

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Distribution of nephrologists and regional variation in the clinical severity of IgA nephropathy at biopsy diagnosis in Japan: A cross-sectional ecological study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024317
Article Type:	Research
Date Submitted by the Author:	05-Jun-2018
Complete List of Authors:	Okabayashi, Yusuke; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Tsuboi, Nobuo; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Amano, Hoichi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Miyazaki, Yoichi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Kawamura, Tetsuya; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Ogura, Makoto; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Narita, Ichiei; Niigata University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Narita, Ichiei; Niigata University Medical and Dental Hospital, Department of Medicine (II) Toshiharu, N; Kyushu University, Fukuoka, Japan, Department of Epidemiology and Public Health Yokoyama, Hitoshi; Kanazawa Medical University School of Medicine Graduate School of Medicine Department of Nephrology, Department of Nephrology Yokoo, Takashi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine, Division of Nephrology
Keywords:	IgA nephropathy, regional differences, renal biopsy, proteinuria

SCHOLARONE[™] Manuscripts

BMJ Open

Distribution of nephrologists and regional variation in the clinical severity of IgA nephropathy at biopsy diagnosis in Japan: A cross-sectional ecological study Yusuke Okabayashi, MD¹; Nobuo Tsuboi, MD, PhD¹; Hoichi Amano, MD¹; Yoichi Miyazaki, MD, PhD¹; Tetsuya Kawamura, MD, PhD¹; Makoto Ogura, MD, PhD¹; Ichiei Narita, MD, PhD²; Toshiharu Ninomiya, MD, PhD³; Hitoshi Yokoyama, MD, PhD⁴; Takashi Yokoo, MD, PhD¹ ¹⁾ Division of Nephrology and Hypertension, The Jikei University School of Medicine ²⁾ Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences ³⁾ Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University ⁴⁾ Department of Nephrology, Kanazawa Medical University School of Medicine Running title: Regional variation of IgA nephropathy in Japan Word count: 3247, abstract: 294 Key words: IgA nephropathy, regional differences, nephrologist, renal biopsy, proteinuria

Correspondence to: Nobuo Tsuboi, M.D., Ph.D.

Division of Nephrology and Hypertension, Department of Internal Medicine,

The Jikei University School of Medicine, Tokyo 105-8641, Japan

3-25-8 Nishi-Shinbashi, Minato-Ku,

s f Ku inato-Ku, ax: 81-3-3433-4297, E-mail: tsu. Tel: 81-3-3433-1111, Fax: 81-3-3433-4297, E-mail: tsuboi-n@jikei.ac.jp

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

Objectives: The clinical severity of IgA nephropathy (IgAN) at the time of biopsy diagnosis differs significantly among cases. One possible determinant of any such difference is the time taken for referral from the primary care physician to a nephrologist, but the definitive cause remains unclear. This study examined the contribution of the number of nephrologists per regional population as a potential social factor influencing the clinical severity at diagnosis among IgAN patients in Japan, which has an ethnically homogeneous population. **Design:** A cross-sectional ecological study. Setting & participants: Patients were registered in the Japan Renal Biopsy Registry (J-RBR), a nationwide multicenter registry, and 6426 patients diagnosed with IgAN were analyzed. The facilities registered to the J-RBR were divided into 10 regions and the clinical features of IgAN at biopsy diagnosis, including renal function, level of proteinuria were examined. **Main outcome measures:** Renal prognosis risk at the time of biopsy diagnosis defined by Kidney Disease Improving Global Outcomes guideline 2012. **Results**: Among the regions, there were significant differences in the estimated glomerular filtration rate (67.5–91.4 ml/min/1.73 m²), urinary protein excretion rate (0.93–1.93 g/day), and renal

53
54
55
56
57
58
59
60

BMJ Open

correlated with the number of nephrologists per regional population, which showed an up to 2.7-fold difference among regions. A generalized linear mixed model revealed that a low number of nephrologists per regional population was significantly associated with fulfilment of clinical criteria indicating a very-high-risk renal prognosis ($\beta = -0.484$, 95% CI -0.959 to -0.010). Conclusions: Among Japanese patients with IgAN, significant regional differences were detected in clinical severity at the time of diagnosis. Social factors, such as an uneven distribution of nephrologists across regions, may influence the timing of biopsy and determine such differences.

Article Summary

- Strengths and limitations of this study
- This is the first reported study to reveal regional differences in the clinical severity of the patients with IgA nephropathy (IgAN) at biopsy diagnosis in Japan.
- Lower number of nephrologists per regional population in Japan was associated with an increase in the frequency of clinical criteria indicating the very-high-risk renal prognosis of IgAN patients in each region, which was determined by renal function and amount of proteinuria at the time of biopsy diagnosis.
- The uneven regional distribution of nephrologists may influence the time taken for referral to a nephrologist and the likelihood of earlier interventions in IgAN patients.
- Japan is one of only a few countries in the world that screen for kidney diseases by urinalysis,

thus the applicability of the findings to countries other than Japan is unclear.

Introduction

IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis and a major cause of end-stage renal disease (ESRD) worldwide [1,2]. Impaired renal function and severe proteinuria at presentation are among the strongest predictors of a poor renal prognosis in patients with IgAN [3-5]. Advanced age, hypertension, male gender, obesity, and absence of gross hematuria are considered poor prognostic indicators, although controversy exists in the degree of involvement of these factors, which varies by study depending on the subject characteristics [6-8]. Previous studies have shown racial/ethnic differences in the prevalence of IgAN, and the relative number of patients diagnosed with IgAN is higher in Asian countries than in other countries [9-11]. Recent genome-wide analyses have demonstrated that genetic factors may underlie the diversity in the incidence and severity of IgAN [12-15].

Except for cases showing gross hematuria, the onset of IgAN is often asymptomatic [16]. In addition, IgAN cannot be diagnosed unless a renal biopsy is performed, as deposition of IgA in glomeruli can be demonstrated histopathologically. Social factors, such as the penetration rate of urinalysis screening for kidney disease or the time taken for referral from the primary care physician to a nephrologist, may considerably influence the latency to IgAN diagnosis. In fact, in most patients in Japan, IgAN is first identified at a health checkup, followed by referral to a nephrologist [17,18].

BMJ Open

Such differences in survival related to the duration of disease at time of presentation rather than true variability in disease severity is called lead-time bias, and may be associated with disease prognosis in IgAN patients [19]. Few studies have focused on regional variation in the clinical characteristics of IgAN [13,15]. In addition, other than race/ethnicity, no factors that may affect such regional variation in disease severity have been determined. In this study, we analyzed patients with IgAN in Japan, which has an ethnically homogeneous population [20]. Social factors that may affect the biopsy diagnosis of IgAN were examined in the context of potential differences in the clinical severity of IgAN among various regions of Japan.

Materials and Methods

Registry system and patient selection

The Japan Renal Biopsy Registry (J-RBR) is a nationwide, multicenter registry system, which was established in 2007 by the Committee for Standardization of Renal Pathological Diagnosis and the Working Group for the Renal Biopsy Database of the Japanese Society of Nephrology (JSN) [21]. This cross-sectional ecological study included Japanese patients with primary IgAN registered on the J-RBR from January 1, 2007 through June 30, 2013. During the registration period, 7,970 patients diagnosed with IgAN were included in the J-RBR. Of these 7,970 patients, 1,544 were excluded because of missing data critical for the analysis. A total of 6,426 patients were finally subjected to the analysis. The diagnosis of IgAN was histopathologically determined based on the basic glomerular changes described in the classification of glomerular diseases of the World Health Organization, and by immunohistological identification of IgA in glomeruli [22]. Patients who were diagnosed with other renal or systemic diseases, including those with Henoch–Schönlein purpura, systemic lupus erythematosus, and liver cirrhosis were excluded. Clinical data, including age, sex, body mass index (BMI), systolic and diastolic blood pressure, the presence or absence of hypertension, estimated glomerular filtration rate (eGFR), urinary protein excretion (UPE) rate, urinary sediment, serum albumin, and serum total cholesterol were evaluated.

BMJ Open

All clinical data were obtained at the time of the diagnostic renal biopsy. Patients with missing data necessary for the study, such as renal function measurements, the presence or absence of hypertension and/or the UPE rate, were excluded from the analyses. The J-RBR is registered in the UMIN Clinical Trials Registry (registered number: UMIN000000618).

Measurements and definitions

The J-RBR registration facilities were divided into 10 regions of Japan: Hokkaido, Tohoku, Kanto, Koshinetsu, Hokuriku, Tokai, Kinki, Chugoku, Shikoku, and Kyusyu (**Figure 1**). The Japanese populations in these regions are considered ethnically homogeneous [20].

The eGFR was calculated using a three-variable equation modified for Japanese populations, as follows: eGFR = $194 \times age^{-0.287} \times sCr^{-1.094}$ (× 0.739 if female), where sCr is the serum creatinine concentration [23]. Hematuria was graded based on the number of red blood cells per high power field in urinary sediment: 1, 2, 3, and 4 for 0–4, 5–10, 11–30, and \geq 30, respectively. Hypertension was defined as a systolic blood pressure \geq 140 mmHg and/or diastolic blood pressure \geq 90 mmHg, according to the Japanese Society of Hypertension Guidelines for the Management of Hypertension 2014 [24], or usage of antihypertensive medications. Patients \geq 65 years of age were defined as elderly [25].

BMJ Open

In the Kidney Disease Improving Global Outcomes (KDIGO) 2012 clinical practice guideline for the evaluation and management of chronic kidney disease, patients with chronic kidney disease (CKD) are classified into 18 categories and four risk groups (low, moderately increased, high, and very high risk) based on eGFR and albuminuria categories on a CKD heat map [26]. In Japan, this CKD risk classification system has been modified according to the cause of kidney disease. Except for diabetes cases, the UPE rate, instead of the urinary albumin excretion rate, is applied for patients with CKD including IgAN, based on the requirements of the Japanese national insurance system [27]. Based on the KDIGO 2012 guidelines, which were modified for the Japanese population, the UPE rate at the time of biopsy is classified as normal (< 0.15 g/day or g/gCr; A1), mild (0.15–0.49 g/day or g/gCr; A2), or severe (≥ 0.5 g/day or g/gCr; A3) [26,27]. Similarly, eGFR at the time of biopsy is classified into five groups: G1, G2, G3a, G3b, G4, and G5 for \geq 90, 60–89, 45–59, 30–44, 15–29, and < 15 ml/min/1.73 m², respectively. According to the CKD heat map of the 2012 KDIGO guidelines, which is based on the eGFR level and UPE rate, the renal prognosis is categorized as low, moderately increased, high, or very high.

