
Computational Tool
A Plugin Framework for Extending the Simulation
Capabilities of FEBio
Steve A. Maas,1 Steven A. LaBelle,1 Gerard A. Ateshian,2 and Jeffrey A. Weiss1,*
1Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah and
2Department of Mechanical Engineering, Columbia University, New York, New York
ABSTRACT The FEBio software suite is a set of software tools for nonlinear finite element analysis in biomechanics and
biophysics. FEBio employs mixture theory to account for the multiconstituent nature of biological materials, integrating the field
equations for irreversible thermodynamics, solid mechanics, fluid mechanics, mass transport with reactive species, and electro-
kinetics. This communication describes the development and application of a new ‘‘plugin’’ framework for FEBio. Plugins are
dynamically linked libraries that allow users to add new features and to couple FEBio with other domain-specific software
applications without modifying the source code directly. The governing equations and simulation capabilities of FEBio are
reviewed. The implementation, structure, use, and application of the plugin framework are detailed. Several example plugins
are described in detail to illustrate how plugins enrich, extend, and leverage existing capabilities in FEBio, including applications
to deformable image registration, constitutive modeling of biological tissues, coupling to an external software package that
simulates angiogenesis using a discrete computational model, and a nonlinear reaction-diffusion solver. The plugin feature
facilitates dissemination of new simulation methods, reproduction of published results, and coupling of FEBio with other
domain-specific simulation approaches such as compartmental modeling, agent-based modeling, and rigid-body dynamics.
We anticipate that the new plugin framework will greatly expand the range of applications for the FEBio software suite and
thus its impact.
INTRODUCTION
The FEBio project (1) was launched in 2007 to overcome
the lack of a general purpose finite element (FE) software
for solving problems in computational biomechanics. This
deficiency hampered research progress, dissemination, and
sharing of models and results. Commercial FE codes such
as Ansys/Fluent (ANSYS, Canonsburg, PA), ABAQUS
(Dassault Systèmes, V�elizy-Villacoublay, France), and
Comsol Multiphysics (COMSOL, Burlington, MA) that
were used historically for research in computational biome-
chanics are not specifically designed to serve the field, lack
important simulation capabilities, are costly, and are closed
source, which makes them difficult to verify and extend.
These limitations led many researchers to develop custom
FE codes for simulating domain-specific problems (2).
Most of these custom codes were never distributed to the
community.

The authors and many others in the research community
felt there was a genuine need for a new FE simulation tool
Submitted May 2, 2018, and accepted for publication September 12, 2018.

*Correspondence: jeff.weiss@utah.edu

Editor: Vivek Shenoy.

1630 Biophysical Journal 115, 1630–1637, November 6, 2018

https://doi.org/10.1016/j.bpj.2018.09.016

� 2018 Biophysical Society.
that would be designed by and for the biomechanics com-
munity. FEBio was designed around three pillars. First,
it specifically targets the biomechanics community by
focusing on simulation capabilities that are relevant in the
field. This includes, for example, accurate constitutive rela-
tions for mechanical, transport, and electrokinetic properties
of tissues and cells; the ability to easily model anisotropy
and inhomogeneity; and the ability to prescribe boundary
conditions and loading scenarios to model the complex in-
teractions between biological structures. Second, both
installation packages and the source code are freely avail-
able and designed such that it is easy for researchers to
implement new algorithms (e.g., new constitutive models).
This greatly reduced the need for new custom-written codes
and overcame the problems with verification and repeat-
ability of results. Third, we place substantial emphasis on
thorough documentation, support, and outreach to the com-
munity, which has made it much easier than before for re-
searchers to develop new ideas and share them with others.

Recently, we developed a plugin framework to allow
users to extend the standard feature set of FEBio with less
effort and to couple FEBio with other simulation codes.
Although users can download and modify the FEBio source

mailto:jeff.weiss@utah.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2018.09.016&domain=pdf
https://doi.org/10.1016/j.bpj.2018.09.016

Computational Tool
code directly, building the entire source code can be chal-
lenging, especially because of its dependency on third-party
libraries. Further, disseminating custom modifications to the
source code may be challenging because changes made by
users may become incompatible with future releases of
FEBio. The plugin framework overcomes these problems
because plugins can be developed independently from the
FEBio source code. In addition, the plugin framework facil-
itates dissemination and sharing because plugins can be
distributed separately from the FEBio source code and
installation packages (https://febio.org/plugins).

The objective of this communication is to introduce FEBio
and the capabilities of the new plugin framework to the
biophysics community. The exposition covers the modular
framework of FEBio and its kernel mechanism, which were
central to the development of the plugin framework. Several
plugin examples illustrate the generality and versatility of the
framework, including a material plugin based on a recent
proposal for a novel constitutive model for describing a
fibrous material with deformation induced anisotropy (3),
an implementation of the hyperelastic warping algorithm
for deformable image registration (4), a plugin that couples
a discrete model of angiogenesis with FEBio to simulate
the interactions between angiogenic microvessels and the
ECM (5–8), and a plugin for solving reaction-diffusion-con-
vection problems.
MATERIALS AND METHODS

Overview of FEBio

FEBio uses the FE method to discretize the equations for conservation of

mass, linear momentum, and charge. The resulting equations allow fully

coupled simulation of solid mechanics, solid-fluid mixtures (9), fluid me-

chanics (10), fluid-solid interactions, transport (11,12), reaction and diffu-

sion of neutral and charged species (12,13), contact (11,14–17), prestrain

(18), and growth and remodeling (13). The governing equations are formu-

lated based on mixture theory. A mixture consists of any number of constit-

uents a that may occupy the same region. The apparent mass density of

constituent a is denoted by ra. The complete set of governing equations

can be summarized as follows:

vra

vt
þ divðravaÞ ¼ bra

; (1)

raaa ¼ divTa þ raba þ bpa
; (2)
d

X
a a a a a

�
a 1 a a

�

a

� Td : L þ bpd , u þ br m þ
2
u , u %0; (3)

ba ¼ �ðzaFc=M
aÞgradj ; (4)
and

X
a

zara

,
Ma ¼ 0: (5)
Equation 1 represents the mass balance equation for constituent a with

velocity va. Equation 2 is the balance of linear momentum for each constit-

uent, where aa is the acceleration, Ta is the Cauchy stress, ba is the body

force, and bpad is the internal momentum supply to constituent a due to in-

teractions with all other mixture constituents. Equation 3 is the entropy

inequality, which places constraints on the constitutive models. Here,

La is the rate of deformation tensor, ua ¼ va � v, and v is the mixture

velocity. The last term in this equation represents the rate form of the

familiar constraint in chemical kinetics that reactions may proceed sponta-

neously only if they produce a net decrease in the mixture free energy.

Electrokinetics is introduced by using Coulomb’s law as a body force

acting on electrically charged constituents, Eq. 4, where za is the charge

number and Ma is the molar mass of constituent a, Fc is Faraday’s con-

stant, and j is the electric potential in the mixture. To solve for j, we

employ the electroneutrality condition, Eq. 5. FE discretization of Eqs.

1, 2, 3, 4, and 5 above results in a nonlinear system of equations that is

solved using Newton-based methods, including quasi-Newton methods

such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Broyden’s

method (19).

A more detailed overview of FEBio’s features can be found in the FEBio

User Manual and the FEBio Theory Manual (https://febio.org/febio-help/).

An overview of FEBio development and its features with historical context

can be found in our recent publication (2).
Overview of the plugin mechanism

A plugin is essentially a ‘‘dynamically’’ linked library (also known as a

shared object on some operating systems) that is linked to the executable

at runtime. They differ from ‘‘static’’ libraries, which are linked to the

executable at build time. The main advantage of dynamic libraries is that

they are not required when building the executable and thus can be devel-

oped and maintained independently of the executable.

