for abnormal depression scores in women with polycystic ovary syndrome: a systematic review and meta-analysis. Obstet Gynecol 2011;117:145-52 doi:10.1097/AOG.0b013e318202b0a4; 10.1097/AOG.0b013e318202b0a4.

2		
3 4	446 447	Figure Legends
5 6	448	Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate
7 8	449	against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in
9 10	450	differentiating women with and without PCOS. The area under the curve (AUC) for
11 12 13 14	451	CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.
15 16	452	Figure 2. Linear regression analysis of adjusted CRP/albumin values by body mass index
17 18 19	453	(BMI) in women with PCOS and controls.
20 21	454	
22 23	455	
24 25		
26 27		
28 29		
30 31		
32 33 34		
34 35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50 51		
51 52 53		
55 54 55		
56 57		
58 59		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

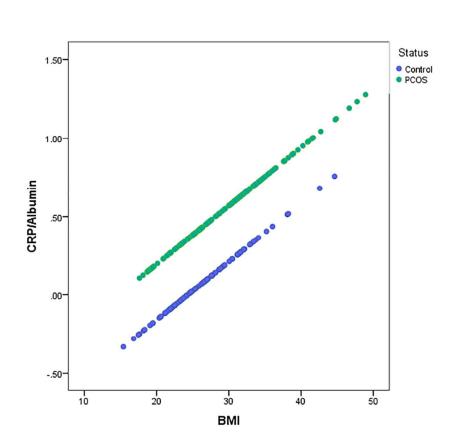
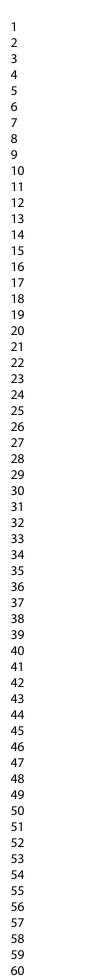
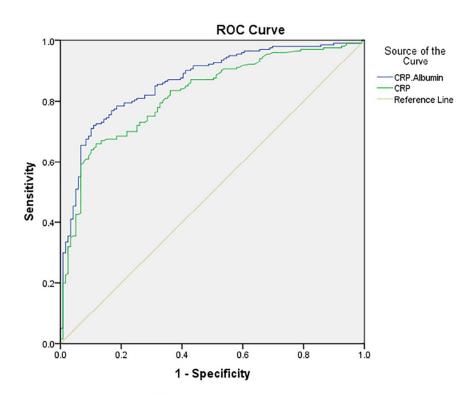




Figure 2. Linear regression analysis of adjusted CRP/albumin values by body mass index (BMI) in women with PCOS and controls. A univariate generalized linear model was computed investigating the relationship between CRP/albumin and BMI, adjusting for the variables found to associate with CRP/albumin (insulin, free testosterone, progesterone and adiponectin) plus age stratified by PCOS diagnosis.

101x81mm (300 x 300 DPI)

Diagonal segments are produced by ties.

Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in differentiating women with and without PCOS. The area under the curve (AUC) for CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.

101x81mm (300 x 300 DPI)

STROBE Statement Checklist of items that should be included in reports of observational studies

Section/Topic	Item No	Recommendation	Reported on Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
	1	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
1 Objectives	3	State specific objectives, including any prespecified hypotheses	5
² Methods			
³ Study design	4	Present key elements of study design early in the paper	5
5 Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
7 8 9 0 1 Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls	5-6
2 3 4	Ū	Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed	
5		Case-control study—For matched studies, give matching criteria and the number of controls per case	
6 7 Variables 8	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-7
9 0 Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
1 2 Bias	9	Describe any efforts to address potential sources of bias	5,6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7,8
5		(a) Describe all statistical methods, including those used to control for confounding	7,8
7		(b) Describe any methods used to examine subgroups and interactions	-
8		(c) Explain how missing data were addressed	-
⁹ Statistical methods 0	12	(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
1		Case-control study-If applicable, explain how matching of cases and controls was addressed	5
2		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
3		(e) Describe any sensitivity analyses	-
4 5 6 7		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	1

BMJ Open

1 2 3 4	Section/Topic	Item No	Recommendation	Reported on Page No
5	Results			
6 7 8	Dortiginanta	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
9 10	Participants	13.	(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	-
12 13	Description late	1.4*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1
14 15	Descriptive data	14*	(b) Indicate number of participants with missing data for each variable of interest	Table 1
16			(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
17			Cohort study—Report numbers of outcome events or summary measures over time	
	Outcome data	15*	Case-control study-Report numbers in each exposure category, or summary measures of exposure	9, Table 1
19 20			Cross-sectional study—Report numbers of outcome events or summary measures	
20 21 22			(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-11
23	³ Main results	16	(b) Report category boundaries when continuous variables were categorized	Table 2, 11
24			(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
25 26 27	Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Figures 1-2, Table 2
28 29	Discussion			
~ ~	Key results	18	Summarise key results with reference to study objectives	12-13
31 32	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13-14
33 34 35	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14
36	Generalisability	21	Discuss the generalisability (external validity) of the study results	13, 14
37 38	37 37 37 37 37 37 37 38 Other Information		· · · ·	
39 40	Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14
41 42 43	2			
43 44 45 46 47			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is Line at h. valiable at ww best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Assessing C-reactive protein/albumin ratio as a new biomarker for Polycystic Ovary Syndrome: a case-control study of women from Bahraini medical clinics

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021860.R2
Article Type:	Research
Date Submitted by the Author:	13-Aug-2018
Complete List of Authors:	Kalyan, Shirin; University of British Columbia, Medicine; Goshtasebi, Azita; University of British Columbia, Medicine Sarray, Sameh; Arabian Gulf University Joannou, Angela; University of British Columbia, Medicine Almawi, Wassim; El-Manar University
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Diabetes and endocrinology
Keywords:	polycystic ovary syndrome, inflammation, C-reactive protein, albumin, pathophysiology