Social factors

BMJ Open

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
Δ <u>Δ</u>	
+ // F	
4) 42	
40	
47	
48	
49	
50	
51	
52	
52	
52	
54 57	
55	
56	
57	
58	
59	
60	

Certain social factors may be associated with regional variation in the clinical features of IgAN. The first such factor is the number of board-certified JSN nephrologists per regional population. A qualified JSN board-certified nephrologist must have ≥ 3 years training at a JSN-accredited facility; have passed a specific exam; and renew their license every 5 years. The second social factor is the proportion of participants who received a health checkup per regional population. To ascertain this, we used data from the Specific Health Checkup, a metabolic syndrome health checkup devised by the Ministry of Health, Labor, and Welfare of Japan that targets people aged 40–74 years who were enrolled in the national health insurance program in 2012 [28]. The Specific Health Checkup comprises a physical examination, blood pressure measurement, blood test, and urinalysis. The third social factor is the proportion of elderly persons relative to the general population. Information on the proportion of elderly persons (age ≥ 65 years) in each regional population was obtained from a national survey performed in 2012 [29]. Based on the ranking of the social factors included in this study, 10 regions of Japan were divided into three groups, as follows: low (three regions), intermediate (four regions), and high (three regions) groups. Analysis was performed within each group according to the clinical characteristics of the IgAN patients at the time of biopsy diagnosis.

Statistical analysis

Continuous variables are expressed as means \pm standard deviation. Differences among regions were analyzed by the Kruskal-Wallis test. Differences in the characteristics of the IgAN patients within each social factor group were analyzed by the Mantel-Haenszel test for trend and the Jonckheere-Terpstra trend test, as appropriate. A generalized linear mixed model was constructed to identify the social factors that may influence regional variation in the severity of IgAN at the time of biopsy. In each analysis, social factors, age, sex, and the presence or absence of hypertension were treated as fixed covariates, and the regions and the J-RBR registration facilities as random effects. A p-value < 0.05 was considered significant. All statistical analyses were performed using SPSS statistical software (ver. 24.0; IBM, Armonk, NY, USA). jez on

Patient and public involvement

No patient was involved in the design or conduct of the study, since this was a database research study.

BMJ Open

Results

Patient clinical characteristics at the time of biopsy diagnosis

The clinical characteristics of the patients at the time of biopsy diagnosis are summarized in **Table 1**. Their mean age was 39.5 years, and 3,297 (51.3%) were males. The mean eGFR was 74.4 ml/min/1.73 m² and the mean UPE rate was 1.16 g/day. A total of 1,813 (28.2%) patients were categorized into the very-high-risk renal prognosis group. The male and female ratio was similar among the 10 regions (p = 0.182). On the other hand, significant regional variation was observed in age (32.2–42.5 years, p < 0.001), BMI (21.7–23.5 kg/m², p < 0.001), prevalence of hypertension (26.8–55.4%, p < 0.001), eGFR (67.5–91.4 ml/min/1.73 m², p < 0.001), UPE rate (0.93–1.93 g/day, p < 0.001), degree of hematuria (frequency of grade 3 or 4 = 51.4–71.5%, p < 0.001), and renal prognosis risk group distribution (p < 0.001). Notably, there were large differences between the lowest and highest regions with respect to the rates of both very high and low renal prognosis risk, as defined by the KDIGO guidelines (3.66- and 4.92-fold, respectively).

Regional variation in social factors

Variation among the 10 regions in terms of the social factors that may influence the severity of IgAN at biopsy diagnosis were assessed (**Table 2**). The social factors included in this study were

the number of board-certified nephrologists, proportion of patients who received a health checkup, and proportion of elderly persons per regional population. The distributions of these three social factors differed significantly among the 10 regions. In particular, an up to 2.7-fold among regions difference was observed in the number of board-certified nephrologists.

Relationships between social factors and regional variation in the clinical characteristics of the

IgAN patients at biopsy diagnosis

Trends in the social factors were analyzed according to regional variation in the clinical features of the IgAN patients at biopsy diagnosis. The number of nephrologists per regional population showed a clear trend: the fewer the nephrologists, the more severe were the clinical features at the biopsy diagnosis, including renal function, the UPE rate, and the renal prognosis risk distribution (**Table 3**). The regions with higher proportions of IgAN patients with a very-high-risk renal prognosis and those with fewer nephrologists per regional population showed a similar distribution trend (**Figure 1**). No such similarities were found between the distribution of IgAN patients or elderly persons per regional population (**Supplemental Figure 1**).

Page 15 of 39

BMJ Open

A generalized linear mixed model was constructed to examine the relationship between the three social factors investigated in this study and regional differences in the proportion of IgAN patients with a very-high-risk renal prognosis at biopsy diagnosis, as defined by the 2012 KDIGO guidelines. In the model, the number of board-certified nephrologists per regional population was significantly associated with the rate of fulfilment of the clinical criteria for a very-high-risk renal prognosis at the biopsy diagnosis, even after considering the differences in clinical factors among regions (Table 4, Figure 2). We did not find a significant relationship between the rate of very-high-risk renal prognosis at biopsy diagnosis and either the proportion of patients who received a health checkup or the proportion of elderly persons per regional population (Table 4). р-

Discussion

In this cross-sectional ecological study, we demonstrated substantial regional variations in Japanese IgAN patient clinical characteristics at the diagnostic renal biopsy, including eGFR and the UPE rate. In addition, a lower number of board-certified nephrologists per regional population was closely associated with the clinical severity of IgAN, including the rate of fulfilment of clinical criteria for a very high risk renal prognosis.

Previous studies have shown apparent regional and national differences in CKD and ESRD incidence in the United States and Europe [30-32]. However, race and ethnicity within a study population must be homogenous to isolate the effects of social factors on regional differences in clinical factors. The Japanese population is useful for the evaluation of such factors, which may influence disease prevalence and severity, because of its ethnic homogeneity. Usami et al. demonstrated significant regional differences in the incidence of ESRD within Japan [33]. Studies of the ethnically homogenous Japanese population suggest that social factors, i.e., factors other than those with a genetic basis, contribute to such regional differences in the presentation of renal diseases. Similarly, our results pertaining to apparent regional differences in the clinical features of Japanese IgAN patients at biopsy diagnosis also suggest that such regional variation is due to social rather than genetic factors.

Page 17 of 39

BMJ Open

This is the first reported study to reveal regional differences in the clinical severity of IgAN patients at biopsy diagnosis in Japan. Interestingly, the proportion of IgAN patients fulfilling the clinical criteria for a very-high-risk renal prognosis at biopsy diagnosis showed an up to 3.7-fold difference among the 10 regions. Studies on the natural history of IgAN have consistently identified renal impairment and severe proteinuria as clinically detectable poor prognostic indicators at the time of biopsy diagnosis [3-5]. In addition, such predictors of the progression to ESRD in patients with IgAN are closely associated with pre-existing histopathological findings of advanced chronic renal disease [34]. Thus, our current results showing a significant association between the number of nephrologists per regional population and the clinical severity of IgAN patients at biopsy diagnosis suggest a possible contribution of nephrologist availability to the likelihood of early diagnosis. The uneven regional distribution of nephrologists may influence the time taken for referral from a primary care physician to a nephrologist, who then decides regarding performance of a renal biopsy and the therapeutic intervention.

Other than the number of nephrologists, several other socioeconomic factors may influence the clinical severity of IgAN. Due to the universal health insurance coverage was established in 1961 in Japan, the gap between individuals with a poor medical economic status and the rest of the population is reportedly lower than that in other countries [35]. The rate of health checkups may be

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

another important social factor influencing IgAN severity. Although urinalysis screening is popular

for school-age children, adult participation in such schemes can show significant variation among regions in Japan. However, we did not find any significant effect of health checkup rate on the severity of IgAN at biopsy diagnosis. One possible interpretation of this result is that referral to a nephrologist may play a more important role than health checkups in IgAN severity. The proportion of elderly persons in urban and rural populations differs significantly among regions in Japan, a country in which there has been remarkable aging of rural populations, particularly in recent years. Previous studies have suggested that elderly patients with IgAN have relatively more severe clinical features at the time of diagnosis than do non-elderly patients [36,37]. Thus, we examined the effect of regional variation in the proportion of elderly persons on the clinical severity of IgAN. However, contrary to our expectations, we did not find any significant effect of the proportion of elderly persons on the severity of IgAN at biopsy diagnosis. Referral to a nephrologist and renal biopsy may be performed less often in elderly patients.

Our study had several important limitations. First, there were differences in both the number of J-RBR registration facilities and the sample size among regions. Second, there may have been differences in the criteria for performing renal biopsies among facilities. Because no formal criteria for performing a renal biopsy are defined in the registry, all renal biopsies were performed at the Page 19 of 39

BMJ Open

discretion of the attending physician. This may have influenced the regional differences in severity of clinical features at the time of biopsy. Third, we could not exclude the potential influence of other social factors, such as dietary habits or climatic factors, on the regional variation in clinical features of IgAN patients. Fourth, the J-RBR does not include histopathological findings of renal biopsies. Thus, we could not demonstrate that the clinical severity of the IgAN patients correlated with the histopathological findings. Fifth, the applicability of the findings to countries other than Japan is unclear. Since Japan is one of only a few countries in the world that screen for kidney diseases by urinalysis. Finally, this study used a cross-sectional ecological design. Therefore, further studies are required to elucidate the relationship between the number of nephrologists per regional population Tez on and the renal prognosis of patients with IgAN.

Conclusions

This study identified considerable regional differences in the clinical severity of IgAN at the biopsy diagnosis in Japanese patients. Our results suggest that an uneven distribution of nephrologists across regions may influence the timing of nephrologist referral and biopsy diagnosis, as well as the likelihood of earlier intervention to prevent progression to ESRD in patients with IgAN.

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20 20	
 ⊿∩	
-+0	

torbeer teriew only

BMJ Open

Acknowledgments: The authors gratefully acknowledge the help collecting data for the J-RBR and the assistance of many colleagues in centers and affiliate hospitals. We also sincerely thank Ms. M. Irie of UMIN-INDICE and Ms. Y. Saito of JSN for supporting the registration system.

Author Contributions: Research idea and study design: YO, NT, YM, TK, MO, TY; data acquisition: YO, NT, IN, TN, HY; data analysis/interpretation: YO, NT; statistical analysis: YO, NT, HA, TN; supervision or mentorship: NT, TY. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Funding: The study was supported in part by the committee grant from the Japanese Society of Nephrology.

Conflict of Interest Statement: None declared.

Patient consent: Not required.

Ethics approval: All procedures performed in studies involving human participants were in

accordance with the ethical standards of the institutional and/or national research committee at which

the studies were conducted (IRB approval number: the Japanese Society of Nephrology, No. 27,

January 19, 2016) and with the 1964 Helsinki declaration and its later amendments, or comparable

ethical standards.

Data sharing statement: No additional data available.