In FEBio, plugins can be used to add new features, such as new consti-

tutive models, boundary loads, body loads, tasks, plot data, and log data.

They can also be used to implement an entirely new physics module, as

illustrated by the FEBioChem plugin described below. The main advantage

of a plugin versus extending the source code directly is that plugins are

loaded at runtime and can be developed and maintained outside of the

FEBio source code. At runtime, FEBio parses a configuration file. This

file contains a list of all plugins that the user wants to use, and FEBio loads

each plugin file in this list. During this process, the plugin is given a chance

to initialize itself. During this initialization step, it registers the new features

with FEBio. For each feature, metadata are passed to FEBio, such as a tex-

tual name and a list of parameters that FEBio can use to allocate and modify

the data of the plugin features. After the registration process, FEBio can use

the new features in the plugin. For instance, after loading a new material

plugin, the input module will be able to process the definition of the new

material in the input file.

A more detailed explanation of the plugin framework can be found in the

Supporting Materials and Methods. Detailed instructions on how to create

plugins can be found in the FEBio Developer’s Manual (http://febio.org/

support/). The specific plugins described below are available for download

at the FEBio website (http://febio.org/plugins/).
RESULTS

FEBio supports a number of different types of plugins,
including material, plot data, callback, task, and solver plu-
gins. These are described in more detail in the Supporting
Materials and Methods. The following sections provide ex-
amples of material, nonlinear constraint, task, and solver
plugins. Each type of plugin is demonstrated by a specific
example application.
Biophysical Journal 115, 1630–1637, November 6, 2018 1631

https://febio.org/plugins
https://febio.org/febio-help/
http://febio.org/support/
http://febio.org/support/
http://febio.org/plugins/

Maas et al.
Material plugins

FEBio offers a rich library of constitutive models for repre-
senting the solid component of mixtures, including isotropic
and anisotropic hyperelasticity, viscohyperelasticity (20),
specialized materials for modeling fibrous tissues, damage
mechanics, and growth and remodeling. Nevertheless, the
development of novel constitutive models for describing
the material response of biological tissues remains an active
area of research as our understanding of how the intricate in-
teractions between different physical scales affect the
macroscopic material response continues to grow. As a
result, the ability to add novel constitutive models to FEBio
has been a high priority. Making this task easier for our users
was the main initial impetus for the development of the plu-
gin framework.

A new constitutive model can be implemented via a ma-
terial plugin. Constitutive models are used to evaluate solu-
tion-dependent quantities, such as stress, permeability,
diffusivity, etc. The quantities that need to be defined by
the plugin depend on the particular physics module that
the plugin extends. For instance, when implementing a
new constitutive model for structural mechanics, the plugin
must implement the evaluation of the second-order Cauchy
stress tensor and the fourth-order spatial elasticity tensor.
Implementation of the often complicated tensorial expres-
sions for these quantities is greatly simplified by the exten-
sive tensor classes in FEBio (see Supporting Materials and
Methods).

As an illustration, we describe a material plugin that im-
plements a constitutive model for representing fibrous
ECMs as proposed by Wang et al. (3). The constitutive
model is designed to reproduce experimental observations
of long-range force transmission by cells in collagen gels
due to realignment of collagen fibrils during loading. This
is achieved by representing two fiber families. The first fam-
ily aligns with the principal axes of the deformation, produc-
ing an increasingly anisotropic response as the deformation
increases in magnitude, whereas the second family provides
an isotropic background stress that opposes alignment.

The strain-energy density function of this constitutive
model is given by:

W ¼ Wb þWf : (6)
is sho febio.org/plugins wn. (C) A contour plot of the displacement magnitude fo

proposed by Wang et al. exhibits long-range force transmission. To see this figu

1632 Biophysical Journal 115, 1630–1637, November 6, 2018
Here, Wb captures the isotropic response:

Wb ¼ m

2

�
~I1 � 3

�þ k

2
ðJ � 1Þ2; (7)

where m is the shear modulus, k is the bulk modulus, ~I1 is
the first invariant of the deviatoric right deformation tensor
~C ¼ J�2=3C ¼ J�2=3FTF, F is the deformation gradient,
and J ¼ det(F) is the volume ratio. Wf is the contribution
from the aligned fibers:

Wf ¼
X3

a¼ 1

f ðlaÞ; (8)

where the la are the principal stretch ratios. The particular
form of f can be found in the Supporting Materials and
Methods.

To illustrate the behavior of the material, an isotropically
contracting sphere representing a contracting cell of radius
R was positioned at the center of a cube of size L ¼ 10 R.
Cellular contraction was simulated by displacing the surface
of the sphere toward its center to achieve a radial strain u0/
R¼ 0.3. The resulting normalized displacement profiles as a
function of normalized radial distance from the surface of
the sphere demonstrate that the Wang et al. constitutive
model produces greater matrix displacements and results
in a longer range of influence of the simulated cellular trac-
tion forces than a standard neo-Hookean material (Fig. 1 A).
This is visualized in space by examining the fringe plots of
total matrix displacement (Fig. 1, B and C). These results are
similar to those obtained by the authors for spherical cells in
a cylindrical matrix (Fig. 2 in (3)). Please see the Supporting
Materials and Methods for further details of the constitutive
model and the material coefficients used in the simulations.
Nonlinear constraint plugin

A nonlinear constraint enforces a nonlinear condition on
field variables such as nodal displacements or concentra-
tions. In FEBio, nonlinear constraints are enforced via an
augmented Lagrangian method (21), which solves for the
Lagrange multipliers using an iterative loop outside of the
Newton nonlinear iterative loop. Contact between deform-
able bodies and incompressibility are typical examples of
FIGURE 1 Simulation of force transmission to the

ECM due to cellular contraction using a neo-Hoo-

kean constitutive model and the Wang et al. constitu-

tive model (3). A 1/8 symmetry model was used for

the calculations, simulating a spherical, isotropically

contracting cell of radius R centered in a cube of size

L ¼ 10R. (A) Normalized displacement u/u0 as a

function of normalized distance X/R for a radial con-

tractile strain of u0/R ¼ 0.3. (B) A contour plot of

displacement magnitude for the neo-Hookean matrix

r the fibrous matrix. The results illustrate that the fibrous constitutive model

re in color, go online.

Computational Tool
nonlinear constraints that are encountered in biomechanics
simulation. Nonlinear constraint plugins allow users to
easily implement additional nonlinear constraints.

The FEWarp plugin below is an example of a nonlinear
constraint plugin. Hyperelastic Warping is a deformable im-
age registration method that is used to find the deformation
map that aligns a template image data set with a target im-
age data set (4,22–27). This technique not only enables mar-
kerless strain measurement from sequences of images but in
many cases can be used to predict the stress field as well and
compensate for missing or incomplete boundary conditions
(22). Two or more image data sets are used. The data set in
the reference configuration is referred to as the template,
and one or more data sets in different deformed configura-
tions serve as the target. An FE discretization and interpola-
tion of the template image data is deformed into alignment
with the target. An energy functional is defined, consisting
of an image-based term that measures alignment and a hy-
perelastic strain energy term that serves to regularize the
problem. Minimization of the energy functional produces
alignment of the deformed template image with the target
image. If accurate stress calculations are desired, realistic
constitutive models and material properties can be used. If
the focus is on strain measurements from image data only,
this is not necessary, in which case the image data are
treated as a hard constraint, enforced using an augmented
Lagrangian method (28). We use successive Gaussian blur-
ring to evolve the solution from the level of coarse features
to fine details in the image data. One of the strengths of this
approach is that the deformation can be obtained without the
specific knowledge of the applied loads and boundary con-
ditions to the model. Because the method is based on contin-
uum mechanics, the resulting deformation is guaranteed to
be diffeomorphic. The method has been applied success-
fully to characterize the mechanics of tissues such as liga-
ments (22) and the left ventricle of the heart (29).