1		
2		
3	1	Assessing C-reactive protein/albumin ratio as a new biomarker for Polycystic Ovary
4		
5	2	Syndrome: a case-control study of women from Bahraini medical clinics
6		
7	3	
8	4	Short title: CRP/Albumin as a biomarker of PCOS
9	5	
10	6	
11		Shinin Kalang $\frac{1}{2}$ Anite Cashtarahi $\frac{1}{2}$ Samah Saman $\frac{2.3}{2}$ Anala Languar $\frac{1}{2}$ Wassing V
12	7	Shirin Kalyan ¹ *, Azita Goshtesabi ¹ , Sameh Sarray ^{2,3} , Angela Joannou ¹ , Wassim Y.
13	8	Almawi ³
14	9	
15	10	
16	11	¹ CeMCOR, Division of Endocrinology, Department of Medicine, University of British
17	12	Columbia, Vancouver, BC, Canada
18	13	
19	14	² Arabian Gulf University, Department of Medical Biochemistry, Manama Bahrain
20	15	Autoluli Guli Oliiveisity, Depurtitent of Medical Dioeneniisity, Mahama Damam
21		³ Ecoulty of Sciences El Monor University Typic Typicia
22	16	³ Faculty of Sciences, El-Manar University, Tunis, Tunisia.
23		
24	17	
25	18	
26	19	
20	20	*Corresponding author:
28	21	Dr. Shirin Kalvan
20	22	
30	23	Rm 4139, Diamond Health Care Centre Division of Endocrinology Department of Medicine University of British Columbia Email: <u>shirin.kalyan@ubc.ca</u>
31	23	Division of Endocrinology
		Division of Endocrinology
32 33	25	Department of Medicine
	26	University of British Columbia
34 25	27	
35	28	Email: <u>shirin.kalyan@ubc.ca</u>
36	29	
37	30	
38	31	
39	32	Keywords: polycystic ovary syndrome, inflammation, pathophysiology, C-reactive protein,
40	33	albumin
41	34	diodinini
42		Word count: 2400 (main article)
43	35	Word count: 2409 (main article)
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

36 37	Abstract	
38	Objective: Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting	
39	approximately one in seven women who experience androgen excess, menstrual cycle	
40	irregularities, frequent anovulation, and a tendency for central obesity and insulin resistance.	
41	Chronic subclinical inflammation is now recognized as being common in the context of	
42	PCOS, which led to the postulation that PCOS may fundamentally be an inflammatory	
43	process. This study aimed to: 1) evaluate serum CRP/albumin ratio as a potential predictive	
44	biomarker for PCOS; 2) compare the relationship between CRP/albumin and PCOS to	
45	variables classically associated with the syndrome.	
46	Design: Case-control study.	
47	Setting: Adult obstetrics/gynaecology, endocrinology and outpatient clinics; university	
48	hospital in Bahrain.	
49	Participants: 200 premenopausal women with a diagnosis of PCOS, and 119 ethnically-	
50	matched eumenorrheic premenopausal women.	
51	Main Outcome Measures: CRP/albumin ratio, anthropometric measures, insulin resistance,	
52	androgen excess.	
53	Results: Independent of body mass index (BMI), receiver operating characteristic (ROC)	
54	curve for CRP/albumin ratio as a selective biomarker for PCOS was 0.865 (95% CI: 0.824-	
55	0.905), which was more sensitive than CRP alone. Binary regression analysis showed that	
56	CRP/albumin ratio outperformed classical correlates, free androgen index and insulin	
57	resistance, in predicting PCOS for every BMI category.	
58	Conclusion: CRP/albumin ratio, a marker for inflammation related to metabolic dysfunction	,
59	was found to have a stronger association with PCOS than either androgen excess or insulin	
60	resistance. Inflammation is known to be influenced by adiposity, but relative to controls,	
		2

1			
2 3	61	women with PCOS have higher levels of CRP/albumin irrespective of BMI. These findings	5
4 5 6	62	support the view that inflammation plays a central role in the pathophysiology of PCOS.	
6 7 8	63		
9 10	64		
10 11 12	65	Article Summary	
13 14	66	Strengths and limitations of this study	
15 16	67	• This analysis addressed previous limitations of studies, namely small sample sizes,	
17 18	68	heterogeneous populations, and confounding factors (such as BMI), that have	
19 20 21	69	attempted to show PCOS is an inflammatory process	
21 22 23	70	• The relationship between inflammation and PCOS was assessed using CRP/albumin	1
24 25	71	ratio, which may be a better marker for inflammation in the context of metabolic	
26 27	72	dysfunction	
28 29	73	• Limitation: study used waist circumference as a substitute for visceral adiposity; go	ld
30 31	74	standard is computed tomography (CT) or magnetic resonance imaging (MRI)	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	75		
56 57 58			3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

76	Introduction
77	Polycystic ovary syndrome (PCOS) is the most common reproductive disorder, affecting 5 to
78	15 % of premenopausal women worldwide, [1, 2] and the prevalence of PCOS appears to be
79	increasing. [1] This rise may partly be attributed to improved diagnosis as well as to an
80	increase in environmental factors that predispose to the development of this complex
81	metabolic condition. PCOS is characterized by androgen excess, menstrual irregularities,
82	ovulatory disturbances, and is often associated with central obesity and insulin resistance. [3-
83	5] As such, women with PCOS are at an increased risk for a number of health issues,
84	including infertility, cardiovascular disease and diabetes. [3, 6, 7]
85	Possibly related to the constellation of endocrine and metabolic dysfunction they experience,
86	women with PCOS are also found to have greater chronic subclinical inflammation, [8-11]
87	which is often clinically assessed by measuring serum levels of C-reactive protein (CRP).
88	CRP is a liver-derived acute phase protein produced in response to IL-6 secreted from
89	activated cells such as macrophages and adipocytes. [12, 13] A meta-analysis of 31 studies
90	concluded that systemic CRP levels are 96% higher in women with PCOS compared to
91	control women. [14] Collectively, these findings have given rise to the speculation that
92	inflammation may play a pivotal role in the pathophysiology of PCOS. [8-10]
93	Elevated serum CRP levels are linked to several health risk factors experienced by women
94	with PCOS, particularly insulin resistance and heightened risk of type 2 diabetes. [7, 15, 16]
95	Chronic inflammation also contributes to endothelial dysfunction, exacerbating the
96	development of atherosclerotic plaques, triggering the onset of cardiovascular disease (CVD).
97	[17] As such inflammation has been associated with both CVD and coronary artery disease in
98	women with PCOS. [10]

Page 5 of 25

1 2

BMJ Open

2	
4	
5	
6	
4 5 6 7 8 9 10 11 12 13 14 15	
8	
9	
10	
11	
12	
13	
14	
15	
17	
15 16 17 18	
19	
19 20	
21	
22	
23	
24	
25 26 27 28	
26	
27	
28	
29 30	
30 31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42 43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
50 59	
60	