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
20	
20	
27	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
20	
<u></u> 29	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
20 57	
57 50	
50	
29	
00	

Re	ferences
1.	D'Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med.
	1987;64:709-727. https://doi.org/10.1093/oxfordjournals.qjmed.a068143
2.	Wyatt R, Julian B. IgA Nephropathy. New Engl J Medicine 2013;368:2402–2414.
	doi:10.1056/NEJMra1206793
3.	Radford M, Donadio J, Bergstralh E, Grande J. Predicting renal outcome in IgA nephropathy. J
	Am Soc Nephrol. 1997; 8 :199–207.
4.	Berthoux F, Mohey H, Laurent B, et al. Predicting the Risk for Dialysis or Death in IgA
	Nephropathy. J Am Soc Nephrol 2011;22:752–761. doi:10.1681/ASN.2010040355
5.	Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis
	2012; 59 :865–73. doi:10.1053/j.ajkd.2012.02.326
6.	Manno C, Strippoli GF, D'Altri C, et al. A novel simpler histological classification for renal
	survival in IgA nephropathy: a retrospective study. Am J Kidney Dis 2007;49:763–75.
	doi:10.1053/j.ajkd.2007.03.013
7.	Duan Z-YY, Cai G-YY, Chen Y-ZZ, et al. Aging promotes progression of IgA nephropathy: a
	systematic review and meta-analysis. Am J Nephrol 2013;38:241-52. doi:10.1159/000354646

8.	Le W, Liang S, Hu Y, et al. Long-term renal survival and related risk factors in patients with IgA
	nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial
	Transplant 2012;27:1479-85. doi:10.1093/ndt/gfr527
9.	Korbet SM, Genchi RM, Borok RZ, et al. The racial prevalence of glomerular lesions in
	nephrotic adults. Am J Kidney Dis 1996; 27 :647–51. doi:10.1016/S0272-6386(96)90098-0
10.	Pontier P, Patel T. Racial differences in the prevalence and presentation of glomerular disease in
	adults. Clin Nephrol. 1994;42:79-84.
11.	Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy
	worldwide. Am J Med 1990;89:209-15. doi:10.1016/0002-9343(90)90300-3
12.	Fischer EG, Harris AA, Carmichael B, Lathrop SL, Cerilli LA. IgA nephropathy in the triethnic
	population of New Mexico. <i>Clin Nephrol</i> . 2009;72:163–169. doi:10.2379/CN106139
13.	Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent
	insight from genetic studies. Annu Rev Med 2013;64:339–56.
	doi:10.1146/annurev-med-041811-142014
14.	Feehally J, Farrall M, Boland A, et al. HLA has strongest association with IgA nephropathy in
	genome-wide analysis. J Am Soc Nephrol 2010;21:1791–7. doi:10.1681/ASN.2010010076
	24

15.	Kiryluk K, Li Y, Sanna-Cherchi S, et al. Geographic differences in genetic susceptibility to IgA
	nephropathy: GWAS replication study and geospatial risk analysis. PLoS
	Genet 2012;8:e1002765. doi:10.1371/journal.pgen.1002765
16.	Szeto CC, Lai FM, To KF, et al. The natural history of immunoglobulin a nephropathy among
	patients with hematuria and minimal proteinuria. <i>Am J Med</i> 2001; 110 :434–7.
	doi:10.1016/S0002-9343(01)00659-3
17.	Yamagata K, Iseki K, Nitta K, et al. Chronic kidney disease perspectives in Japan and the
	importance of urinalysis screening. <i>Clin Exp Nephrol</i> 2008; 12 :1–8.
	doi:10.1007/s10157-007-0010-9
18.	Yamagata K, Takahashi H, Tomida C, Yamagata Y, Koyama A. Prognosis of asymptomatic
	hematuria and/or proteinuria in men. High prevalence of IgA nephropathy among proteinuric
	patients found in mass screening. Nephron. 2002;91:34-42. doi: 10.1159/000057602
19.	Geddes CC, Rauta V, Gronhagen-Riska C, et al. A tricontinental view of IgA
	nephropathy. Nephrol Dial Transplant2003;18:1541-8. doi:10.1093/ndt/gfg207
20.	Yamaguchi-Kabata Y, Nakazono K, Takahashi A, et al. Japanese population structure, based on
	SNP genotypes from 7003 individuals compared to other ethnic groups: effects on
	25

	BMJ Open
	population-based association studies. Am J Hum Genet2008;83:445-56.
	doi:10.1016/j.ajhg.2008.08.019
21.	Sugiyama H, Yokoyama H, Sato H, et al. Japan Renal Biopsy Registry: the first nationwide,
	web-based, and prospective registry system of renal biopsies in Japan. Clin Exp
	Nephrol 2011;15:493–503. doi:10.1007/s10157-011-0430-4
22.	Churg J, Bernstein J, Glassock RJ, eds. Renal disease, classification and atlas of glomerular
	disease. 2nd ed. Igaku-Shoin: Tokyo; 1995.
23.	Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine
	in Japan. Am J Kidney Dis2009; 53 :982–92. doi:10.1053/j.ajkd.2008.12.034
24.	Shimamoto K, Ando K, Fujita T, et al. The Japanese society of hypertension guidelines for the
	management of hypertension (JSH 2014). Hypertens Res. 2014;37:253-390. doi :
	10.1038/hr.2014.20
25.	World Health Organization: Good health adds life to years. Global brief for World Health Day
	2012. http://apps.who.int/iris/bitstream/10665/70853/1/WHO_DCO_WHD_2012.2_eng.pdf.
	Accessed May 19, 2018.
	26
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5 6	26.	Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012
7 8		clinical practice guideline for the evaluation and management of chronic kidney disease. <i>Kidney</i>
9 10 11		Int Suppl. 2013;3:1–150. doi:10.1038/kisup.2012.73.
12 13 14	27.	Tomino Y. Diagnosis and treatment of patients with IgA nephropathy in Japan. Kidney Res Clin
15 16 17 18		<i>Pract.</i> 2016; 35 :197–203. doi : 10.1016/j.krcp.2016.09.001
19 20 21	28.	Specific health checkups and specific guidance. Ministry of Health, Labour and Welfare
22 23 24		website. http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed May 19, 2018.
25 26 27	29.	Population of Japan. Current Population Estimates as of October 1, 2012. Statistic Bureau,
28 29 30		Ministry of Internal Affairs and Communications website.
31 32 33		http://www.stat.go.jp/english/data/jinsui/2012np/index.htm#a15k24-a. Accessed May 19, 2018.
34 35 36	30.	Tanner, R. M. et al. Geographic variation in CKD prevalence and ESRD incidence in the United
37 38 39		States: results from the reasons for geographic and racial differences in stroke (REGARDS)
40 41 42		study. Am. J. Kidney Dis. 61, 395–403 (2013).
43 44 45	31.	Dijk PC van, Jager KJ, Charro F de, et al. Renal replacement therapy in Europe: the results of a
46 47 48		collaborative effort by the ERA-EDTA registry and six national or regional registries. Nephrol
49 50 51		Dial Transplant2001;16:1120-9. doi:10.1093/ndt/16.6.1120
52 53 54		
55 56		
5/		

32.	Brück K, Stel VS, Gambaro G, et al. CKD Prevalence Varies across the European General
	Population. J Am Soc Nephrol2016;27:2135–47. doi:10.1681/ASN.2015050542
33.	Usami T, Koyama K, Takeuchi O, et al. Regional variations in the incidence of end-stage renal
	failure in Japan. JAMA2000;284:2622-4. doi:10.1001/jama.284.20.2622
34.	Haas M. Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244
	cases. Am J Kidney Dis 1997;29:829-42. doi:10.1016/S0272-6386(97)90456-X
35.	Abe S. Japan's vision for a peaceful and healthier world. <i>Lancet</i> 2015; 386 :2367–9.
	doi:10.1016/S0140-6736(15)01172-1
36.	Frimat L, Hestin D, Aymard B, et al. IgA nephropathy in patients over 50 years of age: a
	multicentre, prospective study. Nephrol Dial Transplant 1996; 11:1043-7.
	doi:10.1093/oxfordjournals.ndt.a027453
37.	Okabayashi Y, Tsuboi N, Haruhara K, et al. Reduction of proteinuria by therapeutic intervention
	improves the renal outcome of elderly patients with IgA nephropathy. Clin Exp Nephrol
	2016; 20 :910–917. doi:10.1007/s10157-016-1239-y
	28

Variables	Total (n=6426)	Hokkaido (n=148)	Tohoku (n=911)	Kanto (n=1229)	Koshinetsu (n=201)	Hokuriku (n=258)	Tokai (n=1432)	Kinki (n=706)	Chugoku (n=485)	Shikoku (n=183)	Kyushu (n=873)	<i>p</i> -value	Maxima fold amor regions
Age, mean (SD), years	39.5 (17.7)	41.5 (16.6)	42.5 (18.1)	34.7 (17.5)	39.2 (14.9)	42.2 (16.8)	41.4 (16.6)	38.9 (17.1)	39.4 (17.8)	32.2 (20.2)	40.8 (18.3)	< 0.001	1.32
Male, no. (%)	3297 (51.3)	78 (52.7)	488 (53.6)	652 (53.1)	96 (47.8)	143 (55.4)	707 (49.4)	367 (52.0)	255 (52.6)	86 (47.0)	425 (48.7)	0.182	1.18
BMI mean (SD), kg/m ²	22.6 (4.0)	23.4 (4.2)	23.5 (4.2)	22.0 (4.2)	22.2 (3.7)	22.8 (3.6)	22.6 (3.7)	22.4 (4.1)	22.7 (4.2)	21.7 (4.0)	22.7 (4.0)	< 0.001	1.08
SBP, mean (SD), mm Hg	124 (18)	126 (19)	126 (17)	120 (18)	120 (16)	122 (17)	127 (18)	122 (18)	124 (18)	117 (16)	126 (19)	< 0.001	1.09
DBP, mean (SD), mm Hg	74 (13)	76 (13)	76 (13)	72 (13)	75 (13)	74 (13)	76 (13)	73 (12)	74 (13)	69 (12)	75 (13)	< 0.001	1.10
Hypertension, no. (%)	2790 (43.4)	82 (55.4)	403 (44.2)	457 (37.2)	93 (46.3)	127 (49.2)	709 (49.5)	279 (39.5)	203 (41.9)	49 (26.8)	388 (44.4)	< 0.001	2.07
eGFR, mean (SD), ml/min/1.73 m ²	74.4 (30.3)	67.5 (31.3)	73.3 (29.6)	79.6 (31.5)	71.3 (27.7)	73.2 (27.0)	69.0 (27.8)	74.8 (29.3)	78.0 (30.9)	91.4 (35.2)	73.5 (31.2)	< 0.001	1.35
Serum albumin, mean (SD), g/dl	3.9 (0.6)	3.7 (0.7)	4.0 (0.7)	4.0 (0.6)	4.0 (0.7)	3.8 (1.0)	3.9 (0.6)	3.9 (0.6)	4.0 (0.6)	4.0 (0.6)	3.9 (0.6)	< 0.001	1.08
Γotal cholesterol, mean (SD), mg/dl	194 (59)	198 (45)	182 (68)	186 (71)	188 (71)	198 (60)	204 (47)	199 (49)	197 (47)	189 (55)	198 (59)	< 0.001	1.12
JPE, mean (SD), g/day	1.16 (1.62)	1.93 (2.63)	1.00 (1.55)	0.97 (1.25)	0.93 (1.22)	1.00 (1.23)	1.42 (1.72)	1.04 (1.46)	0.97 (1.43)	1.08 (2.31)	1.35 (1.83)	< 0.001	2.08
Urinary RBC grade 3,4, No. (%)	4313 (67.1)	101 (68.2)	598 (65.6)	801 (65.2)	142 (70.6)	170 (65.9)	1024 (71.5)	454 (64.3)	327 (67.4)	94 (51.4)	602 (69.0)	< 0.001	1.39
KDIGO prognosis risk of CKD, no. (%))												
Very-high-risk	1813 (28.2)	59 (39.9)	265 (29.1)	289 (23.5)	61 (30.3)	64 (24.8)	495 (34.6)	175 (24.8)	117 (24.1)	20 (10.9)	268 (30.7)	< 0.001	3.66
High risk	2353 (36.6)	48 (32.4)	272 (29.9)	446 (36.3)	66 (32.8)	100 (38.8)	623 (43.5)	248 (35.1)	157 (32.4)	66 (36.1)	327 (37.5)	< 0.001	1.45
Moderately increased risk	1412 (22.0)	24 (16.2)	199 (21.8)	322 (26.2)	53 (26.4)	54 (20.9)	228 (15.9)	183 (25.9)	122 (25.2)	43 (23.5)	184 (21.1)	< 0.001	1.66
Low risk	849 (13.2)	17 (11.5)	175 (19.2)	172 (14.0)	21 (10.4)	40 (15.5)	86 (6.0)	100 (14.2)	89 (18.4)	54 (29.5)	94 (10.8)	< 0.001	4.92
BMI, body mass index; UI DBP, diastolic blood press	PE, urinary p ure.	protein exc	retion; RB0	C, red bloo	d cells; eGI	FR, estimat	ted glomert	ılar filtratio	on rate; SB	P, systolic	blood press	sure;	
					29								

Table 2. Regional variation in social factors.

