
Biophysical Journal, Volume 115
Supplemental Information
A Plugin Framework for Extending the Simulation Capabilities of FEBio

Steve A. Maas, Steven A. LaBelle, Gerard A. Ateshian, and Jeffrey A. Weiss

2

SUPPORTING MATERIAL

Details of the Plugin Framework in FEBio.

FEBio is structured as a hierarchy of modules or libraries, each module collecting

algorithms and data structures for addressing a specific aspect of a FE analysis (Figure S1). 5

Some modules address different types of physics, such as structural mechanics (FEBioMech),

mechanics of mixtures (FEBioMix), and fluid mechanics (FEBioFluid). Other modules deal with

file input (FEBioXML) and output (FEBioPlot). A separate library deals with solving the linear

system equations (NumCore). The FEBioLib library is the portal that users can use to interact

with all the FEBio features. The FEBio executable is a command-line front-end to the FEBioLib 10

library.

For the most part, each module works independently of others, but all modules interact

with a special module, termed the FEBio kernel (FECore). One of the most important

FECore

FEBioMech

FEBioMix

FEBioFluid

NumCore

FEBioXML

FEBioPlot

FEBioLib

FEBio

Figure S1. Overview of the modular structure of FEBio. The FECore library is the kernel
that centralizes all the features and that all other modules depend on.

3

responsibilities of this kernel module is to keep track of all the features that are implemented by

the separate modules. Each physics module informs the kernel of the materials, boundary

conditions, solvers, etc., that it implements. This information can then be used, for instance, by

the input module for parsing the FEBio input file. This approach makes it easy to add new

features, as all new features remain centralized within their respective module. For instance, 5

addition of constitutive models to the physics modules do not require any changes to the input or

output modules.

 The plugin framework is part of the FECore kernel library*, which contains most of the

base classes from which new features can be derived. It also contains the essential algorithms

and data structures for defining and solving FE problems, and thus all the relevant code for 10

creating FEBio plugins. Most of the other modules in FEBio use the FECore library to

implement new physics-based solvers. For instance, the FEBioMech library implements

solutions algorithms for solving quasi-static or dynamic structural mechanics problems.

Similarly, a plugin will use the FECore library to implement the new functionality. It may also

require some of the other modules if the plugin extends functionality of a particular module. For 15

instance, a plugin that implements a new elastic constitutive model will also depend on the

FEBioMech library.

 Plugins interact with FEBio as follows (Figure S2). The path to a plugin file is specified

in the FEBio configuration file. When FEBio starts, it parses this file and attempts to load each

plugin listed in it. When a plugin is loaded, it registers its new functionality with FEBio. This 20

registration process is important as it allows the new features to be recognized automatically in

the FEBio input file or output file. The plugin allocates any resources it may need during this

phase. During the solution phase, FEBio will call the plugin whenever it needs data. The timing

* Documentation on the plugin framework can be found at http://febiodoc.sci.utah.edu/doxygen/.

http://febiodoc.sci.utah.edu/doxygen/

4

of calls to the plugin from FEBio greatly depends on the nature of the plugin. For instance, if the

plugin implements an elastic constitutive model, FEBio calls the plugin when it needs to

calculate the stress or the elasticity tensor. Finally, before FEBio terminates, the plugin is given

an opportunity to cleanup and deallocate its resources.

 FEBio has an expansive collection of tensor classes that greatly facilitate the 5

implementation of complex tensor expressions. It offers various classes for representing first (i.e.

vectors) second, third, fourth, fifth, and sixth order tensors and common operations that can be

made with tensors (e.g. addition, multiplication, contraction, etc.). To maximize efficiency,

different tensor symmetries are implemented in different classes. For example, the mat3ds class

implements a second-order symmetric tensor, mat3da implements a skew-symmetric tensor, and 10

mat3dd implements a diagonal second-order tensor. These tensor classes make the

implementation of new material plugins much easier for the user (Figure S3).

Figure S2. Schematic of how FEBio interacts with a plugin. During initialization, plugins are
loaded. In the solution phase the plugin code whenever FEBio needs data from it. Finally,
plugins are given a chance to cleanup any allocated resources before FEBio ends.