99	In contrast to CRP, albumin is a negative acute phase response protein produced by the liver.
100	Serum levels of albumin are reduced in individuals experiencing chronic inflammation. [18]
101	In addition to its role as a binding molecule for sex steroids, [19] albumin also provides the
102	majority of the total antioxidant capacity of normal plasma. [18] The ratio of serum CRP
103	levels over serum albumin (CRP/albumin) was found to be strongly associated with more
104	severe metabolic dysfunction in premenopausal women with induced alterations to their
105	ovarian hormone status. [20] CRP/albumin ratio was also found to be significantly higher in
106	premenopausal women with PCOS relative to controls, and adversely predicted their bone
107	quality. [21] Given the ability of CRP/albumin to simultaneously capture chronic
108	inflammation and metabolic dysfunction in premenopausal women, we hypothesized that
109	CRP/albumin ratio may serve as a strong predictor of PCOS in a cohort of similarly aged
110	women. This case-control study investigated CRP/albumin ratio along with classical markers,
111	androgen excess and insulin resistance, in their association with PCOS in 319 premenopausal
112	Bahraini Arab women.
112	

113

114 Methods

115 *Patient and public involvement*

The development of the research question and the study's setting was influenced by the wish
many women in Bahrain have to bear children. Infertility is a consequence of PCOS, [22] and
the combination of both can impact women's health-related quality of life. [23] Patients were
not involved in the design of the study or the recruitment. Study participants will not be recontacted by the study investigators; however, the results of this study will be disseminated to
the Bahraini community through press releases of the open access publication. *Study subjects*

2 3	123	Women with PCOS ($n = 200$) were recruited from adult obstetrics/gynecology,
4 5 6	124	endocrinology and outpatient clinics in Manama, Bahrain. Women without PCOS (n = 119)
7 8	125	were ethnically-matched, eumenorrheic university employees and students, and healthy
9 10	126	volunteers representative of the Bahraini population. The sample size was based on the
11 12	127	ability to detect differences between cases and controls with 10% precision (two-tailed t-test
13 14	128	with a=0.05) and 80% power, taking into account the estimated prevalence of PCOS in
15 16	129	Bahrain of 7.5-8.0% (Bahraini Ministry of Health;
17 18	130	www.moh.gov.bh/Content/Files/Publications/statistics/HS2015) and Z-value for 95% CI
19 20 21	131	(confidence interval). Women serving as controls were examined in the follicular phase of
21 22 23	132	their menstrual cycle and had their testosterone levels were within range. A diagnosis of
24 25	133	PCOS was based on the 2003 Rotterdam Criteria, which requires two of the three following
26 27	134	criteria to be met: ultrasound evidence of polycystic ovarian morphology, anovulation, and
28 29	135	hyperandrogenism. [24] Exclusion criteria included hyperprolactinemia, non-classical adrenal
30 31	136	hyperplasia, androgen-producing tumors, 21-hydroxylase deficiency, Cushing's syndrome,
32 33	137	and active thyroid disease (overt, central and subclinical hypothyroidism and
34 35 36	138	hyperthyroidism). Additional exclusion criteria included extremes of body mass index (BMI;
37 38	139	$<18 \text{ kg/m}^2 \text{ or } >45 \text{ kg/m}^2$), recent/present illness, and treatment affecting carbohydrate
39 40	140	metabolism or hormonal levels, for three months or longer before inclusion the study.
41 42	141	Women using anti-hypertensive, oral contraceptive, anti-inflammatory, and lipid-lowering
43 44	142	drugs were also excluded. Demographic information, along with detailed personal and family
45 46	143	history of diabetes, hypertension, infertility, hypercholesterolemia, and ischemic heart disease
47 48	144	were obtained from all participants. This study was conducted in accord with the Helsinki II
49 50 51	145	Declaration guidelines, and all participants gave written informed consent to participate.
52 53	146	Study approval was obtained from the Bahraini Ministry of Health and Arabian Gulf
54 55		
56 57		

BMJ Open

	147	University Research and Ethics Committees (IRB number: 35-PI-01/15) and the Clinical
	148	Research Ethics Board of the University of British Columbia (H16-02101).
	149	
)	150	Biochemical analysis
l 2	151	Peripheral venous fasting blood samples were obtained between 7:00 and 9:00 am following
3 1	152	an overnight (> 12 h) fast during the early follicular phase of the menstrual cycle (days 2 ± 5)
5	153	for control women, or women with PCOS who did not present with menstrual irregularities,
3	154	or any day for women with PCOS with menstrual irregularities. Serum samples were
,) 	155	analyzed for sex hormone binding globulin (SHBG) by sandwich ELISA (R&D Systems,
2 3	156	Minneapolis, MN); assay sensitivity was 0.01 nmol/ml, and inter-assay and intra-assay
1 5	157	precision (CV %) were 5.3% and 4.3%, respectively. Samples were tested in duplicates for
5 7	158	adiponectin levels (Cat. No. DRP300) by sandwich enzyme-linked immunosorbent assay
3	159	(R&D Systems); assay sensitivity was 0.891 ng/ml, and inter-assay and intra-assay precision
	160	(CV%) were 6.5% and 3.5%, respectively.
- 3 1	161	Serum luteinizing hormone (LH), follicular stimulating hormone (FSH), thyroid stimulating
5	162	hormone (TSH), testosterone, glucose (ADVIA Centaur, Bayer Vital, Fernwald, Germany),
7 3	163	and insulin (IMMULITE 2000, DPC Biermann, Bad Nauheim, Germany), were measured by
))	164	automated chemiluminescence immunoassays. Free (FT) and bioactive (BT) testosterone and
 <u>2</u>	165	free androgen index (FAI) were determined using Free & Bioavailable Testosterone
5 1 5	166	Calculator (www.issam.ch/freetesto.htm). Progesterone and estradiol serum levels were
5 5 7	167	quantitated by radioimmunoassay, with comparable CV% (< 5%), while DHEA-S levels
3	168	were measured by solid-phase competitive immunoassay (Immulite; Siemens); inter- and
) I	169	intra-assay CV were 9.4 and 7.0%, respectively.
<u>2</u> 3	170	
+ 5		