In the example illustrated in Fig. 2, the FEWarp plugin
was used to track the deformation of the left ventricle during
simulation of diastole. A three-dimensional (3D) MRI im-
age was taken at the start of diastole. A forward FE analysis
resulted in a deformed model that simulates the condition at
the end of diastole. From this deformed configuration, a
target image was generated. Then, the warping algorithm
was applied to the template image and attempted to recover
the deformed target image to validate the warping approach.
Task plugin

At the highest level, after parsing the input file, FEBio exe-
cutes a single task. The default task solves the model defined
by the FEBio input file, but other tasks can be executed as
well. For instance, the optimization module in FEBio is im-
plemented as a task that calls the default solver task repeat-
edly while minimizing an objective function by modifying
model parameters. In essence, a task defines the outer
loop that controls the work that FEBio performs. A task plu-
gin allows the user to dictate how FEBio is used for a partic-
ular task at a high level.

The AngioFE plugin (7) is an example of a task plugin
that illustrates how FEBio can be linked to other libraries
FIGURE 2 Two-dimensional slice from a 3D

warping analysis that tracks the deformation of the

left ventricle during diastole. (A) The template image

slice at start of diastole, (B) the target image slice at

end of diastole, (C) and warping energy, measuring

the mismatch between the template and the target

image. The black contour shows the outline of the

target geometry. (D) Effective Green Lagrange strain

in the final, deformed state. To see this figure in co-

lor, go online.

Biophysical Journal 115, 1630–1637, November 6, 2018 1633

FIGURE 3 Simulation of microvessel growth in an in vitro model of

microvessel invasion across a tissue interface. (A) The initial geometry,

illustrating the cores of collagen seeded with parent microvessels and the

surrounding field of avascular collagen. The interface is too thin to be

seen in this image. (B and C) At times X and Y during the simulation,

microvessels grow into a dense vascular network, contracting the surround-

ing matrix as they grow. Vessels are unable to cross the interface because of

the large density gradient. Fringe plots show Green-Lagrange deviatoric

strain. To see this figure in color, go online.

Maas et al.
via the plugin framework. It uses the ‘‘Angio’’ library, which
simulates the growth, branching, and anastomosis of angio-
genic microvessels embedded in a 3D collagen matrix
(8,30). During angiogenesis, growing neovessels deform
the collagen matrix. In turn, deformation of the matrix
directly affects the growth of the vessels through changes
in matrix density and collagen fibril alignment. To couple
the Angio growth library with FEBio, a task plugin was
developed to allow the two codes to interact. The task plugin
first seeds the matrix with parent microvessels using the
Angio library and executes an initial growth step. The parent
vessels are allowed to grow, governed by heuristics that con-
trol the growth rate, branching probability, and anastomosis.
Then, the discrete model of the microvascular network is
passed to FEBio, which solves for the matrix deformation.
The mechanical interaction between the vessels and matrix
is modeled as a spatially varying contractile stress that is
centered at the tip of each microvessel sprout. The new,
deformed configuration is then passed back to the Angio li-
brary, which calculates the next growth step in the deformed
model (7).

In the example application (Fig. 3), an in vitro model of
neovessel growth is simulated using the AngioFE plugin.
The simulation represents 6 days of growth in vitro. A cylin-
drical core of 3 mg/mL collagen is seeded with parent mi-
crovessels, and this core is surrounded by a field of
avascular 3 mg/mL collagen (Fig. 3 A). A high-density inter-
face forms between the core and field at the time of poly-
merization, and this density gradient is represented in the
underlying model. The simulation geometry and parameters
mimic an experimental model that is used to assess neoves-
sel invasion across tissue interfaces. The high-density
gradient that forms between the core and field is sufficient
to prevent the angiogenic microvessels from crossing the
interface into the field.
Solver plugins

FEBio is a multiphysics solver that couples fluid and solid
mechanics with growth, reaction-diffusion, and electroki-
netic effects. This is embodied in the multiphasic mixture
module, which solves the balance of linear momentum,
mass balance, and diffusion equations simultaneously using
a monolithic approach. At times, users may wish to solve
governing equations with the FE method that are not sup-
ported within FEBio, or they may wish to focus on a subset
of the physics supported by FEBio. For such cases, ‘‘solver
plugins’’ can be developed.

As an illustration of this type of plugin, the FEBioChem
plugin implements a nonlinear solver for the reaction-diffu-
sion-convection equation. Using this plugin, users can solve
for the concentrations of chemical species that diffuse,
convect, and undergo chemical reactions in space and
time. Although the multiphasic mixture module can address
such problems, this plugin offers a simplified context that
1634 Biophysical Journal 115, 1630–1637, November 6, 2018
does not model solid matrix deformation or osmotic effects
in the fluid solution, providing a simplified approach to
modeling systems of chemical reactions. These simplifica-
tions result in a significant speedup compared to the analo-
gous multiphasic model, as the additional displacement and
pressure nodal degrees of freedom associated with the
mixture framework are eliminated. In the future, we plan
to add support for surface diffusion, biomolecular reactions
between surface-bound molecules, and modeling reversible
reactions with a single equation. The convection feature
makes use of a user-defined velocity field.

To illustrate the function and utility of the FEBioChem
plugin, we reproduced the results of a computational study
by Vempati et al. (31) that examined the proteolysis of
vascular endothelial growth factor (VEGF) in the context
of matrix metalloprotease secretion, VEGF-extracellular
matrix (ECM) binding, VEGF proteolysis from VEGF165
to VEGF114, and VEGF receptor-mediated recapture
(Fig. 4). The computational model simulates the stalk cells
and tip cells of a capillary sprout, surrounded by a basement

FIGURE 4 Reproduction of results in Vempati et al. (31) using FEBioChem. The panels in this figure correspond to Fig. 2, A–E in the publication. (A) A

line of cells (white) extends from the left edge of the computational domain, surrounded by a thin basement membrane and ECM. The fringe plot shows

predicted protease distribution produced by the tip (rightmost) cell, in equilibrium with flux and diffusion. (B) VEGF114 distribution near the tip partially

governed by VEGF165þ Protease/ VEGF114þ Protease. (C) The initial 1 pM concentration of VEGF 165 is slightly altered by protease activity. (D) Axial

protease distributions. Protease degradation reduces the concentration of protease that is available to modify VEGF165. (E) Axial VEGF114 distribution.

Protease degradation reduces conversion of VEGF165 to VEGF114. To see this figure in color, go online.

Computational Tool
membrane within an ECM volume. Predicted concentra-
tions of protease and VEGF were compared to those in
the publications and most species agreed to within 1% (all
species agreed within �5%; see Supporting Materials and
Methods for further details). Furthermore, the spatial distri-
butions showed excellent correspondence with the figures in
the corresponding publication. FEBioChem’s simplified
context can represent complex reaction networks, diffusion,
and species production and degradation in porous media and
materials.
DISCUSSION

The plugin framework is a powerful new capability that al-
lows users to extend and customize FEBio to their specific
needs. A large variety of plugin types are supported,
including material, task, solver, body loads, boundary loads,
initial conditions, nonlinear constraints, plot and log data,
callback, and loadcurve plugins. Some of these plugins
were illustrated in Results above, including a plugin to
create a new constitutive model, a plugin that implements
an image-based constraint, a plugin to link FEBio to an
external library that simulates angiogenesis, and a plugin
that adds reaction-diffusion modeling capabilities to FEBio.
A description of the other available types of plugins can be
found in the Supporting Materials and Methods. New types
of plugins can be added easily as the need arises. The plugin
approach in FEBio has been applauded by many of our
users as flexible and easy to use. For instance, a recent pub-
lication implemented a new constitutive model in both
FEBio and the commercial software ABAQUS (now called
Simulia; Dassault Systèmes), and concluded that the plugin
framework in FEBio made it far easier to implement the
new constitutive model than the approach required for
ABAQUS (32).