FEBio Plugin

Configure Initialize

Solve Plugin code

Finish Cleanup

5

Material Plugin for Wang et al. Reproduction

Strain Energy Function. The strain energy density function for the constitutive model in

(2) is given by

 b fW W W= + . (S1)

Here, Wb captures the isotropic response: 5

 () ()2
1 3 1 ,

2 2bW I Jµ κ
= − + − (S2)

where µ is the shear modulus, κ is the bulk modulus, 1I is the first invariant of the deviatoric

right deformation tensor 2/3 2/3 TJ J− −= =C C F F , F is the deformation gradient, and J = det(F) is

the volume ratio. Wf is the contribution from the aligned fibers:

mat3ds FENeoHookean::Stress(FEMaterialPoint& mp)
{
 FEElasticMaterialPoint& pt =
 *mp.ExtractData<FEElasticMaterialPoint>();
 double detF = pt.m_J;
 double detFi = 1.0/detF;
 double lndetF = log(detF);
 // calculate left Cauchy-Green tensor
 mat3ds b = pt.LeftCauchyGreen();
 // lame parameters
 double lam = m_v*m_E/((1+m_v)*(1-2*m_v));
 double mu = 0.5*m_E/(1+m_v);
 // Identity
 mat3dd I(1);
 // calculate stress
 mat3ds s = (b - I)*(mu*detFi) + I*(lam*lndetF*detFi);
 return s;
}

Figure S3. Stress evaluation for the neo-Hookean material. This figure illustrates the
use of classes from FEBio’s tensor class library (mat3ds for symmetric second-order
tensors, mat3dd for diagonal second order tensors) and defines tensor operations.
This library greatly simplifies the implementation of complicated tensor expressions.

6

()
3

1
f a

a
W f λ

=

= ∑ , (S3)

Where the λa are the principal stretch ratios.

Stress Tensor. The 2nd PK stress is given by

 2 b f
W∂

= = +
∂

S S S
C

, (S4)

 ()2/3 1 1
1

1 1
3b J I J Jµ κ− − − = − + − 

 
S I C C , (S5) 5

where µ is the shear modulus and κ is the bulk modulus. The contribution from the fibers is

given by:

23

2
1

2f a a
a a

d f
dλ=

= ⊗∑S N N , (S6)

where Na is a unit vector defining the direction associated with the ath principal stretch in the

reference configuration. The Cauchy stress follows from the push-forward of S : 10

 ()1 1T T
b f b fJ J

= = + = +σ FSF F S S F σ σ . (S7)

 () ()dev 1b J
J
µ κ= + −σ b 1 , (S8)

where the “dev” operator extracts the deviatoric part of a 2nd order tensor in the current

configuration. The fiber contribution to the Cauchy stress is given by

3 3

1 1

a
f a a a a a

a aa

df
J d
λ σ

λ= =

= ⊗ = ⊗∑ ∑σ n n n n , (S9) 15

7

where na is a unit vector defining the direction associated with the ath principal stretch in the

current configuration.

The authors proposed the following model to represent the strain-dependent anisotropic

contribution from the fibers:

()

()

1

1
1

2 1
1 2

1
22 1

2

0

,
1

1 1
,

1 1

a
n

a
f a

a
a

m
a

f a

E
df

d n

E
n m

λ λ

λ λ λ λ
λ λ

λ λ λ
λ

λ λλ λ λ λ
+

 <

  −

−  −  = ≤ ≤ +
  + − −− + ≥ 

+ +   

 (S10) 5

where 1 / 2c tλ λ λ= − and 2 / 2c tλ λ λ= + define the applicable ranges of the piecewise function.

These parameters are chosen so that the principal stress contributions from each principal stretch

aλ vanish below a critical (tensile) principal stretch cλ , and show a stiffening response

characterized by a fiber modulus Ef and a hardening exponent m. There is a transition region

when the principal stretch is between 1λ and 2λ , and the authors in the original publication 10

chose the transition exponent as n = 5. The transition width tλ is a user defined parameter,

chosen by the authors in the original publication to be some small fraction of cλ .