171	Concentrations of serum albumin were analyzed by photospectrometry with albumin
172	bromocresol purple assay on a COBAS c701 Chemistry Analyzer (Roche Diagnostics, Dubai,
173	UAE). Insulin resistance (IR) was estimated by the homeostasis model assessment (HOMA-
174	IR), defined as fasting serum insulin (IU/mL) \times fasting plasma glucose
175	(mmol/L)/22.5. HOMA-IR values were characterized as Normal (insulin-sensitive) if <2.40;
176	Borderline if between 2.40-3.50, and High (insulin-resistant) if $>$ 3.50.
177	
178	Measurement of plasma high sensitivity CRP levels was done by latex-enhanced
179	nephelometry on a BN II Nephelometer (Dade Behring, Milan, Italy). Samples were assayed
180	in duplicate in each analytical run; the lower limit of detection was 0.15 mg/L, and the assay
181	range was 0.175–11.0 mg/L (initial dilution). Serial serum dilutions were made in measuring
182	high CRP (>30 mg/L) levels. Percentile CRP values were estimated for comparison
183	purposes.
184	purposes. Statistical analysis
185	The core outcome set of variables included assessment of CRP/albumin as a predictor of
186	PCOS while controlling for relevant factors, such as BMI and age, and to subsequently
187	compare the strength of the relationship between CRP/albumin and PCOS with variables
188	known to strongly link to the syndrome, namely androgen excess and insulin resistance. The
189	Shapiro-Wilk test was used to evaluate the distribution of the variables, and many variables
190	for the PCOS cohort were flagged as being non-normally distributed. However, upon testing
191	for skewness, we found the values for asymmetry and kurtosis fell between -2 to $+2$ for all.
192	Thus, we used parametric tests, as suggested, [25] given the sample sizes were >30. We
193	reassessed the validity of our analysis by running the Mann-Whitney U test in addition to
194	student t test for variables we had detected as being non-normal and confirmed that the
	8

Page 9 of 25

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
o 9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
19 20	
21	
22	
20 21 22 23	
24	
24 25	
25	
26	
11	
28	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

195	results were similar. Baseline characteristics were compared using the Mann-Whitney U test
196	and the independent samples t-test for the continuous variables, and the $\chi 2$ test for categorical
197	variables. Numerical variables are presented as mean \pm standard deviation (SD). Because
198	distribution of CRP/albumin levels was skewed to the right, correlations between
199	CRP/albumin ratio and other continuous variables were assessed using Spearman's rho.
200	Univariate general linear models were applied to test independent associations between
201	CRP/albumin ratio and other independent variables.
202	The optimal cut-off level for the CRP/albumin ratio was determined by a receiver operating
203	characteristic (ROC) curve analysis, and the areas under the curve (AUC) were measured and
204	compared to assess the power of a model to identify patients who experienced metabolic
205	disturbances. Cut-off values showing the greatest accuracy were determined using a
206	sensitivity/specificity versus criterion value plot. Quartiles (i.e. 0-25%, 26-50%, 51-75%, and
207	76-100%) of CRP and CRP/albumin ratio were calculated separately in PCOS and control
208	groups. Because the 25% quartile of CRP value in the PCOS cohort was similar to the
209	standard normal values of CRP, we used the 25% quartile of CRP and CRP/albumin ratio as
210	the cut-off point for both predictors.
211	Using the calculated cut-off values, regression analysis was performed to determine how well
212	each variable predicted PCOS. To fully explore the role of the CRP/albumin ratio as a
213	biomarker in the prediction of metabolic disturbances, CRP and CRP/albumin ratio were
214	additionally assessed as binary variables. Subjects were categorized into two groups based on
215	the cut-off values and their means (SD) for metabolic markers. Insulin resistance (HOMA-
216	IR), free testosterone, total adiponectin, BMI and TSH were compared between subjects with
217	normal values, and those who had higher than normal values. P-values <0.05 were considered
218	as statistically significant. All statistical analyses were performed using the IBM SPSS
219	statistics software program version 22 (IBM, Armonk, NY).
	currence continue problam version 22 (1911, 1 million, 111).

		All (N=319)	PCOS (N=200)	Controls (N=119)	Mean difference	95 % CI of Mean Difference	I val	
		A 11	BCO S	Control	│ Ъ <i>¶</i> │ │	05.0/ 01 -634	1	
239	Data are	e presented as	means (standard	deviation).				
238	women	with polycyst	ic ovary syndro	ome (PCOS) ar	nd controls.			
237	Table 1	: Demograph	ic, clinical and	hormonal char	acteristics of s	study population:		
236	greater i	greater impaired regulation of insulin compared to controls (Table 1).						
235	and insu	and insulin sensitivity (HOMA-IR and QUICKI) indicated that women with PCOS had						
234	significa	significantly between women with and without PCOS. However, indices of insulin resistance						
233	Fasting	Fasting plasma glucose, cholesterol, HDL, LDL and triglyceride levels did not differ						
232	to viscer	ral adiposity, [26] was marked	lly lower in won	nen with PCOS	S compared to controls.		
231	Serum le	evels of adipor	nectin, an adipo	cyte-associated	protein that ter	nds to be inversely linked	1	
230	than cor	ntrols (p<0.001), but the waist-	-to-hip ratio was	s not significan	tly different (Table 1).		
229	The proj	portion of wor	nen with a BMI	greater than 30	kg/m ² were hig	gher in the PCOS cohort		
228	Metabol	lic characteris	tics					
227	PCOS, ł	COS, having a higher number of high school and post-secondary graduates (p=0.012).						
226	have ins	ave insulin resistance (p<0.001), and differed in education attainment with those with						
225	women	women with PCOS had fewer pregnancies and live births ($p<0.001$), were more likely to						
224	women	with PCOS an	d 119 controls v	women are sum	marized in Tab	le 1. Relative to controls	3,	
223	The soc	iodemographic	e, anthropometri	ic, clinical, and	biochemical ch	aracteristics of the 200		
222	Study su	ıbjects						
221	Results							

Page 11 of 25

BMJ Open

					lower	upper	
Age (yrs)	27.9 (6.4)	28.4 (5.9)	27.2 (7.2)	1.24	-0.22	2.71	0.0
BMI (kg/m ²)	28 (5.9)	29 (6.3)	26.5 (5)	2.53	1.19	3.87	0.0
Waist/hip ratio	0.94 (0.09)	0.94 (0.09)	0.93 (0.09)	0.0067	-0.017	0.031	0.5
Menarche (yrs)	12.5 (1.4)	12.5 (1.5)	12.4 (1.2)	0.12	-0.21	0.45	0.4
HOMA.IR	3.2 (0.18)	3.8 (0.26)	2.1 (0.2)	1.67	0.94	2.4	0.0
QUICKI	0.6 (0.006)	0.57 (0.008)	0.65 (.01)	-0.078	-0.10	-0.05	0.00
Total	33.8 (1.4)	28.4 (1.3)	44.6 (2.9)	-16.25	-21	-10	0.0
adiponectin		~					
(ng/L)							
Albumin (g/L)	37.3 (0.46)	32.7 (0.46)	45 (0.35)	-12.22	-13.52	-10.93	0.0
CRP (mg/L)	11.1 (1.1)	15.5 (1.6)	3.6 (0.85)	11.89	7.61	16.17	0.00
CRP/Albumin	0.36 (0.04)	0.53 (0.06)	0.08 (0.02)	0.45	0.29	0.61	0.0
ratio							
SHBG (nmol/L)	60.1 (1.5)	52.2 (1.4)	72 (2.8)	-19.72	-26.5	-13.93	0.0
DHEAS	6.2 (0.28)	6.2 (0.29)	6.3 (0.95)	-0.18	-0.174	1.36	0.8
(nmol/L)				2			
Total	1.7 (0.06)	1.8 (0.07)	1.5 (0.1)	0.23	-0.02	0.49	0.0
testosterone							
(nmol/L)							
Bioavailable	0.49 (0.02)	0.52 (0.03)	0.42 (0.03)	0.098	0.015	0.18	0.0
testosterone							
(nmol/L)							
Free Androgen	3.4 (0.16	4 (0.22)	2.4 (0.16)	1.57	0.93	2.2	0.0
Index							
Free	0.025	0.029 (0.001)	0.017 (0.001)	0.011	0.007	0.015	0.0
testosterone	(0.001)						