It is worth noting that the additional specialized xml-
formatted input files required by some plugins need to be
created in a text editor. PreView, our FE preprocessor that
is used for setting up FEBio models, does not support the
creation of these additional input files, although it does sup-
port the addition of user materials and the FEBioChem plu-
gin capabilities (these plugins add features directly through
FEBio’s ‘‘.feb’’ input file). This arrangement is intentional,
as new plugins will have specific requirements for input
that we cannot anticipate. For all the plugins that are devel-
oped by our lab and those that we distribute on behalf of
outside developers, we provide detailed documentation of
any additional input file formats that are needed by the plu-
gin, and this information will always be up to date at https://
www.febio.org.

To the best of our knowledge, there is no other freely
available FE package that is designed specifically for simu-
lation in biomechanics while offering such a wide variety of
simulation capabilities. Nevertheless, it is informative to
Biophysical Journal 115, 1630–1637, November 6, 2018 1635

https://www.febio.org
https://www.febio.org

Maas et al.
place FEBio in the context of other open-source software
packages that serve the biomechanics community. OpenSim
(http://opensim.stanford.edu/) is a modeling framework for
simulation of human movement using forward and inverse
rigid body dynamics. Muscles and tendons are modeled as
discrete elements connected to rigid bodies. It is highly
specialized for these applications and does not include any
FE-based algorithms. FEBio has some rigid-body modeling
capabilities and allows rigid-body dynamics to be coupled
with FE analysis. Like FEBio, Artisynth (https://www.
artisynth.org/Main/HomePage) supports the combined
simulation of multibody and FE analysis. In this regard, it
offers modeling capabilities that are similar to FEBio, but
it focuses only on solid mechanics. SimVascular is focused
on patient-specific blood flow analysis and includes capabil-
ities for fluid mechanics and fluid-structure interaction.
These capabilities overlap with FEBio, but SimVascular is
limited to these types of physical simulations, caters to a
much more specific group of users, and includes features
that are specific to constructing models of blood flow in ar-
teries that are not part of FEBio’s capabilities. Similarly,
Continuity (https://continuity.ucsd.edu/) is an FE software
that supports simulation of cardiac biomechanics, transport,
and electrophysiology. It is tightly tailored to this applica-
tion domain, and although some of the capabilities of Con-
tinuity exist in FEBio, it is once again focused on a highly
specific group of users. In all of these cases, FEBio offers
some functionality that overlaps with other software pack-
ages. This is not surprising, given that FEBio was developed
to be a general-purpose FE software that targets a range of
different types of simulations in biomechanics using
mixture theory. That said, it is not our goal to replace the
impressive and feature-rich software packages mentioned
above. In fact, much of our current focus with application
of the plugin framework is the integration of FEBio with
other software packages so that users can take advantage
of each software’s strengths. Through this approach, we
hope to enable simulations that couple different modeling
approaches and/or span different physical scales.

The FEBio software suite and the plugins discussed in
this manuscript are available for download at https://www.
febio.org.
SUPPORTING MATERIAL

Supporting Materials and Methods, five figures, three tables, and one data

file are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(18)31069-5.
AUTHOR CONTRIBUTIONS

S.A.M. and J.A.W. conceived the project. S.A.M. wrote the plugin interface

software. All authors participated in data analysis and interpretation.

S.A.M., S.A.L., and J.A.W. drafted the manuscript. All authors edited the

manuscript and gave final approval for publication.
1636 Biophysical Journal 115, 1630–1637, November 6, 2018
ACKNOWLEDGMENTS

Financial support from National Institutes of Health grant #R01EB015133

(S.A.M., G.A.A., and J.A.W.), National Institutes of Health grant

#R01HL131856 (S.A.M. and J.A.W.), National Institutes of Health grant

#R01AR069297 (S.A.M. and J.A.W.), and National Institutes of Health

grant #R01GM104139 is gratefully acknowledged.
REFERENCES

1. Maas, S. A., B. J. Ellis,., J. A. Weiss. 2012. FEBio: finite elements for
biomechanics. J. Biomech. Eng. 134:011005.

2. Maas, S. A., G. A. Ateshian, and J. A. Weiss. 2017. FEBio: history and
advances. Annu. Rev. Biomed. Eng. 19:279–299.

3. Wang, H., A. S. Abhilash, ., V. B. Shenoy. 2014. Long-range force
transmission in fibrous matrices enabled by tension-driven alignment
of fibers. Biophys. J. 107:2592–2603.

4. Rabbitt, R. D., J. A.Weiss,., M. I.Miller. 1995.Mapping of hyperelas-
tic deformable templates. Proc. SPIE Int. Soc. Opt. Eng. 2552:252–264.

5. Edgar, L. T., J. B. Hoying, ., J. A. Weiss. 2014. Mechanical interac-
tion of angiogenic microvessels with the extracellular matrix.
J. Biomech. Eng. 136:021001.

6. Edgar, L. T., J. B. Hoying, and J. A. Weiss. 2015. In silico investigation
of angiogenesis with growth and stress generation coupled to local
extracellular matrix density. Ann. Biomed. Eng. 43:1531–1542.

7. Edgar, L. T., S. A. Maas, ., J. A. Weiss. 2015. A coupled model of
neovessel growth and matrix mechanics describes and predicts angio-
genesis in vitro. Biomech. Model. Mechanobiol. 14:767–782.

8. Edgar, L. T., C. J. Underwood, ., J. A. Weiss. 2014. Extracellular
matrix density regulates the rate of neovessel growth and branching
in sprouting angiogenesis. PLoS One. 9:e85178.

9. Todd, J. N., T. G. Maak, ., J. A. Weiss. 2018. Hip chondrolabral me-
chanics during activities of daily living: role of the labrum and intersti-
tial fluid pressurization. J. Biomech. 69:113–120.

10. Ateshian, G. A., J. J. Shim,., J. A. Weiss. 2018. Finite element frame-
work for computational fluid dynamics in FEBio. J. Biomech. Eng.
140:021001–021001-17.

11. Ateshian, G. A., S. Maas, and J. A. Weiss. 2012. Solute transport across
a contact interface in deformable porous media. J. Biomech. 45:1023–
1027.

12. Ateshian, G. A., S. Maas, and J. A. Weiss. 2013. Multiphasic finite
element framework for modeling hydrated mixtures with multiple
neutral and charged solutes. J. Biomech. Eng. 135:111001.

13. Ateshian, G. A., R. J. Nims, ., J. A. Weiss. 2014. Computational
modeling of chemical reactions and interstitial growth and remodeling
involving charged solutes and solid-bound molecules. Biomech. Model.
Mechanobiol. 13:1105–1120.

14. Ateshian, G. A., S. Maas, and J. A. Weiss. 2010. Finite element algo-
rithm for frictionless contact of porous permeable media under finite
deformation and sliding. J. Biomech. Eng. 132:061006.

15. Ateshian, G. A., C. R. Henak, and J. A. Weiss. 2015. Toward patient-
specific articular contact mechanics. J. Biomech. 48:779–786.

16. Henak, C. R., A. E. Anderson, and J. A. Weiss. 2013. Subject-specific
analysis of joint contact mechanics: application to the study of osteo-
arthritis and surgical planning. J. Biomech. Eng. 135:021003.

17. Maas, S. A., B. J. Ellis,., J. A. Weiss. 2016. Finite element simulation
of articular contact mechanics with quadratic tetrahedral elements.
J. Biomech. 49:659–667.