Regions	Nephrologists, no. /100,000 populations	Proportion of participants who received a health checkup, %	Proportion of elderly perso relative to the general population, %
Hokkaido	1.58	36.7	27.1
Tohoku	2.75	46.5	27.3
Kanto	4.03	46.4	23.0
Koshinetsu	3.28	50.5	27.9
Hokuriku	4.26	48.7	27.2
Tokai	2.87	47.2	24.2
Kinki	3.47	40.7	25.2
Chugoku	3.08	41.1	27.8
Shikoku	3.07	43.1	29.1
Kyushu	3.21	43.2	26.3
Total mean	3.25	45.0	25.6
Maximal fold among regions	2.70	1.38	1.27
<i>p</i> -value	< 0.001	< 0.001	< 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

	Category of the number of nephrologists			
Variables	Lowest three regions (n=2491)	Intermediate four regions (n=1742)	Highest three regions (n=2193)	<i>p</i> -value for trend
Nephrologists /100,000 population	2.75	3.17	3.87	
Age, mean (SD), year	41.8 (17.2)	39.3 (18.2)	36.9 (17.5)	< 0.001
Hypertension, no. (%)	1194 (47.9)	733 (42.1)	863(39.4)	< 0.001
eGFR, mean (SD), ml/min/1.73 m ²	70.5 (28.7)	77.3 (30.4)	77.3 (30.4)	< 0.001
UPE, mean (SD), g/day	1.30 (1.75)	1.17 (1.74)	0.99 (1.32)	< 0.001
KDIGO renal prognosis risk, no. (%)				
Very-high-risk	819 (32.9)	465 (26.7)	528 (24.1)	< 0.00
High risk	943 (37.9)	616 (35.4)	794 (36.2)	0.226
Moderately increased risk	451 (18.1)	402 (23.1)	559 (25.5)	< 0.001
Low risk	278 (11.2)	259 (14.9)	312 (14.2)	0.001

Table 3. Comparison of patient clinical characteristics among regions categorized according to the number of nephrologists.

Fixed effects	f-value	Regression coefficient	95% CI	<i>p</i> -value
Number of nephrologists (/100,000 populations)	4.008	-0.484	-0.9590.010	0.045
Proportion of patients who received a health checkup (%)	0.489	0.032	-0.057 - 0.120	0.485
Proportion of elderly persons relative to the general population (%)	3.510	-0.137	-0.281 - 0.006	0.061

Table 4. Social factors and regional variation in IgAN natients with very-high-risk renal prognosis.

95% CI, 95% confidence interval; Covariates: age, sex, hypertension: Random effects: region, J-RBR registration facility: JII: Kana

Structure for the random effects, First-order autoregressive.

BMJ Open

Figure legends

Figure 1. Distributions of IgAN patients with a very-high-risk renal prognosis and of nephrologists.

Regional differences of the rate of IgAN patients with a very-high-risk renal prognosis at biopsy diagnosis, which was adjusted for age, sex, and hypertension (**A**), and the number of board-certified nephrologists per regional population (**B**). Based on the ranking of each factor, 10 regions of Japan were divided into three groups, as follows: the three lowest, four intermediate, and three highest groups. The numbers indicate the following regions: 1, Hokkaido; 2, Tohoku; 3, Kanto; 4, Koshinetsu; 5, Hokuriku; 6, Tokai; 7, Kinki; 8, Chugoku; 9, Shikoku; and 10, Kyushu.

Figure 2. Relationship between the rate of IgAN patients with a very-high-risk renal prognosis and the number of nephrologists per regional population.

Circles indicate each region and the areas of the circles are proportional to the regional populations.

The rate of IgAN patients with a very-high-risk renal prognosis in each region was adjusted by age,

sex, and hypertension. The regression line was obtained from the generalized linear mixed model in

Table 4.

Supplementary Figure 1. Distributions of IgAN patients with a very-high-risk renal prognosis and those of social factors other than nephrologist number.

Regional differences in the rate of IgAN patients with a very-high-risk renal prognosis at biopsy

diagnosis, which was adjusted for age, sex, and hypertension (A), the rate of health checkup

participants per regional population (B), and the proportion of elderly persons per regional

population (C). Based on the ranking of each factor, 10 regions of Japan were divided into three

groups, as follows: the three lowest, four intermediate, and three highest groups. The numbers

indicate the following regions: 1, Hokkaido; 2, Tohoku; 3, Kanto; 4, Koshinetsu; 5, Hokuriku;

6, Tokai; 7, Kinki; 8, Chugoku; 9, Shikoku; and 10, Kyushu.

Figure 2. Relationship between the rate of IgAN patients with a very-high-risk renal prognosis and the number of nephrologists per regional population.

Circles indicate each region and the areas of the circles are proportional to the regional populations. The rate of IgAN patients with a very-high-risk renal prognosis in each region was adjusted by age, sex, and hypertension. The regression line was obtained from the generalized linear mixed model in **Table 4**.

190x107mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9, 10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	NA
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	NA
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	NA
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	13
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Distribution of nephrologists and regional variation in the clinical severity of IgA nephropathy at biopsy diagnosis in Japan: A cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024317.R1
Article Type:	Research
Date Submitted by the Author:	01-Oct-2018
Complete List of Authors:	Okabayashi, Yusuke; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Tsuboi, Nobuo; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Amano, Hoichi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Miyazaki, Yoichi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Kawamura, Tetsuya; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Ogura, Makoto; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Ogura, Makoto; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine Narita, Ichiei; Niigata University Medical and Dental Hospital, Department of Medicine (II) Toshiharu, N; Kyushu University, Fukuoka, Japan, Department of Epidemiology and Public Health Yokoyama, Hitoshi; Kanazawa Medical University School of Medicine Graduate School of Medicine Department of Nephrology, Department of Nephrology Yokoo, Takashi; Jikei University School of Medicine, Division of Nephrology and Hypertension, Department of Internal Medicine, Division of Nephrology
Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Epidemiology
Keywords:	IgA nephropathy, renal biopsy, proteinuria, hematuria, chronic kidney disease, Glomerulonephritis < NEPHROLOGY

SCHOLARONE[™] Manuscripts

1 ว		
2 3		
4	1	Distribution of nephrologists and regional variation in the clinical severity of IgA nephropathy
6		
7	2	at biopsy diagnosis in Japan: A cross-sectional study
8 9		
10	3	
11 12		
12	1	Vusuka Okabayashi MD ¹ : Nahua Tsubai MD, PhD ¹ : Hajahi Amana, MD ¹ : Vajahi Miyazaki MD
14	4	rusuke Okabayashi, MD, Nobuo Tsuboi, MD, FilD, Holeni Aniano, MD, Foleni Miyazaki, MD,
15 16		
17	5	PhD ¹ ; Tetsuya Kawamura, MD, PhD ¹ ; Makoto Ogura, MD, PhD ¹ ; Ichiei Narita, MD, PhD ² ;
18		
19 20	6	Toshiharu Ninomiya, MD, PhD ³ ; Hitoshi Yokoyama, MD, PhD ⁴ ; Takashi Yokoo, MD, PhD ¹
20		
22	7	
23 24	,	
25	_	
26	8	¹⁾ Division of Nephrology and Hypertension, The Jikei University School of Medicine
27 28		
29	9	²⁾ Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of
30 21		
32	10	Medical and Dental Sciences
33	- •	
34 35	11	³⁾ Demontrant of England I and Dublin Houth Conduct School of Madical Sciences Kanada
36	11	Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu
37		
30 39	12	University
40		
41 42	13	⁴⁾ Department of Nephrology, Kanazawa Medical University School of Medicine
43		
44	14	
45 46	11	
47	1.5	
48 40	15	Running title: Regional variation of IgA nephropathy in Japan
49 50		
51	16	Word count: 3349, abstract: 294
52 53		
54		
55		
56 57		
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
32
24
54 25
35
36
37
38
39
40
41
42
12
45
44
45
46
47
48
49
50
51
52
52
22
54 55
55
56
57
58
59

1

1 Key words: IgA nephropathy, renal biopsy, proteinuria, hematuria, chronic kidney disease,

2 glomerulonephritis

- 3 Correspondence to: Nobuo Tsuboi, M.D., Ph.D.
- 4 Division of Nephrology and Hypertension, Department of Internal Medicine,
- 5 The Jikei University School of Medicine, Tokyo 105-8641, Japan
- 6 3-25-8 Nishi-Shinbashi, Minato-Ku,

7 Tel: 81-3-3433-1111, Fax: 81-3-3433-4297, E-mail: <u>tsuboi-n@jikei.ac.jp</u>

BMJ Open

2	
3	
1	
-+ -	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
20	
21	
31	
32	
33	
34	
35	
36	
20	
27	
38	
39	
40	
41	
42	
43	
10	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1	Abstract
2	Objectives : The clinical severity of IgA nephropathy (IgAN) at the time of biopsy diagnosis differs
3	significantly among cases. One possible determinant of any such difference is the time taken for
4	referral from the primary care physician to a nephrologist, but the definitive cause remains unclear.
5	This study examined the contribution of the number of nephrologists per regional population as a
6	potential social factor influencing the clinical severity at diagnosis among IgAN patients in Japan,
7	which has an ethnically homogeneous population.
8	Design: A cross-sectional study.
9	Setting & participants: Patients were registered in the Japan Renal Biopsy Registry (J-RBR), a
10	nationwide multicenter registry, and 6426 patients diagnosed with IgAN were analyzed. The
11	facilities registered to the J-RBR were divided into 10 regions and the clinical features of IgAN at
12	biopsy diagnosis, including renal function and level of proteinuria, were examined.
13	Main outcome measures: Renal prognosis risk at the time of biopsy diagnosis defined by Kidney
14	Disease Improving Global Outcomes guideline 2012.
15	Results: Among the regions, there were significant differences in the estimated glomerular filtration
16	rate (67.5–91.4 ml/min/1.73 m ²), urinary protein excretion rate (0.93–1.93 g/day), and renal
17	prognosis risk group distribution at diagnosis. The severity of all clinical parameters was inversely