index					
240	BMI: Body Mass Index, HOMA.IR: Homeostatic Model Assessment for Insulin Resistance,				
241	QUICKI: Quantitative insulin sensitivity check index, CRP: C-reactive protein, SHBG: Sex				
242	hormone binding hormone.				
243	Reproductive hormone characteristics				
244	There were no statistically significant differences in plasma levels of estradiol, progesterone,				
245	total testosterone, prolactin, FSH, LH and DHES between women with and without PCOS.				
246	Free testosterone was higher and SHBG lower in women with PCOS (Table 1).				
247	C-reactive protein (CRP)/albumin ratio as a predictor of polycystic ovary syndrome (PCOS)				
248	stratified by body mass index (BMI)				
249	Women with PCOS had markedly higher levels of CRP and lower levels of serum albumin				
250	relative to controls (p<0.001; Table 1). ROC curve analysis showed that the CRP/albumin				
251	ratio had greater discriminatory power to differentiate between women with PCOS and				
252	controls (AUC: 0.865, 95% CI: 0.824-0.905) compared to CRP alone (AUC: 0.820, 95% CI:				
253	0.773-0.867); Figure 1. This greater efficacy of CRP/albumin ratio to discriminate between				
254	cases and controls was also evident when taking into account the presence of insulin				
255	resistance at every measure of sensitivity; for a sensitivity level of 75%, CRP/albumin ratio				
256	had a specificity of 85% compared to 69% for CRP alone.				
257	Spearmen correlation analysis between CRP/albumin ratios and clinical and biochemical				
258	markers was subsequently performed. Variables found to be univariately linked to				
259	CRP/albumin values were included in a general linear model testing the relationship amongst				
260	PCOS diagnosis, BMI, and CRP/albumin levels. The model revealed that for any given BMI				
261	value, women with PCOS have markedly elevated CRP/albumin levels (p<0.001, Figure 2).				

BMJ Open

Variables that are known to strongly associate with PCOS, namely free androgen index and insulin resistance, were compared to CRP/albumin ratio as predictors of PCOS in a binary regression analysis stratified by three BMI categories: $<25 \text{ kg/m}^2$ [normal], $25 - 30 \text{ kg/m}^2$ [overweight], $>30 \text{ kg/m}^2$ [obese]); **Table 2**. A CRP/albumin ratio of ≥ 0.097 outperformed both insulin resistance and free androgen index in predicting PCOS for every BMI category (**Table 2**).

269 Table 2: Summary of binary Regression Analysis for Variables Predicting PCOS with

270	the Odds Ratio of each risk factor adjusted for other variables in the model
-----	--

Odds Ratio (95% Confidence Interval)			
	BMI < 25	BMI 25-30	$BMI \ge 30$
	(normal)	(overweight)	(obese)
CRP/Albumin Ra	tio ¹		
< 0.097	1	1	1
≥0.097	11.21 (3.28-39.75)	19.32 (5.07-72.17)	34.5 (7.75-153.52)
Insulin Resistance	22		
No	1	1	1
Borderline	3.34 (0.645-17.33)	5.58 (0.907-34.41)	3.13 (0.53-18.48)
Yes	9.21 (1.63-51.93)	8.81 (1.75-44.31)	17.94 (1.81-177.61)
Free Androgen In	dex ³	l	I
<3.95	1	1	1
≥3.95	2.28 (.536-9.75)	0.86 (.22-3.35)	3.79 (0.59-24.42)

273 ¹Cut-off values were derived from the sensitivity and specificity analysis of the receiver

274 operating characteristic curve

²Categories of insulin resistance based on normal values used for HOMA-IR

³Cut-off values from normal laboratory reference ranges for free androgen index

278 Discussion

This study demonstrated that CRP/albumin ratio is a stronger correlate of PCOS than both free androgens and insulin resistance in 319 ethnically-matched premenopausal women, and this relationship was independent of BMI. Despite being the most common reproductive disorder to affect women, the etiology of PCOS has remained elusive to date. In the absence of a definitive cure, treatment has focused on symptom management, and a goal to prevent the progression of serious health conditions, such as type 2 diabetes and CVD, for which women with PCOS are at heightened risk. Chronic low-grade inflammation has emerged as a common underlying state in women with PCOS, and a likely direct contributor to insulin resistance and heart disease risk. This has raised the question whether PCOS is fundamentally an inflammatory condition. [8, 10, 27]

Small sample sizes, heterogeneous populations, and an inability to correct for confounding factors, such as BMI and use of oral contraceptives, both of which influence inflammatory markers such as CRP, [21] has in part hampered efforts in assigning inflammation as truly a defining feature of PCOS. This current analysis has overcome some of the main issues in assessing the independent relationship between PCOS and chronic low-grade inflammation. This was accomplished by accounting for many of the confounding variables and by using a more refined marker for inflammation, the CRP/albumin ratio, which may have greater specificity and sensitivity for inflammation associated with metabolic dysfunction. The CRP/albumin ratio was first found to be useful in assessing cardiometabolic and inflammatory status following ovariectomy surgery. [20] It was subsequently used to show the influence of chronic subclinical inflammation on bone quality in women with PCOS. [21] Although CRP is used to predict cardiovascular risk and is associated with metabolic