18. Maas, S. A., A. Erdemir, ., J. A. Weiss. 2016. A general framework
for application of prestrain to computational models of biological ma-
terials. J. Mech. Behav. Biomed. Mater. 61:499–510.

19. Matthies, H., and G. Strang. 1979. The solution of nonlinear finite
element equations. Int. J. Numer. Methods Eng. 14:1613–1626.

http://opensim.stanford.edu/
https://www.artisynth.org/Main/HomePage
https://www.artisynth.org/Main/HomePage
https://continuity.ucsd.edu/
https://www.febio.org
https://www.febio.org
http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)31069-5
http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)31069-5
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref1
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref1
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref2
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref2
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref3
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref3
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref3
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref4
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref4
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref5
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref5
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref5
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref6
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref6
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref6
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref7
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref7
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref7
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref8
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref8
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref8
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref9
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref9
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref9
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref10
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref10
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref10
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref11
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref11
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref11
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref12
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref12
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref12
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref13
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref13
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref13
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref13
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref14
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref14
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref14
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref15
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref15
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref16
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref16
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref16
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref17
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref17
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref17
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref18
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref18
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref18
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref19
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref19

Computational Tool
20. Ateshian, G. A. 2015. Viscoelasticity using reactive constrained solid
mixtures. J. Biomech. 48:941–947.

21. Laursen, T. A., and B. N. Maker. 1995. Augmented Lagrangian quasi-
Newton solver for constrained nonlinear finite element applications.
Int. J. Numer. Methods Eng. 38:3571–3590.

22. Phatak, N. S., S. A. Maas,., J. A. Weiss. 2009. Strain measurement in
the left ventricle during systole with deformable image registration.
Med. Image Anal. 13:354–361.

23. Phatak, N. S., Q. Sun,., J. A. Weiss. 2007. Noninvasive determination
of ligament strain with deformable image registration. Ann. Biomed.
Eng. 35:1175–1187.

24. Veress, A. I., G. T. Gullberg, and J. A. Weiss. 2005. Measurement of
strain in the left ventricle during diastole with cine-MRI and deform-
able image registration. J. Biomech. Eng. 127:1195–1207.

25. Veress, A. I., G. Klein, and G. T. Gullberg. 2013. A comparison of hy-
perelastic warping of PET images with tagged MRI for the analysis of
cardiac deformation. Int. J. Biomed. Imaging. 2013:728624.

26. Veress, A. I., J. A. Weiss, ., R. D. Rabbitt. 2002. Strain measurement
in coronary arteries using intravascular ultrasound and deformable im-
ages. J. Biomech. Eng. 124:734–741.

27. Weiss, J. A., A. I. Veress, ., R. D. Rabbitt. 2006. Strain measure-
ment using deformable image registration. In Mechanics of Biolog-
ical Tissue. G. A. Holzapfel and R. W. Ogden, eds. Springer, pp.
489–501.

28. Veress, A. I., N. Phatak, and J. A. Weiss. 2005. Deformable image
registration with hyperelastic warping. InHandbook of Biomedical Im-
age Analysis: Vol. 3, Registration Models (Part A). J. S. Suri,
D. L. Wilson, and S. Laxminarayanan, eds. Kluwer Academic/Plenum
Publishers, pp. 487–534.

29. Veress, A. I., J. A. Weiss,., G. T. Gullberg. 2008. Measuring regional
changes in the diastolic deformation of the left ventricle of SHR rats
using microPET technology and hyperelastic warping. Ann. Biomed.
Eng. 36:1104–1117.

30. Edgar, L. T., S. C. Sibole, ., J. A. Weiss. 2013. A computational
model of in vitro angiogenesis based on extracellular matrix fibre orien-
tation. Comput. Methods Biomech. Biomed. Engin. 16:790–801.

31. Vempati, P., F. Mac Gabhann, and A. S. Popel. 2010. Quantifying the
proteolytic release of extracellular matrix-sequestered VEGF with a
computational model. PLoS One. 5:e11860.

32. Pierrat, B., J. G. Murphy,., M. D. Gilchrist. 2016. Finite element im-
plementation of a new model of slight compressibility for transversely
isotropic materials. Comput. Methods Biomech. Biomed. Engin.
19:745–758.
Biophysical Journal 115, 1630–1637, November 6, 2018 1637

http://refhub.elsevier.com/S0006-3495(18)31069-5/sref20
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref20
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref21
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref21
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref21
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref22
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref22
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref22
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref23
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref23
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref23
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref24
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref24
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref24
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref25
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref25
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref25
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref26
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref26
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref26
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref27
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref27
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref27
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref27
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref28
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref28
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref28
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref28
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref28
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref29
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref29
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref29
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref29
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref30
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref30
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref30
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref31
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref31
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref31
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref32
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref32
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref32
http://refhub.elsevier.com/S0006-3495(18)31069-5/sref32

Biophysical Journal, Volume 115
Supplemental Information
A Plugin Framework for Extending the Simulation Capabilities of FEBio

Steve A. Maas, Steven A. LaBelle, Gerard A. Ateshian, and Jeffrey A. Weiss

2

SUPPORTING MATERIAL

Details of the Plugin Framework in FEBio.

FEBio is structured as a hierarchy of modules or libraries, each module collecting

algorithms and data structures for addressing a specific aspect of a FE analysis (Figure S1). 5

Some modules address different types of physics, such as structural mechanics (FEBioMech),

mechanics of mixtures (FEBioMix), and fluid mechanics (FEBioFluid). Other modules deal with

file input (FEBioXML) and output (FEBioPlot). A separate library deals with solving the linear

system equations (NumCore). The FEBioLib library is the portal that users can use to interact

with all the FEBio features. The FEBio executable is a command-line front-end to the FEBioLib 10

library.

For the most part, each module works independently of others, but all modules interact

with a special module, termed the FEBio kernel (FECore). One of the most important

FECore

FEBioMech

FEBioMix

FEBioFluid

NumCore

FEBioXML

FEBioPlot

FEBioLib

FEBio

Figure S1. Overview of the modular structure of FEBio. The FECore library is the kernel
that centralizes all the features and that all other modules depend on.

3

responsibilities of this kernel module is to keep track of all the features that are implemented by

the separate modules. Each physics module informs the kernel of the materials, boundary

conditions, solvers, etc., that it implements. This information can then be used, for instance, by

the input module for parsing the FEBio input file. This approach makes it easy to add new

features, as all new features remain centralized within their respective module. For instance, 5

addition of constitutive models to the physics modules do not require any changes to the input or

output modules.

 The plugin framework is part of the FECore kernel library*, which contains most of the

base classes from which new features can be derived. It also contains the essential algorithms

and data structures for defining and solving FE problems, and thus all the relevant code for 10

creating FEBio plugins. Most of the other modules in FEBio use the FECore library to

implement new physics-based solvers. For instance, the FEBioMech library implements

solutions algorithms for solving quasi-static or dynamic structural mechanics problems.

Similarly, a plugin will use the FECore library to implement the new functionality. It may also

require some of the other modules if the plugin extends functionality of a particular module. For 15

instance, a plugin that implements a new elastic constitutive model will also depend on the

FEBioMech library.

