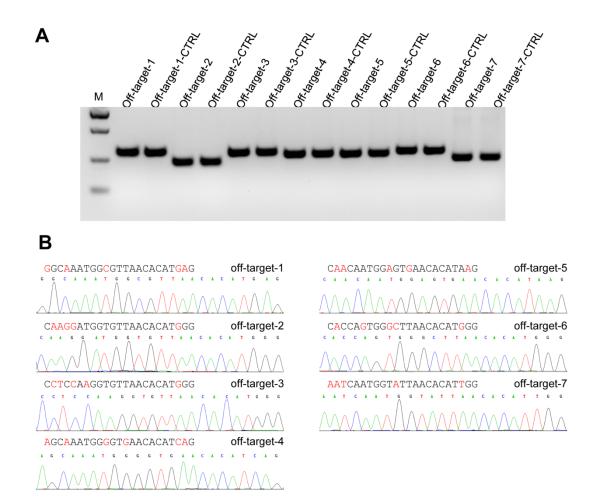
YMTHE, Volume 26

Supplemental Information

Correction of the Marfan Syndrome

Pathogenic FBN1 Mutation by Base Editing

in Human Cells and Heterozygous Embryos


Yanting Zeng, Jianan Li, Guanglei Li, Shisheng Huang, Wenxia Yu, Yu Zhang, Dunjin Chen, Jia Chen, Jianqiao Liu, and Xingxu Huang

SUPPLEMENTARY INFORMATION

Α	<u>CCG</u> CCAATGGTGTTAACAC <mark>A</mark> TAGGAACTGGC <u>CCG</u> CCAATGGTGTTAACAC <mark>A</mark> TAGGAACTGGC <u>CCG</u> CCAATGGTGTTAACACgTAGGAACTGGC	(Sequence from NCBI) (WT, 11/20) (MT, 9/20)
В	<u>CCG</u> CCAATGGTGTTAACAC <mark>A</mark> TAGGAACTGGC <u>CCG</u> CCAATGGTGTTAACAC <mark>A</mark> TAGGAACTGGC <u>CCG</u> CCAATGGTGTTAACAC <mark>G</mark> TAGGAACTGGC	(Sequence from NCBI) (WT, 13/26) (MT, 13/26)

Figure S1 The genotype analysis of the patient.

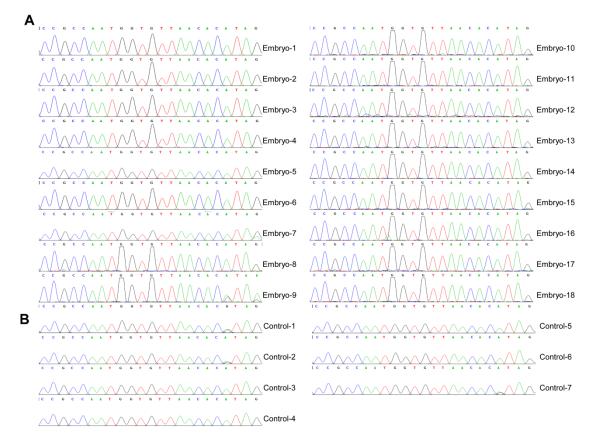
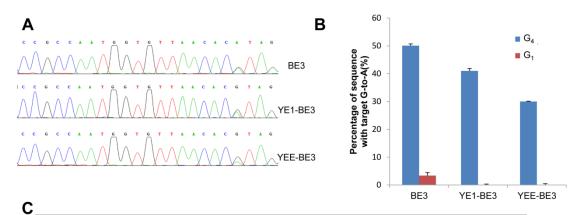

The TA clones of the PCR products of genomic DNA from blood (A) and sperm (B) of one patient with Marfan Syndrome were analyzed by DNA sequencing. The PAM sequences are underlined; the targeted bases (wild type in upper, while mutant in lower case) are highlighted in red; the N/N represents wild type (WT) or mutant (MT) colonies out of total sequenced.

Figure S2 Off-target detection in HEK293T cells.