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 25

BMJ Open

2		
3	301	disorders associated with obesity and insulin resistance, [28-31] it has been criticized for
4 5 6	302	being too general and non-specific a marker for inflammation. [32]
7 8 9	303	When compared to CRP alone, we found that the CRP/albumin ratio has an improved ROC
10 11	304	curve for predicting PCOS. Serum albumin, which is commonly measured to assess liver
12 13	305	function and malnutrition, is not widely considered as an analyte of interest for PCOS.
14 15	306	However, this study showed for the first time that albumin is markedly reduced in women
16 17	307	with PCOS relative to controls. This may, at least in part, be due to albumin being a negative
18 19	308	acute phase protein. [18] It is also possible that there is increased oxidation and glycation of
20 21 22	309	albumin in women with PCOS, which can impact the structure, function and metabolism of
23 24	310	the protein. [18] Albumin is one of the most abundant serum proteins, and among its many
24 25 26	311	roles is the transport of hormones. [19] Thus, reduced albumin levels can potentially
27 28	312	contribute to higher free androgens in women with PCOS and exacerbation of disease
29 30 31	313	phenotype.
32 33	314	This analysis was limited by a lack of a more sensitive measure of visceral adiposity; the gold
34 35	315	standard is imaging with computed tomography (CT) or magnetic resonance imaging (MRI).
36 37	316	[33] Furthermore, the case-control design limited the ability to assess how CRP/albumin
38 39	317	performs in predicting health outcomes in women with PCOS. Prospective studies are now
40 41 42	318	needed to determine the use of CRP/albumin in predicting the progression of disorders linked
43 44	319	to chronic inflammation and metabolic dysfunction that women with PCOS are at increased
45 46	320	risk. These include not only cardiovascular disease and diabetes, but also depression. [34-37]
47 48	321	Importantly, CRP/albumin ratio may be particularly useful in assessing the effectiveness of
49 50	322	new interventions targeting inflammation in women with PCOS as a novel approach to
51		

3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
_	-	
2	2	
2	0123456789	
<u> </u>		
2	4	
2	5	
_	5	
2	6	
2	7	
_	<u>′</u>	
2	8	
ว	9	
-	-	
3	0	
2	1	
3	2	
	3	
3	4	
	5	
3	6	
	7	
3	8	
	9	
4	0	
4		
4	2	
4		
4	3	
4	4	
	5	
4	6	
4		
4	8	
4		
5	0	
5		
5	2	
5		
5	4	
	5	
5	6	
-	-	
5		
5	8	
	9	
5	u	

324	Conclusion: CRP/albumin ra	tio, a marker for inflamn	nation related to meta	bolic dysfunction,

- 325 was found to have a stronger association with PCOS than either androgen excess or insulin
- 326 resistance. Inflammation is known to be influenced by adiposity, but relative to controls,
- 327 women with PCOS have higher levels of CRP/albumin ratio irrespective of BMI. This
- 328 supports the view that inflammation may play a central role in the pathophysiology of PCOS.
- 329

1 2

330 Funding Statement

- 331 The analysis presented was supported by an operating grant provided by the Vancouver
- 332 Coastal Health Research Institute in support of Dr. Shirin Kalyan.
- 333 Data Sharing Statement
 - 334 Due to subject confidentiality, the complete data cannot be made publicly available.
 - 335 However, researchers who would like controlled access to the data are welcome to contact
 - 336 Dr. Wassim Y. Almawi at: wassim.almawi@outlook.com.

337 Acknowledgements

338 The authors would like to thank all the women who participated in this research. Without

- 339 their support and time, this work would not be possible.
- 340 Competing Interests Statement
 - 341 SK is Director of Scientific Innovation at Qu Biologics Inc., a clinical-stage biotechnology
 - 342 company. All other authors have no conflict of interest to declare.
 - 343 Author Contributions

344 SK designed the study, interpreted the data and wrote the first draft of the manuscript. AG
345 performed the statistical analysis and helped interpret the analysis. SS and WA collected all
346 the data, performed the biochemical analysis and managed the clinical operations of the
347 study. AJ assisted with literature review and manuscript preparation. All authors reviewed
348 and approved the final manuscript.