 Plugins interact with FEBio as follows (Figure S2). The path to a plugin file is specified

in the FEBio configuration file. When FEBio starts, it parses this file and attempts to load each

plugin listed in it. When a plugin is loaded, it registers its new functionality with FEBio. This 20

registration process is important as it allows the new features to be recognized automatically in

the FEBio input file or output file. The plugin allocates any resources it may need during this

phase. During the solution phase, FEBio will call the plugin whenever it needs data. The timing

* Documentation on the plugin framework can be found at http://febiodoc.sci.utah.edu/doxygen/.

http://febiodoc.sci.utah.edu/doxygen/

4

of calls to the plugin from FEBio greatly depends on the nature of the plugin. For instance, if the

plugin implements an elastic constitutive model, FEBio calls the plugin when it needs to

calculate the stress or the elasticity tensor. Finally, before FEBio terminates, the plugin is given

an opportunity to cleanup and deallocate its resources.

 FEBio has an expansive collection of tensor classes that greatly facilitate the 5

implementation of complex tensor expressions. It offers various classes for representing first (i.e.

vectors) second, third, fourth, fifth, and sixth order tensors and common operations that can be

made with tensors (e.g. addition, multiplication, contraction, etc.). To maximize efficiency,

different tensor symmetries are implemented in different classes. For example, the mat3ds class

implements a second-order symmetric tensor, mat3da implements a skew-symmetric tensor, and 10

mat3dd implements a diagonal second-order tensor. These tensor classes make the

implementation of new material plugins much easier for the user (Figure S3).

Figure S2. Schematic of how FEBio interacts with a plugin. During initialization, plugins are
loaded. In the solution phase the plugin code whenever FEBio needs data from it. Finally,
plugins are given a chance to cleanup any allocated resources before FEBio ends.

FEBio Plugin

Configure Initialize

Solve Plugin code

Finish Cleanup

5

Material Plugin for Wang et al. Reproduction

Strain Energy Function. The strain energy density function for the constitutive model in

(2) is given by

 b fW W W= + . (S1)

Here, Wb captures the isotropic response: 5

 () ()2
1 3 1 ,

2 2bW I Jµ κ
= − + − (S2)

where µ is the shear modulus, κ is the bulk modulus, 1I is the first invariant of the deviatoric

right deformation tensor 2/3 2/3 TJ J− −= =C C F F , F is the deformation gradient, and J = det(F) is

the volume ratio. Wf is the contribution from the aligned fibers:

mat3ds FENeoHookean::Stress(FEMaterialPoint& mp)
{
 FEElasticMaterialPoint& pt =
 *mp.ExtractData<FEElasticMaterialPoint>();
 double detF = pt.m_J;
 double detFi = 1.0/detF;
 double lndetF = log(detF);
 // calculate left Cauchy-Green tensor
 mat3ds b = pt.LeftCauchyGreen();
 // lame parameters
 double lam = m_v*m_E/((1+m_v)*(1-2*m_v));
 double mu = 0.5*m_E/(1+m_v);
 // Identity
 mat3dd I(1);
 // calculate stress
 mat3ds s = (b - I)*(mu*detFi) + I*(lam*lndetF*detFi);
 return s;
}

Figure S3. Stress evaluation for the neo-Hookean material. This figure illustrates the
use of classes from FEBio’s tensor class library (mat3ds for symmetric second-order
tensors, mat3dd for diagonal second order tensors) and defines tensor operations.
This library greatly simplifies the implementation of complicated tensor expressions.

6

()
3

1
f a

a
W f λ

=

= ∑ , (S3)

Where the λa are the principal stretch ratios.

Stress Tensor. The 2nd PK stress is given by

 2 b f
W∂

= = +
∂

S S S
C

, (S4)

 ()2/3 1 1
1

1 1
3b J I J Jµ κ− − − = − + −

S I C C , (S5) 5

where µ is the shear modulus and κ is the bulk modulus. The contribution from the fibers is

given by:

23

2
1

2f a a
a a

d f
dλ=

= ⊗∑S N N , (S6)

where Na is a unit vector defining the direction associated with the ath principal stretch in the

reference configuration. The Cauchy stress follows from the push-forward of S : 10

 ()1 1T T
b f b fJ J

= = + = +σ FSF F S S F σ σ . (S7)

 () ()dev 1b J
J
µ κ= + −σ b 1 , (S8)

where the “dev” operator extracts the deviatoric part of a 2nd order tensor in the current

configuration. The fiber contribution to the Cauchy stress is given by

3 3

1 1

a
f a a a a a

a aa

df
J d
λ σ

λ= =

= ⊗ = ⊗∑ ∑σ n n n n , (S9) 15

7

where na is a unit vector defining the direction associated with the ath principal stretch in the

current configuration.

The authors proposed the following model to represent the strain-dependent anisotropic

contribution from the fibers:

()

()

1

1
1

2 1
1 2

1
22 1

2

0

,
1

1 1
,

1 1

a
n

a
f a

a
a

m
a

f a

E
df

d n

E
n m

λ λ

λ λ λ λ
λ λ

λ λ λ
λ

λ λλ λ λ λ
+

 <

 −

− − = ≤ ≤ +
 + − −− + ≥

+ +

 (S10) 5

where 1 / 2c tλ λ λ= − and 2 / 2c tλ λ λ= + define the applicable ranges of the piecewise function.

These parameters are chosen so that the principal stress contributions from each principal stretch

aλ vanish below a critical (tensile) principal stretch cλ , and show a stiffening response

characterized by a fiber modulus Ef and a hardening exponent m. There is a transition region

when the principal stretch is between 1λ and 2λ , and the authors in the original publication 10

chose the transition exponent as n = 5. The transition width tλ is a user defined parameter,

chosen by the authors in the original publication to be some small fraction of cλ .

Elasticity Tensor. The material version of the 4th order elasticity tensor is given by:

 2 b fIJ
IJKL IJKL IJKL

KL

dSC C C
dC

= = + , (S11)

The isotropic term is: 15

8

()

() ()

2/3 1 1 1
1 1

1 1

2 1
3 3

2 1 2 1

b C
IJKL KL IJ IJ KL IJ IJKL

C
KL IJ IJKL

C J C I C C I I

J JC C J JI

µ δ δ

κ

− − − −

− −

 = − − − −
 + − − −

. (S12)

The spatial version of the isotropic part of the elasticity tensor then follows:

()

() ()

1 1
2 2 2
3 3 9

2 1 2 1

b
ijkl ijkl kl ij kl ij ij kl

ij kl ijkl

c I I b b I
J

J J I

µ δ δ δ δ

κ δ δ

 = − + +
 + − − −

 . (S13)

The fiber contribution is easier to deduce in direct notation in the spatial configuration. The fiber

contribution to the spatial elasticity tensor is: 5

()

3
3

2 23

2 2
, 1

1 1f
a a a a a

a a a a

a b b a
a b a b a b b a

a b a b
a b

f
J

λ
λ λ λ

σ λ σ λ
λ λ=

≠

 ∂ ∂
= ⊗ ⊗ ⊗ ∂ ∂

−
+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

−

∑

∑

n n n n

n n n n n n n n

c

 . (S14)

The factor in square brackets can be expanded to

2

3
2

1
a a a

a a a a a

f f fλ λ λ
λ λ λ λ λ

 ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂

 . (S15)

When b aλ λ→ ,

2 2 2 2

2 2 2lim
2b a

a b b a a
a

a b a

d f
J dλ λ

σ λ σ λ λ σ
λ λ λ→

 −
= − −

 . (S16) 10

Finally,

9

()

1

2
1

1 22
2 1

2 2

0

,

1 ,

a
n

a
f a

a

m
f a a

f E

E

λ λ

λ λ λ λ λ
λ λ λ

λ λ λ λ

 <

 −∂

= ≤ ≤ ∂ −
 + − ≥

 (S17)

The example problem analyzed in Figure 1 differs slightly from the example in the

original publication of Wang et al (2). We used a cubic geometry for the extracellular matrix

while the publication used a cylindrical geometry. As expected, this does not affect the

conclusions regarding comparisons of the model to the neo-Hookean model, as our results are 5

very similar to those obtained for the cylindrical geometry in the original publication (Figure 2 in

(2)). The material coefficients used in the neo-Hookean constitutive model to generate the

results in Figures 1A and 1B were E = 2.0 KPa, and ν = 0.3, while the material coefficients used

in the fiber-stiffening model for results in Figures 1A and 1C were µ = 0.7692 KPa, κ = 1.667

KPa, Ef = 134.6 KPa, λc = 1.02, λt = 0.255, n = 5, m = 30. 10

10

To illustrate that the plugin accurately reproduces the stress-strain behavior of the

constitutive model, we simulated uniaxial extension and compared the stress-strain curve to the

published result (Figure S3). This graph exactly reproduces the result in Figure 1c of the original

publication. The material coefficients used to generate the results in Figure S3 were µ = 0.7692

KPa, κ = 1.667 KPa, Ef = 22.88 KPa, λc = 1.1, λt = 0.0255, n = 5, m = 10, as specified in the 5

original publication.

Vempati et al. Reproduction

We reproduced the results of the finite volume model reported in Vempati et al. (1) to study

autocrine endothelial signaling in angiogenesis using the FEBioChem plugin. The central 10

objective of the study was to determine quantitatively if a single protease secreting cell at the

front of an angiogenic microvessel could modify local concentrations of the cytokine vascular

endothelial growth factor (VEGF).

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

C
au

ch
y

St
re

ss
 (k

Pa
)

Engineering Strain

Figure S4. The stress-strain curve of a uniaxial tensile test for the constitutive model proposed
by Wang et al (1), obtained from a material plugin developed in FEBio. This graph recovers the
results in Figure 1c from the corresponding publication.

11

Geometry. The idealized geometry of the model comprised a cylindrical line of cells

surrounded by an inner tube to represent the basement membrane and an outer tube to represent

the extracellular matrix. The model in the original manuscript was solved using the finite volume

method with axisymmetric geometry. Since FEBio is inherently a 3D analysis code,

axisymmetry was emulated via a judicious choice of geometry and boundary conditions. This 5

was accomplished by representing the cylindrical domain with a 9 degree wedge. All geometric

measures were obtained directly from the text of the original manuscript. Meters were used as

the length unit in our reproduction rather than micrometers, so input parameters were adjusted

accordingly from the values provided in the publication, and output concentrations should be

interpreted as kM. 10

Figure S5. Geometry for Vempati et al. reproduction. A) A line of cells (purple, 2 μm
radius) extends 1200 μm from the left face along the central z-axis. The cells are
covered by a 0.043 μm thick basement membrane (blue). The right-most 40 μm of the
basement membrane constitutes the tip cell, where flux of protease is specified. B) A
cross-section through the r-z plane of the simulation domain. Most of the domain
consists of extracellular matrix (green). C) Rotated geometry highlighting initial and
boundary conditions applied to the wedge. Radial symmetry was maintained by
prescribing solute flux as zero on faces normal to the radial direction. Far-field effects
are controlled by prescribing concentrations on faces where r = 1200 μm or z = 0 μm or
z = 2400 μm.

12

Finite Element Mesh. The cell volume and extracellular matrix elements above the cell

volume were represented as a column of 300 8 μm tall (z-direction) 6-node linear pentahedral

wedge elements (FEBio penta6). The basement membrane was constructed from a column of

300 8 μm tall 8-node trilinear hexahedral elements (FEBio hex8). The remainder of the radial 5

volume was spanned by 598 single element wide (θ-direction) columns of ~2 μm deep (r-

direction) hex8 elements yielding a total of 600 elements total in the radial direction. (matching

the finite element discretization used in the original publication). The depth of the cell elements

was 2 μm, the basement membrane was 0.0143 μm thick, and the span of all extracellular

membrane elements was 2 μm. In comparison, Vempati et al. constrained their mesh side lengths 10

between 4 and 8 μm through their domain. Further, while we represented the basement

membrane using 3 thin elements in the radial direction, Vempati et al. used a single line of nodes

to represent the basement membrane.

Materials. Reactions within FEBioChem are specified at the material level, so separate

materials were created for the cells, basement membrane, and extracellular matrix. FEBioChem 15

allows the user to model the reactions by specifying the stoichiometric coefficients of the

reactants and products for each solute or solid-bound molecule participating in a given reaction.

The solid volume fraction of each material and diffusivity for each solute were defined at the

material level using parameters from Vempati et al. (note that the solid volume fraction was

calculated from the available volume fraction as 𝜑𝑟𝛼 = 1 − 𝐾𝑎𝑎 where 𝜑𝑟𝛼 is the volume fraction 20

of a species α in the reference configuration and 𝐾𝑎𝑎 is the average volume fraction available for

reaction and diffusion).

13

Initial Conditions. Vempati et al. assumed a uniform concentration of soluble VEGF165

throughout the simulation volume, excluding the cell volume which does not participate in

reactions. Solid-bound concentrations were converted to initial apparent densities using the

equation 𝜌𝑟𝛼 = 𝑐𝑟𝛼𝑀𝛼(1 − 𝜑𝑟𝛼), and these concentrations were then prescribed at the material

level (𝜌𝑟𝛼 and 𝑐𝑟𝛼 are the density and concentration of a species α in the reference configuration 5

and 𝑀𝛼 is the molar mass for the chosen species).

Boundary Conditions. The steady state concentration of membrane bound VEGF165

(𝑉165𝐻) was determined from the dissociation constant-defined equation [𝑉165𝐻] = [𝐻𝑇𝑇𝑇𝑇𝑇][𝑉165]
𝐾𝑑+𝑉165

and used to prescribe elemental concentrations for the basement membrane and extracellular

matrix to improve computation time. Dirichlet boundary conditions were used such that [𝑉165] =10

1 pM, [𝑉114] = 0, [𝑃] = 0 ∀ 𝑟 = 1200 µm ∪ 𝑧 = ±1200 µm. VEGF165 flux across the faces

defined by 𝑟 = 1200 µm and 𝑧 = ±1200 µm was fixed. Symmetry across the cut faces was

maintained by fixing the flux of each solute on the wedge faces. Protease secretion from the tip

cell surface was prescribed at a constant value of 2.7∙10-12 mol/(m2∙s). In the original publication,

VEGF Receptor 2 (R2) was specified as an expression rate in units of concentration per second, 15

w we represented this with the reaction [] → 𝑅2 within the tip and stalk membrane materials

rather than a solute flux applied to a surface. Similarly, degradation and cellular internalization

for a given species C was specified by the reaction 𝐶 → []. To speed up computation, we

initially superimposed 1 pM of VEGF165 to each node in the extracellular matrix since the far-

field VEGF165 distribution is mostly unaffected by protease. Thus, we performed our simulation 20

in a single step whereas the original publication used one step to determine the VEGF165

distribution and another step to introduce protease.

14

Boundary Flux. Vempati et al enforced flux continuity at the boundary between the

ECM and BM to account for diffusive hindrance using a lumped boundary condition. The finite

element method is readily able to handle transport between thin membranes and large element

volumes. Further, we modeled the basement membrane as a 3-element deep column rather than a

single node, removing the need for this consideration from our model. 5

Molecular Species. The molecular species that were included in the analysis are

specified in the Table S1. A density of 1,400 kg/m3 was used for all proteins (3). The density and

individual molar masses were used to specify concentrations of solid bound species. Diffusion

terms for soluble species were consistent with Vempati et al. for each material (ECM, BM).