Elasticity Tensor. The material version of the 4th order elasticity tensor is given by:

 2 b fIJ
IJKL IJKL IJKL

KL

dSC C C
dC

= = + , (S11)

The isotropic term is: 15

8

()

() ()

2/3 1 1 1
1 1

1 1

2 1
3 3

2 1 2 1

b C
IJKL KL IJ IJ KL IJ IJKL

C
KL IJ IJKL

C J C I C C I I

J JC C J JI

µ δ δ

κ

− − − −

− −

  = − − − −    
 + − − − 

. (S12)

The spatial version of the isotropic part of the elasticity tensor then follows:

()

() ()

1 1
2 2 2
3 3 9

2 1 2 1

b
ijkl ijkl kl ij kl ij ij kl

ij kl ijkl

c I I b b I
J

J J I

µ δ δ δ δ

k δ δ

 = − + +  
 + − − − 

 
 

 . (S13)

The fiber contribution is easier to deduce in direct notation in the spatial configuration. The fiber

contribution to the spatial elasticity tensor is: 5

()

3
3

2 23

2 2
, 1

1 1f
a a a a a

a a a a

a b b a
a b a b a b b a

a b a b
a b

f
J

λ
λ λ λ

σ λ σ λ
λ λ=

≠

  ∂ ∂
= ⊗ ⊗ ⊗  ∂ ∂  

−
+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

−

∑

∑

n n n n

n n n n n n n n

c

 . (S14)

The factor in square brackets can be expanded to

2

3
2

1
a a a

a a a a a

f f fλ λ λ
λ λ λ λ λ

   ∂ ∂ ∂ ∂
= −   ∂ ∂ ∂ ∂   

 . (S15)

When b aλ λ→ ,

2 2 2 2

2 2 2lim
2b a

a b b a a
a

a b a

d f
J dll

σ l σ ll σ
lll →

 −
= − −  

 . (S16) 10

Finally,

9

()

1

2
1

1 22
2 1

2 2

0

,

1 ,

a
n

a
f a

a

m
f a a

f E

E

λ λ

λ λ λ λ λ
λ λ λ

λ λ λ λ

 <

  −∂

= ≤ ≤  ∂ − 
 + − ≥

 (S17)

The example problem analyzed in Figure 1 differs slightly from the example in the

original publication of Wang et al (2). We used a cubic geometry for the extracellular matrix

while the publication used a cylindrical geometry. As expected, this does not affect the

conclusions regarding comparisons of the model to the neo-Hookean model, as our results are 5

very similar to those obtained for the cylindrical geometry in the original publication (Figure 2 in

(2)). The material coefficients used in the neo-Hookean constitutive model to generate the

results in Figures 1A and 1B were E = 2.0 KPa, and ν = 0.3, while the material coefficients used

in the fiber-stiffening model for results in Figures 1A and 1C were µ = 0.7692 KPa, κ = 1.667

KPa, Ef = 134.6 KPa, λc = 1.02, λt = 0.255, n = 5, m = 30. 10

10

To illustrate that the plugin accurately reproduces the stress-strain behavior of the

constitutive model, we simulated uniaxial extension and compared the stress-strain curve to the

published result (Figure S3). This graph exactly reproduces the result in Figure 1c of the original

publication. The material coefficients used to generate the results in Figure S3 were µ = 0.7692

KPa, κ = 1.667 KPa, Ef = 22.88 KPa, λc = 1.1, λt = 0.0255, n = 5, m = 10, as specified in the 5

original publication.

Vempati et al. Reproduction

We reproduced the results of the finite volume model reported in Vempati et al. (1) to study

autocrine endothelial signaling in angiogenesis using the FEBioChem plugin. The central 10

objective of the study was to determine quantitatively if a single protease secreting cell at the

front of an angiogenic microvessel could modify local concentrations of the cytokine vascular

endothelial growth factor (VEGF).

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

C
au

ch
y

St
re

ss
 (k

Pa
)

Engineering Strain

Figure S4. The stress-strain curve of a uniaxial tensile test for the constitutive model proposed
by Wang et al (1), obtained from a material plugin developed in FEBio. This graph recovers the
results in Figure 1c from the corresponding publication.

11

Geometry. The idealized geometry of the model comprised a cylindrical line of cells

surrounded by an inner tube to represent the basement membrane and an outer tube to represent

the extracellular matrix. The model in the original manuscript was solved using the finite volume

method with axisymmetric geometry. Since FEBio is inherently a 3D analysis code,

axisymmetry was emulated via a judicious choice of geometry and boundary conditions. This 5

was accomplished by representing the cylindrical domain with a 9 degree wedge. All geometric

measures were obtained directly from the text of the original manuscript. Meters were used as

the length unit in our reproduction rather than micrometers, so input parameters were adjusted

accordingly from the values provided in the publication, and output concentrations should be

interpreted as kM. 10

Figure S5. Geometry for Vempati et al. reproduction. A) A line of cells (purple, 2 μm
radius) extends 1200 μm from the left face along the central z-axis. The cells are
covered by a 0.043 μm thick basement membrane (blue). The right-most 40 μm of the
basement membrane constitutes the tip cell, where flux of protease is specified. B) A
cross-section through the r-z plane of the simulation domain. Most of the domain
consists of extracellular matrix (green). C) Rotated geometry highlighting initial and
boundary conditions applied to the wedge. Radial symmetry was maintained by
prescribing solute flux as zero on faces normal to the radial direction. Far-field effects
are controlled by prescribing concentrations on faces where r = 1200 μm or z = 0 μm or
z = 2400 μm.

12

Finite Element Mesh. The cell volume and extracellular matrix elements above the cell

volume were represented as a column of 300 8 μm tall (z-direction) 6-node linear pentahedral

wedge elements (FEBio penta6). The basement membrane was constructed from a column of

300 8 μm tall 8-node trilinear hexahedral elements (FEBio hex8). The remainder of the radial 5

volume was spanned by 598 single element wide (θ-direction) columns of ~2 μm deep (r-

direction) hex8 elements yielding a total of 600 elements total in the radial direction. (matching

the finite element discretization used in the original publication). The depth of the cell elements

was 2 μm, the basement membrane was 0.0143 μm thick, and the span of all extracellular

membrane elements was 2 μm. In comparison, Vempati et al. constrained their mesh side lengths 10

between 4 and 8 μm through their domain. Further, while we represented the basement

membrane using 3 thin elements in the radial direction, Vempati et al. used a single line of nodes

to represent the basement membrane.

Materials. Reactions within FEBioChem are specified at the material level, so separate

materials were created for the cells, basement membrane, and extracellular matrix. FEBioChem 15

allows the user to model the reactions by specifying the stoichiometric coefficients of the

reactants and products for each solute or solid-bound molecule participating in a given reaction.

The solid volume fraction of each material and diffusivity for each solute were defined at the

material level using parameters from Vempati et al. (note that the solid volume fraction was

calculated from the available volume fraction as 𝜑𝑟𝛼 = 1 − 𝐾𝑎𝑎 where 𝜑𝑟𝛼 is the volume fraction 20

of a species α in the reference configuration and 𝐾𝑎𝑎 is the average volume fraction available for

reaction and diffusion).

13

Initial Conditions. Vempati et al. assumed a uniform concentration of soluble VEGF165

throughout the simulation volume, excluding the cell volume which does not participate in

reactions. Solid-bound concentrations were converted to initial apparent densities using the

equation 𝜌𝑟𝛼 = 𝑐𝑟𝛼𝑀𝛼(1 − 𝜑𝑟𝛼), and these concentrations were then prescribed at the material

level (𝜌𝑟𝛼 and 𝑐𝑟𝛼 are the density and concentration of a species α in the reference configuration 5

and 𝑀𝛼 is the molar mass for the chosen species).

Boundary Conditions. The steady state concentration of membrane bound VEGF165

(𝑉165𝐻) was determined from the dissociation constant-defined equation [𝑉165𝐻] = [𝐻𝑇𝑇𝑇𝑇𝑇][𝑉165]
𝐾𝑑+𝑉165

and used to prescribe elemental concentrations for the basement membrane and extracellular

matrix to improve computation time. Dirichlet boundary conditions were used such that [𝑉165] =10

1 pM, [𝑉114] = 0, [𝑃] = 0 ∀ 𝑟 = 1200 µm ∪ 𝑧 = ±1200 µm. VEGF165 flux across the faces

defined by 𝑟 = 1200 µm and 𝑧 = ±1200 µm was fixed. Symmetry across the cut faces was

maintained by fixing the flux of each solute on the wedge faces. Protease secretion from the tip

cell surface was prescribed at a constant value of 2.7∙10-12 mol/(m2∙s). In the original publication,

VEGF Receptor 2 (R2) was specified as an expression rate in units of concentration per second, 15

w we represented this with the reaction [] → 𝑅2 within the tip and stalk membrane materials

rather than a solute flux applied to a surface. Similarly, degradation and cellular internalization

for a given species C was specified by the reaction 𝐶 → []. To speed up computation, we

initially superimposed 1 pM of VEGF165 to each node in the extracellular matrix since the far-

field VEGF165 distribution is mostly unaffected by protease. Thus, we performed our simulation 20

in a single step whereas the original publication used one step to determine the VEGF165

distribution and another step to introduce protease.

14

Boundary Flux. Vempati et al enforced flux continuity at the boundary between the

ECM and BM to account for diffusive hindrance using a lumped boundary condition. The finite

element method is readily able to handle transport between thin membranes and large element

volumes. Further, we modeled the basement membrane as a 3-element deep column rather than a

single node, removing the need for this consideration from our model. 5

Molecular Species. The molecular species that were included in the analysis are

specified in the Table S1. A density of 1,400 kg/m3 was used for all proteins (3). The density and

individual molar masses were used to specify concentrations of solid bound species. Diffusion

terms for soluble species were consistent with Vempati et al. for each material (ECM, BM).

Species Code Name Code ID Molar mass (kDa) (4)

VEGF 165 V165 Sol 1 38.2 (5)

Protease P Sol 2 83 (1)

VEGF 114 V114 Sol 3 28.4 (6)

Heparan Sulfate Proteoglycan (HSPG) H Sbs 1 110 (1)

Matrix bound VEGF 165 V165H Sbs 2 148.2

VEGF Receptor 2 R2 Sbs 3 151.5 (7)

Receptor bound VEGF 165 V165R2 Sbs 4 189.7

Receptor bound VEGF 114 V114R2 Sbs 5 179.9

Table S1. Solutes (Sol) and solid-bound species (Sbs) used in the reproduction. 10

Reactions. Reactions are specified at the material level in FEBioChem. The full list of

reactions used in the simulations is detailed in Table S2.

Reaction Name Code Name Chemical Reaction Reaction Rate

VEGF 165 Membrane binding V165 MB V165 + H →V165H 420 kM-1∙s-1

VEGF 165 Membrane release V165 MR V165H → V165 + H 0.01 s-1

VEGF 165 Proteolysis V165 P V165 + P → V114 + P 0.631 kM-1∙s-1

Membrane bound VEGF 165 proteolysis V165H P V165H + P → V114 + H + P 0.631 kM-1∙s-1

VEGF Receptor 2 expression R2 exp [] → R2 1.04792∙10-6 kM∙s-1

VEGF Receptor 2 internalization R2 int R2 → [] 2.8∙10-4 s-1

15

VEGF 165 Receptor binding V165 RB V165 + R2 → V165R2 1∙104 kM-1∙s-1

VEGF 165 Receptor release V165 RR V165R2 → V165 + R2 0.01 s-1

VEGF 165 Internalization V165R2 int V165R2 → [] 2.8∙10-4 s-1

VEGF 114 Receptor binding V114 RB V114 + R2 → V114R2 1∙104 kM-1∙s-1

VEGF 114 Receptor release V114 RR V114R2 → V114 + R2 0.01 s-1

VEGF 114 Internalization V114R2 int V114R2 → [] 2.8∙10-4 s-1

Table S2. Reaction descriptions and relevant parameters.

Simulation Conditions

FEBioChem uses a trapezoidal rule by default for time integration, whereas Vempati et al. used a

fully-implicit scheme for 1st order derivatives and a central difference approximation with

successive over-relaxation (SOR) update for spatial derivatives. FEBio’s automatic timestepper 5

was used with a maximum timestep of 10 seconds. The simulation was run until steady state was

achieved at ~7 hours simulation time (Vempati et al. achieved steady state in ~10 simulation

hours). The FEBioChem convergence norm remained below 1x10-13 for soluble species and

below 1x10-17 for all solid bound species (for comparison, Vempati et al enforced convergence

by allowing 1x10-7 fractional change in species concentrations for any time-step). 10

Reproduction assessment

Concentrations of protease and VEGF were measured in various locations and compared to the

corresponding publication. Most species were within 1% agreement. Further, the general

protease and VEGF 114 distributions in the axial direction (Figure 4 D-E) align with the

distributions in the corresponding publication (Figures 2 D-E). 15

Metric Location FEBioChem Calculation Vempati Calculation Difference FEBioChem (%)