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
2.J ∧∧	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1	correlated with the number of nephrologists per regional population, which showed an up to 2.7-fold
2	difference among regions. A generalized linear mixed model revealed that a low number of
3	nephrologists per regional population was significantly associated with fulfillment of clinical criteria
4	indicating a very-high-risk renal prognosis (β =-0.484, 95% CI -0.959 to -0.010).
5	Conclusions: Among Japanese patients with IgAN, significant regional differences were detected in
6	clinical severity at the time of diagnosis. Social factors, such as an uneven distribution of
7	nephrologists across regions, may influence the timing of biopsy and determine such differences.
8	

1				
2 3				
4	1	Article Summary		
5				
6 7	2	Strengths and limitations of this study		
8	-			
9				
10 11	3	• This study is based on the largest nationwide multicenter registry system of renal biopsies in		
12				
13	4	Japan.		
14 15				
16	5	The attrained by how concurs language study, nonvelation provides on emperturity to study the		
17	3	• The ethnically homogenous Japanese study population provides an opportunity to study the		
18 10				
20	6	influence of social factors on disease progression.		
21				
22	7	• Because the registry system does not include detailed findings of renal biopsies, this study		
23 24	/	• Decause the registry system does not menue detailed infanings of renar biopsies, this study		
25				
26	8	cannot elucidate the association between the clinical severity and the histopathological grade.		
27 28				
20 29	9	• Japan is one of only a few countries in the world that screens for kidney diseases by urinalysis.		
30				
31 22	10			
32 33	10	thus the applicability of the findings to other countries is unclear.		
34				
35	11			
30 37				
38				
39				
40 41				
42				
43				
44				
45 46				
47				
48				
49 50				
50 51				
52				
53				
54 55				
56				
57				
58 59		5		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 Introduction

2	IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis and a
3	major cause of end-stage renal disease (ESRD) worldwide [1,2]. Impaired renal function and severe
4	proteinuria at presentation are among the strongest predictors of a poor renal prognosis in patients
5	with IgAN [3-5]. Advanced age, hypertension, male gender, obesity, and hematuria are considered
6	poor prognostic indicators, although controversy exists in the degree of involvement of these factors,
7	which varies by study depending on the subject characteristics [6-9]. Previous studies have shown
8	racial/ethnic differences in the prevalence of IgAN, and the relative number of patients diagnosed
9	with IgAN is higher in Asian countries than in other countries [10-12]. Recent genome-wide
10	analyses have demonstrated that genetic factors may underlie the diversity in the incidence and
11	severity of IgAN [13-16].
12	Except for cases showing gross hematuria, the onset of IgAN is often asymptomatic [17]. In
13	addition, IgAN cannot be diagnosed unless a renal biopsy is performed, as deposition of IgA in
14	glomeruli can be demonstrated histopathologically. Social factors, such as the penetration rate of
15	urinalysis screening for kidney disease or the time taken for referral from the primary care physician
16	to a nephrologist, may considerably influence the latency to IgAN diagnosis. In fact, in most patients
17	in Japan, potential cases of IgAN are first identified at a health checkup, followed by referral to a
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4 5	1	nephrologist to assess the patient [18,19]. Such differences in survival related to the duration of
6 7 8	2	disease at time of presentation rather than true variability in disease severity is called lead-time bias,
9 10 11	3	and may also be associated with disease prognosis in IgAN patients [20].
12 13 14 15	4	Few studies have focused on regional variation in the clinical characteristics of IgAN [14,16].
16 17 18	5	In addition, other than race/ethnicity, no factors that may affect such regional variation in disease
19 20 21	6	severity have been determined. In this study, we analyzed clinical data of patients with IgAN in
22 23 24	7	Japan, which has an ethnically homogeneous population [21]. Social factors that may affect the
25 26 27	8	biopsy diagnosis of IgAN were examined in the context of potential differences in the clinical
28 29 30	9	severity of IgAN among various regions of Japan.
31 32 33 34 35 36	10	
37 38 39		
40 41 42 43		
44 45 46		
47 48 49		
50 51 52		
53 54 55		
56 57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Materials and Methods

2 Registry system and patient selection

3	The Japan Renal Biopsy Registry (J-RBR) is a nationwide, multicenter registry system,
4	which was established in 2007 by the Committee for Standardization of Renal Pathological
5	Diagnosis and the Working Group for the Renal Biopsy Database of the Japanese Society of
6	Nephrology (JSN) [22]. The J-RBR includes the clinical records for all patients that underwent a
7	renal biopsy including the final renal histopathological diagnosis. However, the registry does not
8	include detailed histopathological findings. This cross-sectional study included Japanese patients
9	with primary IgAN registered on the J-RBR from January 1, 2007 through June 30, 2013. During the
10	registration period, 7,970 patients diagnosed with IgAN were included in the J-RBR. Of these 7,970
11	patients, 1,544 were excluded because of missing data critical for the analysis, such as renal function
12	measurements, the presence or absence of hypertension, and/or the urinary protein excretion (UPE)
13	rate. A total of 6,426 patients were finally subjected to the analysis. The diagnosis of IgAN was
14	histopathologically determined based on the basic glomerular changes described in the classification
15	of glomerular diseases of the World Health Organization, and by immunohistological identification
16	of IgA in glomeruli [23]. Patients who were diagnosed with other renal or systemic diseases,
17	including those with Henoch-Schönlein purpura, systemic lupus erythematosus, and liver cirrhosis
	8
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
ו∠ רר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
2∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
 ∧_/	
44 1	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
22	
20	
5/	
58	
59	
60	

1	were excluded. Clinical data, including age, sex, body mass index (BMI), systolic and diastolic blood
2	pressure, the presence or absence of hypertension, estimated glomerular filtration rate (eGFR), UPE
3	rate, urinary sediment, serum albumin, and serum total cholesterol were evaluated. All clinical data
4	were obtained at the time of the diagnostic renal biopsy. The J-RBR is registered in the UMIN
5	Clinical Trials Registry (registered number: UMIN000000618).
6	
7	Measurements and definitions
8	The J-RBR registration facilities were divided into 10 regions of Japan: Hokkaido, Tohoku,
9	Kanto, Koshinetsu, Hokuriku, Tokai, Kinki, Chugoku, Shikoku, and Kyusyu (Figure 1). The
10	Japanese populations in these regions are considered ethnically homogeneous [21].
11	The eGFR was calculated using a three-variable equation modified for Japanese populations,
12	as follows: $eGFR = 194 \times age^{-0.287} \times sCr^{-1.094}$ (× 0.739 if female), where sCr is the serum creatinine
13	concentration [24]. Hematuria was defined as the number of red blood cells (RBCs) \geq 5 per high
14	power field (HPF) in urinary sediment and graded based on the number of RBCs per HPF: 0, 1, 2,
15	and 3 for 0–4, 5–10, 11–30, and \geq 30, respectively. Hypertension was defined as a systolic blood
16	pressure \geq 140 mmHg and/or diastolic blood pressure \geq 90 mmHg, according to the Japanese Society

1	of Hypertension Guidelines for the Management of Hypertension 2014 [25], or usage of
2	antihypertensive medications. Patients \geq 65 years of age were defined as elderly [26].
3	In the Kidney Disease Improving Global Outcomes (KDIGO) 2012 clinical practice guideline
4	for the evaluation and management of chronic kidney disease, patients with chronic kidney disease
5	(CKD) are classified into 18 categories and four risk groups (low, moderately increased, high, and
6	very high risk) based on eGFR and albuminuria categories on a CKD heat map [27]. In Japan, this
7	CKD risk classification system has been modified according to the cause of kidney disease. Except
8	for diabetes cases, the UPE rate, instead of the urinary albumin excretion rate, is applied for patients
9	with CKD including IgAN, based on the requirements of the Japanese national insurance system
10	[28]. Based on the KDIGO 2012 guidelines, which were modified for the Japanese population, the
11	UPE rate at the time of biopsy is classified as normal (< 0.15 g/day or g/gCr; A1), mild (0.15–0.49
12	g/day or g/gCr; A2), or severe (≥ 0.5 g/day or g/gCr; A3) [27,28]. Similarly, eGFR at the time of
13	biopsy is classified into five groups: G1, G2, G3a, G3b, G4, and G5 for \geq 90, 60–89, 45–59, 30–44,
14	15–29, and $<$ 15 ml/min/1.73 m ² , respectively. According to the CKD heat map of the 2012 KDIGO
15	guidelines, which is based on the eGFR level and UPE rate, the renal prognosis is categorized as
16	low, moderately increased, high, or very high.
17	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Social factors