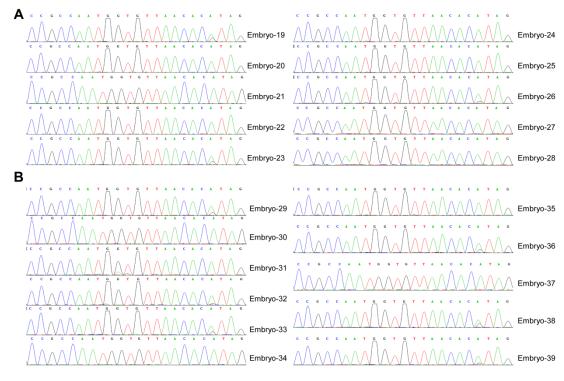

A. Off-target analysis by T7EN1 cleavage assay. Genomic DNA from base-edited cells was amplified by PCR using primers for 7 potential off-target sites of the sgRNA for the mutagenesis listed in Table S1. The PCR products were subjected to T7EN1 cleavage assay.

B. The representative chromatogram of sequencing of the amplified PCR from A. The red characters were the mismatch sites compared with the mutational sgRNA.

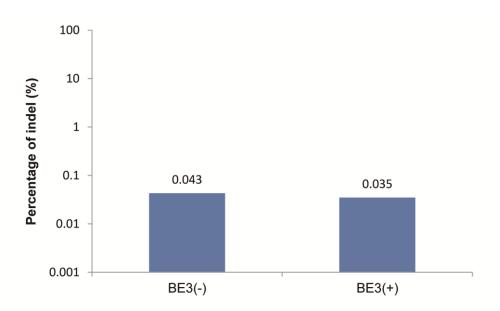
Figure S3 The genotype of the corrected embryos by BE3 and the control human heterozygous embryos.

The representative chromatogram of the sequencing of PCR products was from all the test (A) and control (B) human embryos. All the heterozygous human embryos were collected, and the genomic DNA was extracted and amplified by PCR. The PCR products were analyzed by DNA sequencing. The target bases were highlighted by red (test) or black (control) boxes.

ى							
		Used embryos	Perfect embryos	Embryos with uncompleted G₄-to-A		Percentage of perfect embryos	Percentage of edited embryos
	BE3	18	16	2	2	89%	100%
	YE1-BE3	10	7	3	0	70%	100%
	YEE-BE3	11	5	6	0	45%	100%
	Control	7	4	-	-	57%	-


Figure S4 BE3 shows the highest correction efficiency for the pathogenic site than YE1-BE3

and YEE-BE3.


A. The FBN1T7498C cells were corrected using three kinds of BE3. The edited cells were used as the template for PCR and Sanger sequence.

B. The deep sequencing was used to detect the editing efficiency, and the percentage of G-to-A at G4 and G1 for correctional sgRNA was analyzed. Data are shown as means \pm s.d. from three independent experiments.

C. The summary of the used embryos for correcting the pathogenic sites using three base editors.

Figure S5 The genotype of the corrected embryos by YE1-BE3 and YEE-BE3 The representative chromatogram of the sequencing of PCR products was from all the YE1-BE3 corrected (A) and YEE-BE3 corrected (B) embryos. All the edited human embryos were collected, and the genomic DNA was extracted and amplified by PCR. The PCR products were analyzed by DNA sequencing.

Figure S6 Indel analysis of the corrected and control human heterozygous embryos. Genomic DNA from 7 corrected and 3 control human embryos were collected, the genomic DNA was extracted and amplified by PCR. The PCR products were analyzed by deep sequencing.