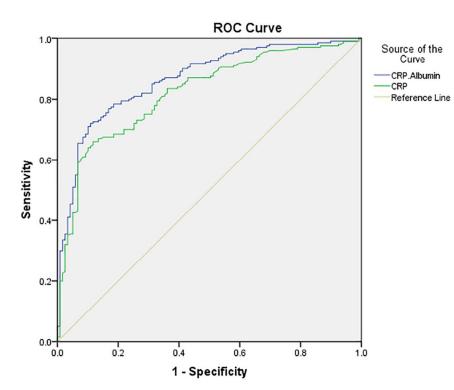
349

1		
2	250	
3 4	350	References Cited
5		
6 7 8	351 352	1 Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. <i>Clin Epidemiol</i> 2013;6:1-13 doi:10.2147/CLEP.S37559 [doi].
9	353	2 Azziz R, Woods KS, Reyna R, et al. The prevalence and features of the polycystic ovary
10 11	354	syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745-9
12	355	doi:10.1210/jc.2003-032046.
13 14	356	3 Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women's health aspects of
15	357	polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS
16	358	Consensus Workshop Group. Fertil Steril 2012;97:28,38.e25
17 18	359	doi:10.1016/j.fertnstert.2011.09.024; 10.1016/j.fertnstert.2011.09.024.
19	360	4 Azziz R, Carmina E, Dewailly D, et al. The Androgen Excess and PCOS Society criteria
20	361	for the polycystic ovary syndrome: the complete task force report. Fertil Steril 2009;91:456-
21 22	362	88 doi:10.1016/j.fertnstert.2008.06.035; 10.1016/j.fertnstert.2008.06.035.
23	363	5 Azziz R. PCOS: a diagnostic challenge. Reprod Biomed Online 2004;8:644-8.
24	303	5 AZZIZ K. 1 COS. a diagnostic chanenge. <i>Reprou Biomeu Ontine</i> 2004,0.044-8.
25 26	364	6 Legro RS, Kunselman AR, Dodson WC, et al. Prevalence and predictors of risk for type 2
27	365	diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a
28	366	prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999;84:165-
29 30	367	9.
31	368	7 Marciniak A, Nawrocka Rutkowska J, Brodowska A, et al. Cardiovascular system diseases
32	369	in patients with polycystic ovary syndrome - the role of inflammation process in this
33 34	370	pathology and possibility of early diagnosis and prevention. Ann Agric Environ Med
35	371	2016;23:537-41 doi:10.5604/12321966.1226842 [doi].
36	372	8 Shorakae S, Teede H, de Courten B, et al. The Emerging Role of Chronic Low-Grade
37 38	373	Inflammation in the Pathophysiology of Polycystic Ovary Syndrome. Semin Reprod Med
39	374	2015;33:257-69 doi:10.1055/s-0035-1556568 [doi].
40	375	9 Ojeda-Ojeda M, Murri M, Insenser M, et al. Mediators of Low-Grade Chronic
41 42	375	Inflammation in Polycystic Ovary Syndrome (PCOS). <i>Curr Pharm Des</i> 2013.
43	0.0	
44	377	10 Duleba AJ, Dokras A. Is PCOS an inflammatory process?. Fertil Steril 2012;97:7-12
45 46	378	doi:10.1016/j.fertnstert.2011.11.023 [doi].
47	379	11 Kelly CC, Lyall H, Petrie JR, et al. Low grade chronic inflammation in women with
48	380	polycystic ovarian syndrome. J Clin Endocrinol Metab 2001;86:2453-5
49 50	381	doi:10.1210/jcem.86.6.7580 [doi].
51		
52	382 383	12 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. <i>J Clin Invest</i> 2003;111:1805-12 doi:10.1172/JCI18921 [doi].
53 54	202	2003,111.1803-12 001.10.11/2/JC118921 [001].
55	384	13 Lau DC, Dhillon B, Yan H, et al. Adipokines: molecular links between obesity and
56 57	385	atheroslcerosis. Am J Physiol Heart Circ Physiol 2005;288:H2031-41 doi:01058.2004 [pii].
57 58		17
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	206	14 Easebor Morroals HE, Luque Demiraz M, Conzelez E, Circulating inflammatory markers
3	386 387	14 Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. <i>Fertil Steril</i>
4 5	388	2011;95:1048,58.e1-2 doi:10.1016/j.fertnstert.2010.11.036; 10.1016/j.fertnstert.2010.11.036.
6	200	2011, 95.1040, 50.01-2 doi:10.1010/j.1010/j.1010.50, 10.1010/j.1010/j.1010.11.050.
7	389	15 Samy N, Hashim M, Sayed M, et al. Clinical significance of inflammatory markers in
8	390	polycystic ovary syndrome: their relationship to insulin resistance and body mass index. <i>Dis</i>
9	391	Markers 2009;26:163-70 doi:10.3233/DMA-2009-0627 [doi].
10	001	
11	392	16 Hughan KS, Tfayli H, Warren-Ulanch JG, et al. Early Biomarkers of Subclinical
12	393	Atherosclerosis in Obese Adolescent Girls with Polycystic Ovary Syndrome. <i>J Pediatr</i>
13 14	394	2016;168:104,11.e1 doi:10.1016/j.jpeds.2015.09.082 [doi].
14		[]
16	395	17 Carvalho LM, Ferreira CN, Soter MO, et al. Microparticles: Inflammatory and
17	396	haemostatic biomarkers in Polycystic Ovary Syndrome. Mol Cell Endocrinol 2017;443:155-
18	397	62 doi:S0303-7207(17)30021-7 [pii].
19		
20	398	18 Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of
21	399	synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum
22	400	albumin measurements. Int J Gen Med 2016;9:229-55 doi:10.2147/IJGM.S102819 [doi].
23		
24 25	401	19 Zeginiadou T, Kolias S, Kouretas D, et al. Nonlinear binding of sex steroids to albumin
25	402	and sex hormone binding globulin. Eur J Drug Metab Pharmacokinet 1997;22:229-35.
27		
28	403	20 Kalyan S, Hitchcock CL, Sirrs S, et al. Cardiovascular and metabolic effects of
29	404	medroxyprogesterone acetate versus conjugated equine estrogen after premenopausal
30	405	hysterectomy with bilateral ovariectomy. <i>Pharmacotherapy</i> 2010;30:442-52
31	406	doi:10.1592/phco.30.5.442.
32		
33	407	21 Kalyan S, Patel MS, Kingwell E, et al. Competing Factors Link to Bone Health in
34	408	Polycystic Ovary Syndrome: Chronic Low-Grade Inflammation Takes a Toll. Sci Rep
35	409	2017;7:3432,017-03685-x doi:10.1038/s41598-017-03685-x [doi].
36 37		
38	410	22 Chang RJ. The reproductive phenotype in polycystic ovary syndrome. Nat Clin Pract
39	411	Endocrinol Metab 2007;3:688-95 doi:ncpendmet0637 [pii].
40		
41	412	23 Schmid J, Kirchengast S, Vytiska-Binstorfer E, et al. Infertility caused by PCOShealth-
42	413	related quality of life among Austrian and Moslem immigrant women in Austria. Hum
43	414	Reprod 2004;19:2251-7 doi:10.1093/humrep/deh432 [doi].
44		
45	415	24 The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus, Workshop Group. Revised
46 47	416	2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary
47 48	417	syndrome. Fertil Steril 2004;81:19-25.
49		
50	418	25 George D, Mallery P. SPSS for Windows Step by Step: A Simple Guide and Reference:
51	419	Allyn & Bacon 2010.
52		
53	420	26 Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to
54	421	insulin sensitivity. Obes Rev 2005;6:13-21 doi:OBR159 [pii].
55		
56 57		
57 58		
58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

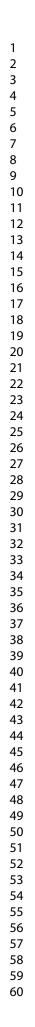
2 3 4	422 423	27 Dimitriadis GK, Kyrou I, Randeva HS. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines. <i>Curr Pharm Des</i> 2016;22:5535-46 doi:CPD-EPUB-77340
5	424	[pii].
7 8	425 426	28 Cardoso CR, Leite NC, Salles GF. Prognostic Importance of C-Reactive Protein in High Cardiovascular Risk Patients With Type 2 Diabetes Mellitus: The Rio de Janeiro Type 2
9 10 11	427	Diabetes Cohort Study. J Am Heart Assoc 2016;5:e004554 doi:e004554 [pii].
12 13	428 429	29 Chen TH, Gona P, Sutherland PA, et al. Long-term C-reactive protein variability and prediction of metabolic risk. <i>Am J Med</i> 2009;122:53-61 doi:10.1016/j.amjmed.2008.08.023
14 15	430	[doi].
16	431	30 Rutter MK, Meigs JB, Sullivan LM, et al. C-reactive protein, the metabolic syndrome, and
17	432	prediction of cardiovascular events in the Framingham Offspring Study. Circulation
18 19	433	2004;110:380-5 doi:10.1161/01.CIR.0000136581.59584.0E [doi].
20	434	31 Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a
21 22 23	435	systematic review and meta-analysis. <i>Obes Rev</i> 2013;14:232-44 doi:10.1111/obr.12003 [doi].
23	436	32 Kraus VB, Jordan JM. Serum C-Reactive Protein (CRP), Target for Therapy or Trouble?.
25	437	Biomark Insights 2007;1:77-80.
26		
27	438	33 Shuster A, Patlas M, Pinthus JH, et al. The clinical importance of visceral adiposity: a
28	439	critical review of methods for visceral adipose tissue analysis. Br J Radiol 2012;85:1-10
29 30	440	doi:10.1259/bjr/38447238 [doi].
31	441	34 Faugere M, Micoulaud-Franchi JA, Faget-Agius C, et al. Quality of life is associated with
32	442	chronic inflammation in depression: A cross-sectional study. J Affect Disord 2017;227:494-7
33	443	doi:S0165-0327(17)30792-9 [pii].
34		
35	444	35 Chirinos DA, Murdock KW, LeRoy AS, et al. Depressive symptom profiles, cardio-
36	445	metabolic risk and inflammation: Results from the MIDUS study. <i>Psychoneuroendocrinology</i>
37	446	2017;82:17-25 doi:S0306-4530(16)30877-0 [pii].
38	440	2017,82.17-25 doi.50500-4550(10)50877-0 [ph].
39	447	26 Denne IA Kreeneringen I AD Handiman DI Anniste and democratic in alternation
40	447	36 Barry JA, Kuczmierczyk AR, Hardiman PJ. Anxiety and depression in polycystic ovary
41	448	syndrome: a systematic review and meta-analysis. <i>Hum Reprod</i> 2011;26:2442-51
42	449	doi:10.1093/humrep/der197; 10.1093/humrep/der197.
43		
44	450	37 Dokras A, Clifton S, Futterweit W, et al. Increased risk for abnormal depression scores in
45	451	women with polycystic ovary syndrome: a systematic review and meta-analysis. Obstet
46	452	<i>Gynecol</i> 2011;117:145-52 doi:10.1097/AOG.0b013e318202b0a4;
47	453	10.1097/AOG.0b013e318202b0a4.
48		
49	454	
50	455	
51	455	
52		
53		
54		
55		
56		
57		
58		19
59		


456 Figure Legends

458 Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate

- 459 against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in
- 460 differentiating women with and without PCOS. The area under the curve (AUC) for
- 461 CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.
- 462 Figure 2. Linear regression analysis of adjusted CRP/albumin values by body mass index
- 463 (BMI) in women with PCOS and controls. A univariate generalized linear model was
- 464 computed investigating the relationship between CRP/albumin and BMI, adjusting for the
- 465 variables found to associate with CRP/albumin (insulin, free testosterone, progesterone and

- 466 adiponectin) plus age stratified by PCOS diagnosis.



Diagonal segments are produced by ties.

Figure 1. Receiver Operating Characteristic (ROC) curve plotting the true positive rate against the false positive rate for CRP/Albumin (green line) and CRP (blue line) in differentiating women with and without PCOS. The area under the curve (AUC) for CRP/Albumin: 0.865, 95% CI: 0.824-0.905; for CRP: 0.820, 95% CI: 0.773-0.867.

101x81mm (300 x 300 DPI)

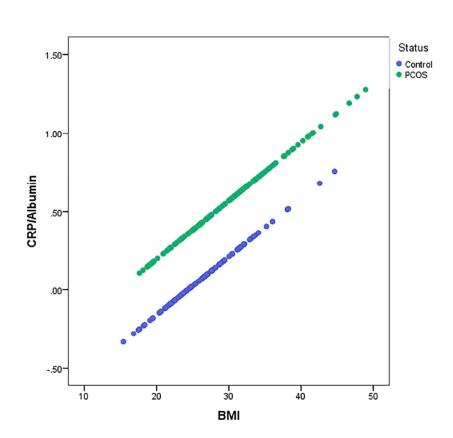


Figure 2. Linear regression analysis of adjusted CRP/albumin values by body mass index (BMI) in women with PCOS and controls. A univariate generalized linear model was computed investigating the relationship between CRP/albumin and BMI, adjusting for the variables found to associate with CRP/albumin (insulin, free testosterone, progesterone and adiponectin) plus age stratified by PCOS diagnosis.

101x81mm (300 x 300 DPI)

BMJ Open

STROBE Statement Checklist of items that should be included in reports of observational studies

Image: Title and abstract No Title and abstract 1 Introduction 2 Background/rationale 2 Objectives 3 Methods 3 Setting 5 Setting 5 Participants 6	(a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls	on Page No 1 2,3 4-5 5 5 5 5-6 5-6
Introduction Background/rationale 2 Objectives 3 Methods 3 Study design 4 Setting 5 Participants 6	Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the	4-5 5 5 5-6
Background/rationale 2 Objectives 3 Methods 3 Study design 4 Setting 5 Participants 6	State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the	5 5 5-6
Objectives 3 Methods Study design 4 Setting 5 Participants 6	State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the	5 5 5-6
Methods Study design 4 Setting 5 Participants 6	Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the	5 5-6
Methods Study design 4 Setting 5 Setting 5 Participants 6	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the 	5-6
Study design 4 Setting 5 Participants 6	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the 	5-6
5 Setting 5	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the 	
3 9) I Participants 6	follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the	5-6
	Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants	
3 4 5	(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	
7 Variables 7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-7
Data sources/measurement 8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
Bias 9	Describe any efforts to address potential sources of bias	5,6
3 Study size 10	Explain how the study size was arrived at	5
4 Quantitative variables 11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7,8
5	(a) Describe all statistical methods, including those used to control for confounding	7,8
7	(b) Describe any methods used to examine subgroups and interactions	-
3	(c) Explain how missing data were addressed	-
Statistical methods 12	(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
l	Case-control study—If applicable, explain how matching of cases and controls was addressed	5
2	Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
3	(e) Describe any sensitivity analyses	-

1 2 3 4	Section/Topic	Item No	Recommendation	Reported on Page No
5	Results			
6 7 8	Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
9 10	-	15	(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	-
11 12 13	Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1
14 15 16	Descriptive data	14	(b) Indicate number of participants with missing data for each variable of interest (c) Cohort study—Summarise follow-up time (eg, average and total amount)	Table 1
17 18 19	O diconic data	15*	Cohort study—Report numbers of outcome events or summary measures over time Case-control study—Report numbers in each exposure category, or summary measures of exposure Cross-sectional study—Report numbers of outcome events or summary measures	9, Table 1
20 21 22 23	Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized 	9-11 Table 2, 11
24 25			(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
26 27	Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Figures 1-2, Table 2
28 29	Discussion			
~ ~ ~	Key results	18	Summarise key results with reference to study objectives	12-13
31 32 33	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13-14
34 35	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14
36 37	Generalisability Other Information	21	Discuss the generalisability (external validity) of the study results	13, 14
38 39 40 41	Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14
42 43 44 45 46 47		for cases	and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	2

Page 25 of 25

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and a e a. .ailable at Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.