Page 11 of 40	BMJ Open
1	
2 3 4 1 5	Social factors
6 7 2 8	Certain social factors may be associated with regional variation in the clinical features of
9 10 3 11	IgAN. The first such factor is the number of board-certified JSN nephrologists per regional
12 13 4 14	population. A qualified JSN board-certified nephrologist must have \geq 3 years training at a
15 16 5 17 5	JSN-accredited facility; have passed a specific exam; and renew their license every 5 years. The
18 19 20 6	second social factor is the proportion of participants who received a health checkup per regional
21 22 23 7 24	population. To ascertain this, we used data from the Specific Health Checkup, a metabolic syndrome
25 26 8 27	health checkup devised by the Ministry of Health, Labor, and Welfare of Japan that targets people
28 29 9 30	aged 40-74 years who were enrolled in the national health insurance program in 2012 [29]. The
31 32 10 33	Specific Health Checkup comprises a physical examination, blood pressure measurement, blood test,
34 35 11 36	and urinalysis. The third social factor is the proportion of elderly persons relative to the general
37 38 12 39	population. Information on the proportion of elderly persons (age ≥ 65 years) in each regional
40 41 42 13	population was obtained from a national survey performed in 2012 (Supplementary table 1) [30].
43 44 45 14 46	Based on the ranking of the social factors included in this study, 10 regions of Japan were divided
47 48 15 49	into three groups, as follows: low (three regions), intermediate (four regions), and high (three
50 51 16 52	regions) groups. Analysis was performed within each group according to the clinical characteristics
53 54 17 55	of the IgAN patients at the time of biopsy diagnosis.
56 57 58	11
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	Statistical analysis
3	Continuous variables are expressed as means ± standard deviation. Differences among
4	regions were analyzed by the Kruskal-Wallis test. Differences in the characteristics of the IgAN
5	patients within each social factor group were analyzed by the Mantel-Haenszel test for trend and the
6	Jonckheere–Terpstra trend test, as appropriate. A generalized linear mixed model was constructed to
7	identify the social factors that may influence regional variation in the severity of IgAN at the time of
8	biopsy. In each analysis, social factors, age, sex, and the presence or absence of hypertension were
9	treated as fixed covariates, and the regions and the J-RBR registration facilities as random effects. A
10	p-value < 0.05 was considered significant. All statistical analyses were performed using SPSS
11	statistical software (ver. 24.0; IBM, Armonk, NY, USA).
12	
13	Patient and public involvement
14	No patient was involved in the design or conduct of the study, since this was a database
15	research study.
16	
	12
	IZ
	For peer review only - mup.//bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
5 4	1	Results
5		
6		
7 0	2	Patient clinical characteristics at the time of biopsy diagnosis
0 9		
10	3	The clinical characteristics of the natients at the time of bionsy diagnosis are summarized in
11	5	The enhancement of the patients at the time of oropsy diagnosis are summarized in
12		
13	4	Table 1. A total of 1,813 (28.2%) patients were categorized into the very-high-risk renal prognosis
14		
16	5	group. The male and female ratio was similar among the 10 regions. On the other hand, significant
17	3	
18		
19 20	6	regional variation was observed in age, BMI, prevalence of hypertension, eGFR, UPE rate, degree of
20		
22	_	
23	7	hematuria, and renal prognosis risk group distribution. Notably, there were large differences between
24		
25 26	8	the lowest and highest regions with respect to the rates of both very high and low renal prognosis
27	0	
28		
29	9	risk, as defined by the KDIGO guidelines.
30		
31	10	
33	10	
34		
35	11	Regional variation in social factors
36 37		
38	10	Variation among the 10 regions in terms of the appial factors that may influence the severity
39	12	variation among the 10 regions in terms of the social factors that may influence the severity
40		
41 42	13	of IgAN at biopsy diagnosis were assessed (Table 2). The social factors included in this study were
42 43		
44	1.4	
45	14	the number of board-certified nephrologists, proportion of patients who received a health checkup,
46		
47 48	15	and proportion of elderly persons per regional population. The distributions of these three social
49	-	
50		
51	16	factors differed significantly among the 10 regions. In particular, an up to 2.7-fold among regions
52		
53 54	17	difference was observed in the number of board-certified penbrologists
55	1/	anterence was observed in the number of board-certified hepinologists.
56		
57		
58 50		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	Relationships between social factors and regional variation in the clinical characteristics of the
3	IgAN patients at biopsy diagnosis
4	Trends in the social factors were analyzed according to regional variation in the clinical
5	features of the IgAN patients at biopsy diagnosis. The number of nephrologists per regional
6	population showed a clear trend: the fewer the nephrologists, the more severe were the clinical
7	features at the biopsy diagnosis, including renal function, the UPE rate, hematuria and the renal
8	prognosis risk distribution (Table 3). The regions with higher proportions of IgAN patients with a
9	very-high-risk renal prognosis and those with fewer nephrologists per regional population showed a
10	similar distribution trend (Figure 1). No such similarities were found between the distribution of
11	IgAN patients with a very-high-risk renal prognosis and those of health checkup participants or
12	elderly persons per regional population (Supplemental Figure 1).
13	A generalized linear mixed model was constructed to examine the relationship between the
14	three social factors investigated in this study and regional differences in the proportion of IgAN
15	patients with a very-high-risk renal prognosis at biopsy diagnosis, as defined by the 2012 KDIGO
16	guidelines. In the model, the number of board-certified nephrologists per regional population was
17	significantly associated with the rate of fulfilment of the clinical criteria for a very-high-risk renal
	14
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	prognosis at the biopsy diagnosis, even after considering the differences in clinical factors among
2	regions (Table 4, Figure 2). We did not find a significant relationship between the rate of
3	very-high-risk renal prognosis at biopsy diagnosis and either the proportion of patients who received
4	a health checkup or the proportion of elderly persons per regional population (Table 4).
5	
	15

1 Discussion

2	In this cross-sectional study, we demonstrated substantial regional variations in Japanese
3	IgAN patient clinical characteristics at the diagnostic renal biopsy, including eGFR and the UPE rate
4	In addition, a lower number of board-certified nephrologists per regional population was closely
5	associated with the clinical severity of IgAN, including the rate of fulfilment of clinical criteria for a
6	very high risk renal prognosis.
7	Previous studies have shown apparent regional and national differences in CKD and ESRD
8	incidence in the United States and Europe [31-33]. However, race and ethnicity within a study
9	population must be homogenous to identify the effects of social factors on regional differences in
10	clinical factors. The Japanese population is useful for the evaluation of such factors, which may
11	influence disease prevalence and severity, because of its ethnic homogeneity. Usami et al.
12	demonstrated significant regional differences in the incidence of ESRD within Japan [34]. Studies of
13	the ethnically homogenous Japanese population suggest that social factors, i.e., factors other than
14	those with a genetic basis, contribute to such regional differences in the presentation of renal
15	diseases. Similarly, our results pertaining to apparent regional differences in the clinical features of
16	Japanese IgAN patients at biopsy diagnosis also suggest that such regional variation is due to social
17	rather than genetic factors. However, the results reported here may not be applicable to individuals
	16
	For peer review only - http://bmiopen.hmi.com/site/about/quidelines.xhtml
	Tor peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

1

BMJ Open

living outside of Japan, since epigenetic and environmental factors also contribute to disease

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

2	progression.
3	This is the first reported study to reveal regional differences in the clinical severity of IgAN
4	patients at biopsy diagnosis in Japan. Interestingly, the proportion of IgAN patients fulfilling the
5	clinical criteria for a very-high-risk renal prognosis at biopsy diagnosis showed an up to 3.7-fold
6	difference among the 10 regions. Studies on the natural history of IgAN have consistently identified
7	renal impairment and severe proteinuria as clinically detectable poor prognostic indicators at the time
8	of biopsy diagnosis [3-5]. In addition, such predictors of the progression to ESRD in patients with
9	IgAN are closely associated with pre-existing histopathological findings of advanced chronic renal
10	disease [35]. Thus, our current results showing a significant association between the number of
11	nephrologists per regional population and the clinical severity of IgAN patients at biopsy diagnosis
12	suggest a possible contribution of nephrologist availability to the likelihood of early diagnosis. The
13	uneven regional distribution of nephrologists may influence the time taken for referral from a
14	primary care physician to a nephrologist, who then decides regarding performance of a renal biopsy
15	and the therapeutic intervention. The number of nephrologists practicing in Japan is comparable to
16	that of other developed countries. For example, in Japan there are 34 nephrologists per 1 million
17	population, comparable to the United States and Europe (28 and 31 per 1 million population,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
ر ب ۸۵	
-+0 //7	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

1	respectively) [36]. However, the number of nephrologists per population in African and southeastern
2	Asian countries is much lower at 1–4 per 1 million population [36]. Further studies aimed at
3	understanding the demand and supply for nephrology workforce may help to explain the uneven
4	distribution of nephrologists.
5	Other than the number of nephrologists, several other socioeconomic factors may influence
6	the clinical severity of IgAN. Due to the universal health insurance coverage was established in 1961
7	in Japan, the gap between individuals with a poor medical economic status and the rest of the
8	population is reportedly lower than that in other countries [37]. The rate of health checkups may be
9	another important social factor influencing IgAN severity. Although urinalysis screening is
10	compulsory for school-age children, adult participation in such schemes can show significant
11	variation among regions in Japan. However, we did not find any significant effect of health checkup
12	rate on the severity of IgAN at biopsy diagnosis. One possible interpretation of this result is that
13	referral to a nephrologist may play a more important role than health checkups in IgAN severity. The
14	proportion of elderly persons in urban and rural populations differs significantly among regions in
15	Japan, a country in which there has been remarkable aging of rural populations, particularly in recent
16	years. Previous studies have suggested that elderly patients with IgAN have relatively more severe
17	clinical features at the time of diagnosis than younger patients [38,39]. Thus, we examined the effect
	18

	1	of regional variation in the proportion of elderly persons on the clinical severity of IgAN. However,
	2	contrary to our expectations, we did not find any significant effect of the proportion of elderly
)	3	persons on the severity of IgAN at biopsy diagnosis. Referral to a nephrologist and renal biopsy may
: ; ;	4	be performed less often in elderly patients.
)) ,	5	Our study had several important limitations. First, there were differences in both the number
)	6	of J-RBR registration facilities and the sample size among regions. Second, there may have been
2	7	differences in the criteria for performing renal biopsies among facilities. Because no formal criteria
, ,	8	for performing a renal biopsy are defined in the registry, all renal biopsies were performed at the
;))	9	discretion of the attending physician. This may have influenced the regional differences in severity
<u>}</u>	10	of clinical features at the time of biopsy. Third, we could not exclude the potential influence of other
- ; ;	11	social factors, such as dietary habits or climatic factors, on the regional variation in clinical features
; ; ;	12	of IgAN patients. Fourth, the J-RBR does not include histopathological findings of renal biopsies.
2	13	Thus, we could not demonstrate that the clinical severity of the IgAN patients correlated with the
	14	histopathological findings. Fifth, the applicability of the findings to countries other than Japan is
, , ,	15	unclear: since Japan is one of only a few countries in the world that screen for kidney diseases by
) <u>-</u>	16	urinalysis. Sixth, we did not fully evaluate hematuria in relation to clinical severity of IgAN.
; ;	17	Persistent hematuria in the presence of proteinuria is reportedly associated with the risk for
) , }		19
)		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ı 22	
22 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
۰. ۵۷	
50	
50 E1	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	progression to ESRD in IgAN [9]. The CKD risk classification system of KDIGO 2012 does not
2	include hematuria [27,28] and the association between the degree of hematuria and clinical severity
3	of IgAN is unclear. Finally, it is a cross-sectional study. Therefore, further studies are required to
4	elucidate the relationship between the number of nephrologists per regional population and the renal
5	prognosis of patients with IgAN.
6	
7	Conclusions
8	This study identified considerable regional differences in the clinical severity of IgAN at the
9	biopsy diagnosis in Japanese patients. Our results suggest that an uneven distribution of
10	nephrologists across regions may influence the timing of nephrologist referral and biopsy diagnosis,
11	as well as the likelihood of earlier intervention to prevent progression to ESRD in patients with
12	IgAN.
13	
14	

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יג ו רכ	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
υU	

1	Acknowledgments: The authors gratefully acknowledge the help collecting data for the J-RBR and
2	the assistance of many colleagues in centers and affiliate hospitals. We also sincerely thank Ms. M.
3	Irie of UMIN-INDICE and Ms. Y. Saito of JSN for supporting the registration system.
4	
5	Author Contributions: Research idea and study design: YO, NT, YM, TK, MO, TY; data
6	acquisition: YO, NT, IN, TN, HY; data analysis/interpretation: YO, NT; statistical analysis: YO, NT,
7	HA, TN; supervision or mentorship: NT, TY. Each author contributed important intellectual content
8	during manuscript drafting or revision and accepts accountability for the overall work by ensuring that
9	questions pertaining to the accuracy or integrity of any portion of the work are appropriately
10	investigated and resolved.
11	
12	Funding: The study was supported in part by the committee grant from the Japanese Society of
13	Nephrology.
14	
15	Conflict of Interest Statement: None declared.
16	
17	Patient consent: Not required.
	21