Species Code Name Code ID Molar mass (kDa) (4)

VEGF 165 V165 Sol 1 38.2 (5)

Protease P Sol 2 83 (1)

VEGF 114 V114 Sol 3 28.4 (6)

Heparan Sulfate Proteoglycan (HSPG) H Sbs 1 110 (1)

Matrix bound VEGF 165 V165H Sbs 2 148.2

VEGF Receptor 2 R2 Sbs 3 151.5 (7)

Receptor bound VEGF 165 V165R2 Sbs 4 189.7

Receptor bound VEGF 114 V114R2 Sbs 5 179.9

Table S1. Solutes (Sol) and solid-bound species (Sbs) used in the reproduction. 10

Reactions. Reactions are specified at the material level in FEBioChem. The full list of

reactions used in the simulations is detailed in Table S2.

Reaction Name Code Name Chemical Reaction Reaction Rate

VEGF 165 Membrane binding V165 MB V165 + H →V165H 420 kM-1∙s-1

VEGF 165 Membrane release V165 MR V165H → V165 + H 0.01 s-1

VEGF 165 Proteolysis V165 P V165 + P → V114 + P 0.631 kM-1∙s-1

Membrane bound VEGF 165 proteolysis V165H P V165H + P → V114 + H + P 0.631 kM-1∙s-1

VEGF Receptor 2 expression R2 exp [] → R2 1.04792∙10-6 kM∙s-1

VEGF Receptor 2 internalization R2 int R2 → [] 2.8∙10-4 s-1

15

VEGF 165 Receptor binding V165 RB V165 + R2 → V165R2 1∙104 kM-1∙s-1

VEGF 165 Receptor release V165 RR V165R2 → V165 + R2 0.01 s-1

VEGF 165 Internalization V165R2 int V165R2 → [] 2.8∙10-4 s-1

VEGF 114 Receptor binding V114 RB V114 + R2 → V114R2 1∙104 kM-1∙s-1

VEGF 114 Receptor release V114 RR V114R2 → V114 + R2 0.01 s-1

VEGF 114 Internalization V114R2 int V114R2 → [] 2.8∙10-4 s-1

Table S2. Reaction descriptions and relevant parameters.

Simulation Conditions

FEBioChem uses a trapezoidal rule by default for time integration, whereas Vempati et al. used a

fully-implicit scheme for 1st order derivatives and a central difference approximation with

successive over-relaxation (SOR) update for spatial derivatives. FEBio’s automatic timestepper 5

was used with a maximum timestep of 10 seconds. The simulation was run until steady state was

achieved at ~7 hours simulation time (Vempati et al. achieved steady state in ~10 simulation

hours). The FEBioChem convergence norm remained below 1x10-13 for soluble species and

below 1x10-17 for all solid bound species (for comparison, Vempati et al enforced convergence

by allowing 1x10-7 fractional change in species concentrations for any time-step). 10

Reproduction assessment

Concentrations of protease and VEGF were measured in various locations and compared to the

corresponding publication. Most species were within 1% agreement. Further, the general

protease and VEGF 114 distributions in the axial direction (Figure 4 D-E) align with the

distributions in the corresponding publication (Figures 2 D-E). 15

Metric Location FEBioChem Calculation Vempati Calculation Difference FEBioChem (%)

[P] Inner surface of tip cell membrane 3.02∙10-1 nM 3.20∙10-1 nM -5.60

[V114] Inner surface of tip cell membrane 2.33∙10-4 pM 2.40∙10-4 pM -3.08

[V165]min Basement membrane 9.88∙10-1 nM 9.86∙10-1 nM 0.24

[V165H]max Basement membrane 5.43∙102 pM 5.46∙102 pM -0.63

[V165H]min Basement membrane 5.40∙102 nM 5.38∙102 nM 0.45

16

[V165H]max ECM 3.15∙101 pM 3.15∙101 pM 0.00

[V165H]min ECM 3.11∙101 pM 3.10∙101 pM 0.32

Table S3: Comparison of species concentrations at steady state.

FEBio plugin types

As of the latest FEBio release (FEBio 2.7), the following plugins are supported.

• Materials: A material plugin implements a new constitutive model that is used to

evaluate field variables that are needed to advance the solution (e.g. stress and elasticity 5

tangent for a structural mechanics material).

• Body load: a body load adds a volumetric “source” term to the weak formulation of a

particular finite element formulation. In the context of mechanics, body loads can be used

to model the effects of gravity, centrifugal acceleration, etc.

• Surface load: A surface load adds a term to the weak formulation that can represent an 10

external load on the system.

• Nonlinear constraint: A nonlinear constraint plugin can enforce a nonlinear relationship

between the relevant field variables. This plugin type essentially taps into FEBio’s

augmented Lagrangian framework.

• Task: A task is the highest execution level of FEBio and dictates what FEBio does. Tasks 15

can be useful for implementing algorithms that require repeated calls to FEBio’s solvers,

for instance, optimization algorithms, or interactions with external libraries.

• Plot variable: FEBio’s plot file format is self-describing and extendible, which makes it

possible to customize its content. The content can be customized via plot variable

plugins, which define additional data that can be stored to the plot file. 20

17

• Log file data: Similarly to FEBio’s plot file, the log file can also be customized. A log

file data plugin allows users to create new data variables that will be written to the log

file.

• Callback: A callback plugin allows users to interact more directly with its solution

pipeline. This can be used as an alternative for interacting with external libraries when 5

tasks are not possible. For instance, when time stepping needs to be controlled from the

external library.

• Solver: Solver plugins implement new finite element formulations that are not directly

supported in FEBio. Usually, a solver plugin will also need to implement new materials,

surface loads, body loads, and other model components that the solver needs to support. 10

• Loadcurve: A loadcurve controls the time dependency of a model parameter. The default

load curve that FEBio supports requires the definition of a set of time-value pairs and

parameters that the define how FEBio is to interpolate (and extrapolate) the data. Users

can create custom load curves that generate the time-dependency via a procedural

method. 15

18

REFERENCES
1. Vempati, P., F. Mac Gabhann, and A. S. Popel. 2010. Quantifying the proteolytic release

of extracellular matrix-sequestered VEGF with a computational model. PLoS One
5:e11860.

2. Wang, H., A. S. Abhilash, C. S. Chen, R. G. Wells, and V. B. Shenoy. 2014. Long-Range 5
Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers.
Biophysical Journal 107:2592-2603.

3. Quillin, M. L., and B. W. Matthews. 2000. Accurate calculation of the density of
proteins. Acta Crystallogr D Biol Crystallogr 56:791-794.

4. Fischer, H., I. Polikarpov, and A. F. Craievich. 2004. Average protein density is a 10
molecular-weight-dependent function. Protein Sci 13:2825-2828.

5. Inc., S. B. 2018. Product Data Sheet - Recombinant Human VEGF-165 (Vascular
Endothelial Growth Factor-165). Warwick, PA.

6. Inc, S. B. 2018. Product Data Sheet - Recombinant Human VEGF-121 (Vascular
Endothelial Growth Factor-121). Warwick, PA. 15

7. PhosphoSitePlus. 2018. VEGFR2 - Human. Cell Signaling Technology.

	A Plugin Framework for Extending the Simulation Capabilities of FEBio
	Introduction
	Materials and Methods
	Overview of FEBio
	Overview of the plugin mechanism

	Results
	Material plugins
	Nonlinear constraint plugin
	Task plugin
	Solver plugins

	Discussion
	Supporting Material
	Author Contributions
	Acknowledgments
	References

	bpj_9188_mmc1.pdf
	Supporting Material
	Details of the Plugin Framework in FEBio.
	Material Plugin for Wang et al. Reproduction

	Stress Tensor. The 2nd PK stress is given by
	Elasticity Tensor. The material version of the 4th order elasticity tensor is given by:
	Vempati et al. Reproduction
	FEBio plugin types

	References