Primer name	Sequence (5'- 3')	Product length (bp)	Usage
FBN1-ON-200-F	ACTCACCAATGCAGGACGTA		Amplification for the on-target sites
FBN1-ON-200-R	AGCTGCTTCATAGGGTCAGC	200	
FBN1-ON-676-F	GCTGAAGTCTCCACCCACC		
FBN1-ON-676-R	TGTCTCTCCTTGCCTTTTG	676	
FBN1-mutation-off1-301-F	TCAAGGGACAGGAGTAGGCA	201	
FBN1-mutation-off1-301-R	TTGGGGCAGGAGGTTTTGTT	301	
FBN1-mutation-off2-223-F	ATCTTAATCAGGGCCTTGA	222	
FBN1-mutation-off2-223-R	GCCTTCATTCCATCAACTG	223	
FBN1-mutation-off3-296-F	CAGGTTCGTGTCGCAGTAGC	20.6	
FBN1-mutation-off3-296-R	CTGTGTTGCCAGCACGAAA	296	Amplification
FBN1-mutation-off4-282-F	TGGTAGTGGTTGGTGACACT	202	for the
FBN1-mutation-off4-282-R	CGTTACATTGGGAAGCGGAA	282	off-target sites
FBN1-mutation-off5-272-F	GGATTCAACATAGATTGGAA	272	of the mutation
FBN1-mutation-off5-272-R	CCCGTTTACACATTGCTA	272	sgRNA
FBN1-mutation-off6-302-F	TTCTAGTAGGTGAAAAAGGG	202	
FBN1-mutation-off6-302-R	TTGGACACCACATAGACAG	302	
FBN1-mutation-off7-252-F	TATTATTGCTAAACCGAAACCA	2.52	
FBN1-mutation-off7-252-R	AGCCCCTCACCCACTCAT	252	
FBN1-BE-OFF1-370-F	AGAGGCTTGCGAAGGACATC		Amplification for the off-target sites of the base editor sgRNA
FBN1-BE-OFF1-370-R	ATTTGGTCTAGGGCAGAGGC	370	
FBN1-BE-OFF2-247-F	ATTATTCACAAGTTATGGTA	2.17	
FBN1-BE-OFF2-247-R	TAACCCTCTTCTTTGTAA	247	
FBN1-BE-OFF3-235-F	AAGGGACTGTTTTTGTCCTGTCA	225	
FBN1-BE-OFF3-235-R	GTGAAACCACCATGACATGAAGT	235	
FBN1-BE-OFF4-262-F	GTCATACTTGGCCAGGGTCC	2.62	
FBN1-BE-OFF4-262-R	CCCACGTGAGCTGGCTAAAA	262	
FBN1-BE-OFF5-448-F	TGATCAGCATGTGGAGCCTG	110	
FBN1-BE-OFF5-448-R	GAAGTCAGCCAGGAGCCATT	448	
FBN1-BE-OFF6-296-F	GAGTTAGGAGTGGGAAGG	207	
FBN1-BE-OFF6-296-R	ACAAAGGACAGTAATGAAGAG	296	
FBN1-BE-OFF7-208-F	TTTGCCTCCTTGATTCCCCC	200	
FBN1-BE-OFF7-208-R	GTGGATGGTGTGGAGGTGAG	208	
FBN1-BE-OFF8-208-F	CGCAGAACCAGACATCTTTAG	20.9	
FBN1-BE-OFF8-208-R	TTTGTTAGTAGCACAGGGGC	208	
FBN1-BE-OFF9-223-F	AAATTTGGAGAATATAGCTAGG	222	
FBN1-BE-OFF9-223-R	GAAAGTGCTTGAAACATAGTAA	223	
FBN1-BE-OFF10-229-F	ACAGGCATAAGTCACCGCA	220	
FBN1-BE-OFF10-229-R	CACTGGGTTACCTGGCATTT 229		