2 3		
4 5	1	
6		
7	2	Ethics approval: All procedures performed in studies involving human participants were in
8		
10	3	accordance with the ethical standards of the institutional and/or national research committee at which
11	5	accordance with the current standards of the institutional and/or national research committee at which
12		
13 14	4	the studies were conducted (IRB approval number: the Japanese Society of Nephrology, No. 27,
14		
16	5	January 19, 2016) and with the 1964 Helsinki declaration and its later amendments, or comparable
17	5	sundary 19, 2010) and with the 1904 Heisniki declaration and its fater amendments, or comparable
18 19		
20	6	ethical standards.
21		
22	7	
25 24	,	
25		
26	8	Data sharing statement: No additional data available.
27 28		
20	9	
30		
31	10	
32 33	10	
34		
35		
30 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 49		
49 50		
51		
52		
53 54		
55		
56 57		
58		22
59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	1	Ref	ferences
5	-		
6 7 8	2	1.	D'Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med.
9 10 11	3		1987;64:709-727. https://doi.org/10.1093/oxfordjournals.qjmed.a068143
12 13 14	4	2.	Wyatt R, Julian B. IgA Nephropathy. New Engl J Medicine 2013;368:2402–2414.
15 16 17	5		doi:10.1056/NEJMra1206793
18 19 20 21	6	3.	Radford M, Donadio J, Bergstralh E, Grande J. Predicting renal outcome in IgA nephropathy. J
21 22 23 24	7		Am Soc Nephrol. 1997; 8 :199–207.
25 26 27	8	4.	Berthoux F, Mohey H, Laurent B, et al. Predicting the Risk for Dialysis or Death in IgA
28 29 30	9		Nephropathy. J Am Soc Nephrol 2011;22:752-761. doi:10.1681/ASN.2010040355
31 32 33	10	5.	Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis
34 35 36	11		2012; 59 :865–73. doi:10.1053/j.ajkd.2012.02.326
37 38 39	12	6.	Manno C, Strippoli GF, D'Altri C, et al. A novel simpler histological classification for renal
40 41 42 43	13		survival in IgA nephropathy: a retrospective study. Am J Kidney Dis 2007;49:763–75.
44 45 46	14		doi:10.1053/j.ajkd.2007.03.013
47 48 49	15	7.	Duan Z-YY, Cai G-YY, Chen Y-ZZ, et al. Aging promotes progression of IgA nephropathy: a
50 51 52 53 54	16		systematic review and meta-analysis. Am J Nephrol 2013;38:241–52. doi:10.1159/000354646
55 56 57			
58 59			23
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4 5	1	8.	Le W, Liang S, Hu Y, et al. Long-term renal survival and related risk factors in patients with IgA
6 7 8	2		nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial
9 10 11	3		Transplant 2012;27:1479-85. doi:10.1093/ndt/gfr527
12 13 14 15	4	9.	Sevillano A, Gutiérrez E, Yuste C, et al. Remission of Hematuria Improves Renal Survival in
16 17 18	5		IgA Nephropathy. J Am Soc Nephrol 2017;28:3089–3099. doi:10.1681/ASN.2017010108
19 20 21	6	10.	Korbet SM, Genchi RM, Borok RZ, et al. The racial prevalence of glomerular lesions in
22 23 24	7		nephrotic adults. Am J Kidney Dis 1996;27:647-51. doi:10.1016/S0272-6386(96)90098-0
25 26 27	8	11.	Pontier P, Patel T. Racial differences in the prevalence and presentation of glomerular disease in
28 29 30	9		adults. Clin Nephrol. 1994;42:79-84.
31 32 33 24	10	12.	Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy
34 35 36 37	11		worldwide. Am J Med 1990;89:209-15. doi:10.1016/0002-9343(90)90300-3
38 39 40	12	13.	Fischer EG, Harris AA, Carmichael B, Lathrop SL, Cerilli LA. IgA nephropathy in the triethnic
41 42 43	13		population of New Mexico. Clin Nephrol. 2009;72:163–169. doi:10.2379/CN106139
44 45 46	14	14.	Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent
47 48 49	15		insight from genetic studies. Annu Rev Med 2013;64:339-56.
50 51 52 53	16		doi:10.1146/annurev-med-041811-142014
55 54 55 56			
57			
58 59			24
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4 5	1	15.	Feehally J, Farrall M, Boland A, et al. HLA has strongest association with IgA nephropathy in
6 7 8	2		genome-wide analysis. J Am Soc Nephrol 2010;21:1791–7. doi:10.1681/ASN.2010010076
9 10 11	3	16.	Kiryluk K, Li Y, Sanna-Cherchi S, et al. Geographic differences in genetic susceptibility to IgA
12 13 14 15	4		nephropathy: GWAS replication study and geospatial risk analysis. PLoS
16 17 18	5		Genet 2012;8:e1002765. doi:10.1371/journal.pgen.1002765
19 20 21	6	17.	Szeto CC, Lai FM, To KF, <i>et al.</i> The natural history of immunoglobulin a nephropathy among
22 23 24	7		patients with hematuria and minimal proteinuria. Am J Med 2001;110:434–7.
25 26 27	8		doi:10.1016/S0002-9343(01)00659-3
28 29 30	9	18.	Yamagata K, Iseki K, Nitta K, et al. Chronic kidney disease perspectives in Japan and the
31 32 33	10		importance of urinalysis screening. <i>Clin Exp Nephrol</i> 2008; 12 :1–8.
34 35 36	11		doi:10.1007/s10157-007-0010-9
37 38 39	12	19.	Yamagata K, Takahashi H, Tomida C, Yamagata Y, Koyama A. Prognosis of asymptomatic
40 41 42	13		hematuria and/or proteinuria in men. High prevalence of IgA nephropathy among proteinuric
43 44 45 46	14		patients found in mass screening. Nephron. 2002;91:34-42. doi: 10.1159/000057602
47 48 49	15	20.	Geddes CC, Rauta V, Gronhagen-Riska C, et al. A tricontinental view of IgA
50 51 52 53	16		nephropathy. Nephrol Dial Transplant2003;18:1541-8. doi:10.1093/ndt/gfg207
54 55 56			
57 58			25
59 60			2ی For peer review only - http://bmiopen.bmi.com/site/about/quidelines.yhtml
υU			i or peer retrett only intep// onlyopen.only.com/ site/ ubout/ guidelines.html