[P] Inner surface of tip cell membrane 3.02∙10-1 nM 3.20∙10-1 nM -5.60

[V114] Inner surface of tip cell membrane 2.33∙10-4 pM 2.40∙10-4 pM -3.08

[V165]min Basement membrane 9.88∙10-1 nM 9.86∙10-1 nM 0.24

[V165H]max Basement membrane 5.43∙102 pM 5.46∙102 pM -0.63

[V165H]min Basement membrane 5.40∙102 nM 5.38∙102 nM 0.45

16

[V165H]max ECM 3.15∙101 pM 3.15∙101 pM 0.00

[V165H]min ECM 3.11∙101 pM 3.10∙101 pM 0.32

Table S3: Comparison of species concentrations at steady state.

FEBio plugin types

As of the latest FEBio release (FEBio 2.7), the following plugins are supported.

• Materials: A material plugin implements a new constitutive model that is used to

evaluate field variables that are needed to advance the solution (e.g. stress and elasticity 5

tangent for a structural mechanics material).

• Body load: a body load adds a volumetric “source” term to the weak formulation of a

particular finite element formulation. In the context of mechanics, body loads can be used

to model the effects of gravity, centrifugal acceleration, etc.

• Surface load: A surface load adds a term to the weak formulation that can represent an 10

external load on the system.

• Nonlinear constraint: A nonlinear constraint plugin can enforce a nonlinear relationship

between the relevant field variables. This plugin type essentially taps into FEBio’s

augmented Lagrangian framework.

• Task: A task is the highest execution level of FEBio and dictates what FEBio does. Tasks 15

can be useful for implementing algorithms that require repeated calls to FEBio’s solvers,

for instance, optimization algorithms, or interactions with external libraries.

• Plot variable: FEBio’s plot file format is self-describing and extendible, which makes it

possible to customize its content. The content can be customized via plot variable

plugins, which define additional data that can be stored to the plot file. 20

17

• Log file data: Similarly to FEBio’s plot file, the log file can also be customized. A log

file data plugin allows users to create new data variables that will be written to the log

file.

• Callback: A callback plugin allows users to interact more directly with its solution

pipeline. This can be used as an alternative for interacting with external libraries when 5

tasks are not possible. For instance, when time stepping needs to be controlled from the

external library.

• Solver: Solver plugins implement new finite element formulations that are not directly

supported in FEBio. Usually, a solver plugin will also need to implement new materials,

surface loads, body loads, and other model components that the solver needs to support. 10

• Loadcurve: A loadcurve controls the time dependency of a model parameter. The default

load curve that FEBio supports requires the definition of a set of time-value pairs and

parameters that the define how FEBio is to interpolate (and extrapolate) the data. Users

can create custom load curves that generate the time-dependency via a procedural

method. 15

18

REFERENCES
1. Vempati, P., F. Mac Gabhann, and A. S. Popel. 2010. Quantifying the proteolytic release

of extracellular matrix-sequestered VEGF with a computational model. PLoS One
5:e11860.

2. Wang, H., A. S. Abhilash, C. S. Chen, R. G. Wells, and V. B. Shenoy. 2014. Long-Range 5
Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers.
Biophysical Journal 107:2592-2603.

3. Quillin, M. L., and B. W. Matthews. 2000. Accurate calculation of the density of
proteins. Acta Crystallogr D Biol Crystallogr 56:791-794.

4. Fischer, H., I. Polikarpov, and A. F. Craievich. 2004. Average protein density is a 10
molecular-weight-dependent function. Protein Sci 13:2825-2828.

5. Inc., S. B. 2018. Product Data Sheet - Recombinant Human VEGF-165 (Vascular
Endothelial Growth Factor-165). Warwick, PA.

6. Inc, S. B. 2018. Product Data Sheet - Recombinant Human VEGF-121 (Vascular
Endothelial Growth Factor-121). Warwick, PA. 15

7. PhosphoSitePlus. 2018. VEGFR2 - Human. Cell Signaling Technology.

	bpj_9188_mmc1.pdf
	Supporting Material
	Details of the Plugin Framework in FEBio.
	Material Plugin for Wang et al. Reproduction

	Stress Tensor. The 2nd PK stress is given by
	Elasticity Tensor. The material version of the 4th order elasticity tensor is given by:
	Vempati et al. Reproduction
	FEBio plugin types

	References