Table S1 The primers used in the research

FBN1-BE-OFF11-238-F	CCTTTACAGGCTCACATCTT		
FBN1-BE-OFF11-238-R	GTAGTTTTGAGATAAGATAACCG	238	
FBN1-BE-OFF12-232-F	TAGCATTTGTTGGCAGTTAC		
FBN1-BE-OFF12-232-R	GCGATTGTTTTCTTGTTCAT	232	
FBN1-BE-OFF13-206-F	AATCAGCTTTGACAAATATTGTA		
FBN1-BE-OFF13-206-R	AGTAACTGGAATCCGTGCTA	206	
FBN1-BE-OFF14-222-F	CCTGGTCATAATGTGGGTC		
FBN1-BE-OFF14-222-R	CTGCCTGGCTGAGGAATA	222	
FBN1-BE-OFF15-223-F	CATTTATCTGGTTTTTCTTGTT		
FBN1-BE-OFF15-223-R	ACAAGTGTAATCACCATAGTCC	223	
FBN1-BE-OFF16-239-F	GGCAAGAGAAGGAGAGAGG	220	
FBN1-BE-OFF16-239-R	TTTGGGAAGTTTGAGAAAAA	239	
FBN1-BE-OFF17-248-F	CAGCAGGTGTGGTCGTTTT	2.10	
FBN1-BE-OFF17-248-R	ТТСАССТСАТСААСАСССС	248	
FBN1-BE-OFF18-249-F	TAAAATGTATGTAGGGAAAGC	2 /2	1
FBN1-BE-OFF18-249-R	ATAAGTCAAAGGAAAAGTGAAA	249	
FBN1-BE-OFF19-233-F	AAAAAGAGAAAAGAGGGAGTCA		-
FBN1-BE-OFF19-233-R	CAAGGGATAGGAGACATCG	233	
FBN1-BE-OFF20-285-F	GAGAAGCAAATGGTTTATGGT	205	
FBN1-BE-OFF20-285-R	TTAGATTAGCAGATACTCAGGGA	- 285	Amplification
FBN1-BE-OFF21-288-F	GATGTAAATGTGAAAATGGAAAC	288	for the
FBN1-BE-OFF21-288-R	CTCTGTTGGGTTATCGTGC	288	off-target sites
FBN1-BE-OFF22-243-F	GGCTGGTTTATTTTTCTTCAA	242	of the base editor sgRNA
FBN1-BE-OFF22-243-R	GAGTCAAAAGTAGTGCCTGGA	243	
FBN1-BE-OFF23-206-F	GAAAAGAGGCTCTAATTGTAGG	206	
FBN1-BE-OFF23-206-R	GTCTGAGGCAGCACTTTGT	206	
FBN1-BE-OFF24-229-F	TCAATAAGAAAAAGTCTCAACAG	229	
FBN1-BE-OFF24-229-R	CGCTTTTCCTGATATGCTA	229	
FBN1-BE-OFF25-217-F	AAATCTTTGACCTTTTCATACTC	217	
FBN1-BE-OFF25-217-R	ATGAACCCAGATGAGCCA	217	
FBN1-BE-OFF26-249-F	TAATGGGATGGCTGGGTC	249	
FBN1-BE-OFF26-249-R	AAATGCTTATCATCACTGGTCA	249	
FBN1-BE-OFF27-248-F	GCTTCAAGTAATAACAGTCCGTA	248	
FBN1-BE-OFF27-248-R	CCAAAGTGCTGGGATTACA	240	
FBN1-BE-OFF28-267-F	ATCTTTTTTATGTATCCACGG	267	
FBN1-BE-OFF28-267-R	ACTGACCTTTGGTGAGTAATAA	207	
FBN1-BE-OFF29-206-F	CAAAACCTCTAGTTCCCTGA	206	
FBN1-BE-OFF29-206-R	ACAGAACAGATGCCTCAAAA	200	_
FBN1-BE-OFF30-228-F	TACCATCTCACGCCAGTTAG	228	
FBN1-BE-OFF30-228-R	GCATGATTTACAATCCTTTGG	220	_
FBN1-BE-OFF31-242-F	CAAGGAGAGTGCTGTAAAGAG	242	
FBN1-BE-OFF31-242-R	GCATAGGAATGTAGAGGAGTTTA	242	

FBN1-BE-OFF32-370-F	CGATAAAGGGATCAGTCACTAA	370	
FBN1-BE-OFF32-370-R	GCTCCAGGTCCACAAACAC	570	