1 2			
2 3 4 5	1	21.	Yamaguchi-Kabata Y, Nakazono K, Takahashi A, et al. Japanese population structure, based on
6 7 8	2		SNP genotypes from 7003 individuals compared to other ethnic groups: effects on
9 10 11	3		population-based association studies. Am J Hum Genet2008;83:445-56.
12 13 14 15	4		doi:10.1016/j.ajhg.2008.08.019
16 17 18	5	22.	Sugiyama H, Yokoyama H, Sato H, et al. Japan Renal Biopsy Registry: the first nationwide,
19 20 21	6		web-based, and prospective registry system of renal biopsies in Japan. Clin Exp
22 23 24	7		Nephrol 2011;15:493–503. doi:10.1007/s10157-011-0430-4
25 26 27	8	23.	Churg J, Bernstein J, Glassock RJ, eds. Renal disease, classification and atlas of glomerular
28 29 30	9		disease. 2nd ed. Igaku-Shoin: Tokyo; 1995.
31 32 33	10	24.	Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine
34 35 36 37	11		in Japan. Am J Kidney Dis. 2009; 53 :982–92. doi:10.1053/j.ajkd.2008.12.034
38 39 40	12	25.	Shimamoto K, Ando K, Fujita T, et al. The Japanese society of hypertension guidelines for the
41 42 43	13		management of hypertension (JSH 2014). Hypertens Res. 2014;37:253-390. doi :
44 45 46	14		10.1038/hr.2014.20
47 48 49	15	26.	World Health Organization: Good health adds life to years. Global brief for World Health Day
50 51 52	16		2012. http://apps.who.int/iris/bitstream/10665/70853/1/WHO_DCO_WHD_2012.2_eng.pdf.
53 54 55	17		Accessed May 19, 2018.
56 57			
58 50			26
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5	1	27.	Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012
6 7 8	2		clinical practice guideline for the evaluation and management of chronic kidney disease. <i>Kidney</i>
9 10 11	3		Int Suppl. 2013;3:1–150. doi:10.1038/kisup.2012.73.
12 13 14	4	28.	Tomino Y. Diagnosis and treatment of patients with IgA nephropathy in Japan. Kidney Res Clin
15 16 17	5		Pract. 2016;35:197–203. doi : 10.1016/j.krcp.2016.09.001
19 20 21	6	29.	Specific health checkups and specific guidance. Ministry of Health, Labour and Welfare
22 23 24	7		website. http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed May 19, 2018.
25 26 27	8	30.	Population of Japan. Current Population Estimates as of October 1, 2012. Statistic Bureau,
28 29 30	9		Ministry of Internal Affairs and Communications website.
31 32 33	10		http://www.stat.go.jp/english/data/jinsui/2012np/index.htm#a15k24-a. Accessed May 19, 2018.
34 35 36	11	31.	Tanner, R. M. et al. Geographic variation in CKD prevalence and ESRD incidence in the United
37 38 39	12		States: results from the reasons for geographic and racial differences in stroke (REGARDS)
40 41 42	13		study. Am. J. Kidney Dis. 61, 395–403 (2013). doi: 10.1053/j.ajkd.2012.10.018.
43 44 45	14	32.	Dijk PC van, Jager KJ, Charro F de, et al. Renal replacement therapy in Europe: the results of a
40 47 48 40	15		collaborative effort by the ERA-EDTA registry and six national or regional registries. Nephrol
50 51 52	16		Dial Transplant2001;16:1120-9. doi:10.1093/ndt/16.6.1120
53 54 55			
56 57 58			27
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4 5	1	33.	Brück K, Stel VS, Gambaro G, et al. CKD Prevalence Varies across the European General
6 7 8	2		Population. J Am Soc Nephrol2016;27:2135–47. doi:10.1681/ASN.2015050542
9 10 11	3	34.	Usami T, Koyama K, Takeuchi O, et al. Regional variations in the incidence of end-stage renal
12 13 14	4		failure in Japan. JAMA2000;284:2622-4. doi:10.1001/jama.284.20.2622
15 16 17 18	5	35.	Haas M. Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244
19 20 21	6		cases. Am J Kidney Dis 1997; 29 :829–42. doi:10.1016/S0272-6386(97)90456-X
22 23 24	7	36.	Sharif M, Elsayed M, Stack A. The global nephrology workforce: emerging threats and
25 26 27	8		potential solutions! Clin Kidney J 2016;9:11–22. doi:10.1093/ckj/sfv111
28 29 30	9	37.	Abe S. Japan's vision for a peaceful and healthier world. <i>Lancet</i> 2015; 386 :2367–9.
31 32 33	10		doi:10.1016/S0140-6736(15)01172-1
34 35 36	11	38.	Frimat L, Hestin D, Aymard B, et al. IgA nephropathy in patients over 50 years of age: a
37 38 39	12		multicentre, prospective study. Nephrol Dial Transplant 1996;11:1043-7.
40 41 42	13		doi:10.1093/oxfordjournals.ndt.a027453
43 44 45 46	14	39.	Okabayashi Y, Tsuboi N, Haruhara K, et al. Reduction of proteinuria by therapeutic intervention
47 48 49	15		improves the renal outcome of elderly patients with IgA nephropathy. Clin Exp Nephrol
50 51 52	16		2016; 20 :910–917. doi:10.1007/s10157-016-1239-y
53 54 55	17		
56 57			
58			28
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Total	Hokkaido	Tohoku	Kanto	Koshinetsu	Hokuriku	Tokai	Kinki	Chugoku	Shikoku	Kyushu		Maxima
Variables	(n=6426)	(n=148)	(n=911)	(n=1229)	(n=201)	(n=258)	(n=1432)	(n=706)	(n=485)	(n=183)	(n=873)	<i>p</i> -value	fold among
A co. moon (CD) woors	20.5 (17.7)	415(166)	42.5 (19.1)	247(175)	20.2 (14.0)	42.2 (16.9)	A1 A (16 6)	29.0 (17.1)	20 4 (17 8)	22.2 (20.2)	40.9 (19.2)	< 0.001	1.22
0 Age, mean (SD), years	39.3 (17.7) 2207 (51.2)	41.3 (10.0)	42.3 (18.1)	54.7 (17.5)	39.2 (14.9)	42.2 (10.8)	41.4 (10.0)	38.9 (17.1)	39.4 (17.8)	32.2 (20.2) 86 (47.0)	40.8 (18.3)	< 0.001	1.52
2 DVU ((%)	3297 (51.3)	78 (52.7)	488 (53.6)	652 (53.1)	96 (47.8)	143 (55.4)	/0/ (49.4)	367 (52.0)	255 (52.6)	86 (47.0)	425 (48.7)	0.182	1.18
3 BMI mean (SD), kg/m ²	22.6 (4.0)	23.4 (4.2)	23.5 (4.2)	22.0 (4.2)	22.2 (3.7)	22.8 (3.6)	22.6 (3.7)	22.4 (4.1)	22.7 (4.2)	21.7 (4.0)	22.7 (4.0)	< 0.001	1.08
4 SBP, mean (SD), mm Hg 5	124 (18)	126 (19)	126 (17)	120 (18)	120 (16)	122 (17)	127 (18)	122 (18)	124 (18)	117 (16)	126 (19)	< 0.001	1.09
6 DBP, mean (SD), mm Hg	74 (13)	76 (13)	76 (13)	72 (13)	75 (13)	74 (13)	76 (13)	73 (12)	74 (13)	69 (12)	75 (13)	< 0.001	1.10
7 Hypertension, no. (%)	2790 (43.4)	82 (55.4)	403 (44.2)	457 (37.2)	93 (46.3)	127 (49.2)	709 (49.5)	279 (39.5)	203 (41.9)	49 (26.8)	388 (44.4)	< 0.001	2.07
9 eGFR, mean (SD), ml/min/1.73 m ²	74.4 (30.3)	67.5 (31.3)	73.3 (29.6)	79.6 (31.5)	71.3 (27.7)	73.2 (27.0)	69.0 (27.8)	74.8 (29.3)	78.0 (30.9)	91.4 (35.2)	73.5 (31.2)	< 0.001	1.35
0 Serum albumin, mean (SD), g/dl	3.9 (0.6)	3.7 (0.7)	4.0 (0.7)	4.0 (0.6)	4.0 (0.7)	3.8 (1.0)	3.9 (0.6)	3.9 (0.6)	4.0 (0.6)	4.0 (0.6)	3.9 (0.6)	< 0.001	1.08
2 Total cholesterol, mean (SD), mg/dl	194 (59)	198 (45)	182 (68)	186 (71)	188 (71)	198 (60)	204 (47)	199 (49)	197 (47)	189 (55)	198 (59)	< 0.001	1.12
3 4 UPE, mean (SD), g/day	1.16 (1.62)	1.93 (2.63)	1.00 (1.55)	0.97 (1.25)	0.93 (1.22)	1.00 (1.23)	1.42 (1.72)	1.04 (1.46)	0.97 (1.43)	1.08 (2.31)	1.35 (1.83)	< 0.001	2.08
5 Hematuria grade 2,3, No. (%)	4313 (67.1)	101 (68.2)	598 (65.6)	801 (65.2)	142 (70.6)	170 (65.9)	1024 (71.5)	454 (64.3)	327 (67.4)	94 (51.4)	602 (69.0)	< 0.001	1.39
7 KDIGO prognosis risk of CKD, no. (%))												
29 Very-high-risk	1813 (28.2)	59 (39.9)	265 (29.1)	289 (23.5)	61 (30.3)	64 (24.8)	495 (34.6)	175 (24.8)	117 (24.1)	20 (10.9)	268 (30.7)	< 0.001	3.66
0 1 High risk	2353 (36.6)	48 (32.4)	272 (29.9)	446 (36.3)	66 (32.8)	100 (38.8)	623 (43.5)	248 (35.1)	157 (32.4)	66 (36.1)	327 (37.5)	< 0.001	1.45
2 Moderately increased risk	1412 (22.0)	24 (16.2)	199 (21.8)	322 (26.2)	53 (26.4)	54 (20.9)	228 (15.9)	183 (25.9)	122 (25.2)	43 (23.5)	184 (21.1)	< 0.001	1.66
4 Low risk	849 (13.2)	17 (11.5)	175 (19.2)	172 (14.0)	21 (10.4)	40 (15.5)	86 (6.0)	100 (14.2)	89 (18.4)	54 (29.5)	94 (10.8)	< 0.001	4.92
5 B6BML body mass index: UP	E urinary r	protein exc	retion: eGF	R estimat	ed glomeru	lar filtratio	n rate: SBF	systolic h	plood press	ure: DBP	diastolic bl	ood pres	sure
87	z, armary p		•••••	it, ostillat	eu Bronneru	iui iiiuuio		, 59500100	press	ure, BBI,		oou pres	Sur C.
8													
.0													
£1					29								
42													

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

45 46

44

Table 2. Regional variation in social factors.

Regions	Nephrologists, no. /100,000 populations	Proportion of participants who received a health checkup, %	Proportion of elderly person relative to the general population, %		
Hokkaido	1.58	36.7	26.0		
Tohoku	2.73	46.5	26.5		
Kanto	4.03	46.4	22.1		
Koshinetsu	3.26	50.5	27.0		
Hokuriku	4.24	48.7	26.2		
Tokai	2.87	47.2	23.3		
Kinki	3.46	40.7	24.2		
Chugoku	3.07	41.1	26.8		
Shikoku	3.05	43.1	28.1		
Kyushu	3.20	43.2	25.4		
Total mean	3.40	45.0	24.2		
Maximal fold among regions	2.68	1.38	1.27		
<i>p</i> -value	< 0.001	< 0.001	< 0.001		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
BMJ Open

	Category of			
Variables	Lowest three regions	Intermediate four regions	Highest three regions	- <i>p</i> -value for trend
	(n=2491)	(n=1742)	(n=2193)	
Nephrologists /100,000 population	2.59	3.16	3.86	
Age, mean (SD), year	41.8 (17.2)	39.3 (18.2)	36.9 (17.5)	< 0.001
Hypertension, no. (%)	1194 (47.9)	733 (42.1)	863(39.4)	< 0.001
eGFR, mean (SD), ml/min/1.73 m ²	70.5 (28.7)	77.3 (30.4)	77.3 (30.4)	< 0.001
UPE, mean (SD), g/day	1.30 (1.75)	1.17 (1.74)	0.99 (1.32)	< 0.001
Hematuria grade 2 and 3, no (%)	1723 (69.2)	1165 (66.9)	1425 (65.0)	0.002
KDIGO renal prognosis risk, no. (%)				
Very-high-risk	819 (32.9)	465 (26.7)	528 (24.1)	< 0.001
High risk	943 (37.9)	616 (35.4)	794 (36.2)	0.226
Moderately increased risk	451 (18.1)	402 (23.1)	559 (25.5)	< 0.001
Low risk	278 (11.2)	259 (14.9)	312 (14.2)	0.001

Table 3. Comparison of patient clinical characteristics among regions categorized according to the number of nephrologists.

Fixed effects	f-value	Regression coefficient	95% CI	<i>p</i> -value
Number of nephrologists (/100,000 populations)	4.022	-0.489	-0.9670.011	0.045
Proportion of patients who received a health checkup (%)	0.521	0.033	-0.056 - 0.122	0.471
Proportion of elderly persons relative to the general population (%)	3.512	-0.140	-0.287 - 0.006	0.061
07				

Ta

95% CI, 95% confidence interval; Covariates: age, sex, hypertension: Random effects: region, J-RBR registration facility: sion: Ram.

Structure for the random effects, First-order autoregressive.

Figure legends

Figure 1. Distributions of IgAN patients with a very-high-risk renal prognosis and nephrologists.

Regional differences of the rate of IgAN patients with a very-high-risk renal prognosis at biopsy diagnosis, which was adjusted for age, sex, and hypertension (**A**), and the number of board-certified nephrologists per regional population (**B**). Based on the ranking of each factor, 10 regions of Japan were divided into three groups, as follows: the three lowest, four intermediate, and three highest groups. The numbers indicate the following regions: 1, Hokkaido; 2, Tohoku; 3, Kanto; 4, Koshinetsu; 5, Hokuriku; 6, Tokai; 7, Kinki; 8, Chugoku; 9, Shikoku; and 10, Kyushu.

Figure 2. Relationship between the rate of IgAN patients with a very-high-risk renal prognosis and the number of nephrologists per regional population.

Circles indicate each region and the areas of the circles are proportional to the regional populations.

The rate of IgAN patients with a very-high-risk renal prognosis in each region was adjusted by age,

sex, and hypertension. The regression line was obtained from the generalized linear mixed model in

Table 4.

Supplementary Figure 1. Distributions of IgAN patients with a very-high-risk renal prognosis and social factors other than nephrologist number.

Regional differences in the rate of IgAN patients with a very-high-risk renal prognosis at biopsy

diagnosis, which was adjusted for age, sex, and hypertension (A), the rate of health checkup

participants per regional population (**B**), and the proportion of elderly persons per regional

population (C). Based on the ranking of each factor, 10 regions of Japan were divided into three

groups, as follows: the three lowest, four intermediate, and three highest groups. The numbers

indicate the following regions: 1, Hokkaido; 2, Tohoku; 3, Kanto; 4, Koshinetsu; 5, Hokuriku;

6, Tokai; 7, Kinki; 8, Chugoku; 9, Shikoku; and 10, Kyushu.

Figure 2. Relationship between the rate of IgAN patients with a very-high-risk renal prognosis and the number of nephrologists per regional population. | T Circles indicate each region and the areas of the circles are proportional to the regional populations. The rate of IgAN patients with a very-highrisk renal prognosis in each region was adjusted by age, sex, and hypertension. The regression line was obtained from the generalized linear mixed model in Table 4.

190x107mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Decienc	Populations	Number of
Regions	(×1,000)	nephrologists
Hokkaido	5460	86
Tohoku	9155	250
Kanto	42631	1719
Koshinetsu	5331	174
Hokuriku	3044	129
Tokai	15063	432
Kinki	20845	721
Chugoku	7504	230
Shikoku	3932	120
Kyushu	13144	421
Total	126109	4282
	1	

Supplementary table 1. Regional populations and the number of nephrologists in Japan.

5 Supplementary Figure 1

1 2 3

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in repor	s of cross-sectional studies
--	------------------------------

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9, 10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	NA
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	12
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 40	of 40
---------	-------

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	NA
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	NA
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	NA
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	13
		(b) Report category boundaries when continuous variables were categorized	13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	21

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml