
Highly parallel, interferometric diffusing wave 
spectroscopy for monitoring cerebral blood flow 
dynamics: supplementary material 
WENJUN ZHOU,1 OYBEK KHOLIQOV,1 SHAU POH CHONG,1 AND VIVEK J. 
SRINIVASAN1,2,*

1Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA 
2Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA 
*Corresponding author: vjsriniv@ucdavis.edu

Published 30 April 2018

This document provides supplementary information to “Highly parallel, interferometric diffusing wave 
spectroscopy for monitoring cerebral blood flow dynamics,” https://doi.org/10.1364/OPTICA.5.000518. Here we 
relate the complex optical field autocorrelation to that of the in-phase field component measured by 
interferometric diffusing wave spectroscopy (iDWS), as well as summarize the multimode fiber solver, statistical 
simulation, and diffuse correlation spectroscopy fitting model used in the main text.  Also, we include complete 
SANR and speckle number simulation results for variable horizontal pixel binning and vertical slit height. 
Furthermore, we provide experimental confirmation of optimal horizontal pixel binning and shot noise limited 
performance of the experimental setup of multimode iDWS.  Finally, we investigate repeatability of in vivo cerebral 
blood flow monitoring, contact iDWS measurements, and effects of ambient light.   

S1. AUTOCORRELATION OF IN-PHASE OPTICAL FIELD 
COMPONENT 
From Eq. (7), the time-dependent heterodyne signals for an 
interference pattern measured by a senor array can be written as 

( ) ( ){ }AC 2 Re *
d S dt t= ×P T A , (S1) 

which can be expanded as a matrix equation by including delay 
time, td, as an additional dimension: 
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where td is a delay time, δtd is the sampling interval, and Tp,m is 
given by Eq. (6).  The heterodyne signal, 𝑃𝑃AC,𝑝𝑝(𝑡𝑡𝑑𝑑), for a given 
sensor element only includes the in-phase (real) part of 
∑ 𝑇𝑇𝑝𝑝,𝑚𝑚 ∙ 𝐴𝐴𝑆𝑆,𝑚𝑚

∗ (𝑡𝑡𝑑𝑑)𝑚𝑚 .  We assume that ∑ 𝑇𝑇𝑝𝑝,𝑚𝑚 ∙ 𝐴𝐴𝑆𝑆,𝑚𝑚
∗ (𝑡𝑡𝑑𝑑)𝑚𝑚  is a 

complex, zero-mean, and circularly symmetric Gaussian random 
variable, 𝑈𝑈(𝑡𝑡𝑑𝑑) , with a known autocorrelation, 𝐺𝐺1(𝜏𝜏𝑑𝑑) =

〈𝑈𝑈∗(𝑡𝑡𝑑𝑑)𝑈𝑈(𝑡𝑡𝑑𝑑 + 𝜏𝜏𝑑𝑑)〉.  The corresponding autocorrelation function, 
𝐺𝐺1𝑟𝑟(𝜏𝜏𝑑𝑑), based on the in-phase (real) part of 𝑈𝑈(𝑡𝑡𝑑𝑑) can thus be 
expressed as 
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 (S3) 
where 〈𝑈𝑈(𝑡𝑡𝑑𝑑)𝑈𝑈(𝑡𝑡𝑑𝑑 + 𝜏𝜏𝑑𝑑)〉 = 〈𝑈𝑈∗(𝑡𝑡𝑑𝑑)𝑈𝑈∗(𝑡𝑡𝑑𝑑 + 𝜏𝜏𝑑𝑑)〉 = 0, due to 
circular symmetry and independence of the real and imaginary 
parts of 𝑈𝑈(𝑡𝑡𝑑𝑑). Then, Eq. (S3) can be further written as  

( ) ( ) ( ) ( ){ }*
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Therefore, if 𝐺𝐺1(𝜏𝜏𝑑𝑑) is real, as is the case for many dynamical 
systems of interest, 𝐺𝐺1𝑟𝑟(𝜏𝜏𝑑𝑑), calculated from the in-phase (real) 
field component, provides the same information as 𝐺𝐺1(𝜏𝜏𝑑𝑑).  Note 
that all 𝐺𝐺1(𝜏𝜏𝑑𝑑)  mentioned in the following and primary 
manuscript indicate the in-phase optical field component-based 
autocorrelation function 𝐺𝐺1𝑟𝑟(𝜏𝜏𝑑𝑑).  
 

S2. VECTORIAL MODE SOLVER FOR STEP-INDEX 
MULTIMODE FIBERS  
 

 

Fig. S1. Calculated effective mode index (neff) versus mode number 
based on the MMF model shown above, where the two horizontal 
dashed lines indicate the RIs of the dark gray core (nco) and gray 
cladding (ncl) layers of the MMF model.  The value of nco is set to 
1.460192, to achieve on an NA of 0.15, given ncl of 1.452467 (i.e. the RI 
of fused silica at 852 nm [1]).  The light gray layer with a thickness of 5 
μm shown in the MMF model is set as air.  The inset shows the effective 
indices of the lowest order MMF core modes.  

 
To generate MMITMs, vectorial electric fields of all core modes 
guided in the step-index MMF, with the geometry and numerical 
aperture (NA) shown in Fig. S1, are determined by a general fiber 
solver (GFS) (FIMMWAVE, Photon Design) [2].  This GFS can 
model fibers of arbitrary (real) refractive index (RI), using a 
rigorous solution to the vectorial wave equation in cylindrical 
coordinates.  The solution assumes isotropic media and a perfect 
electrical conductor as the outer boundary condition [3].  In Fig. S1, 
the diameters of the core and cladding layers are directly 
determined from the specifications of the MMF used in the 
multimode beamsplitter (FOBS-22P-1111-105/125-MMMM-850-
95/5-35-3A3A3A3A-3-1-NA=0.15, OZ Optics), while the RI of the 
core is set to achieve an NA of 0.15, given an assumed pure silica 

cladding (Fig. S1).  Alternatively, the MMF could possibly have a 
pure silica core and a doped cladding with a lower RI.  However, 
the total number of MMF core modes is mainly determined by the 
core diameter and NA (i.e. the V number), and small changes in the 
core RI would not alter simulation results in Fig. 3−6 of the 
primary manuscript.  

All modes, including orthogonal polarizations, with an effective 
mode index (neff) falling between the core RI (nco) and cladding RI 
(ncl), are defined as the core modes for the MMF.  The 
corresponding transverse electric field components [𝛙𝛙(𝑥𝑥,𝑦𝑦) =
𝛙𝛙𝑥𝑥(𝑥𝑥,𝑦𝑦) + 𝛙𝛙𝑦𝑦(𝑥𝑥,𝑦𝑦)] of the 1702 vectorial core modes are used 
for the MMITM.  This accurate number of core modes (M) is quite 
close to the estimate of 1688 from the MMF’s V number of 58.1 (M 
≈ V2/2).  The intensity patterns of the transverse electric fields 
|𝛙𝛙(𝑥𝑥,𝑦𝑦)|2 of the 1702 vectorial modes can be found in Ref. [4], 
where the file name of each .png figure consists of the mode 
number, azimuthal number (m#) and polarization number (p#).  
 

S3. MMITM COMPUTATION, STATISTICAL 
SIMULATION, AND DATA PROCESSING 
Here we describe steps in the simulation to determine the SANR 
and speckle number in Sec. 3.A of the primary manuscript. 

1. As mentioned above, the MMITM T can be created from the 
transverse electric field components 𝛙𝛙(𝑥𝑥, 𝑦𝑦) = 𝛙𝛙𝑥𝑥(𝑥𝑥,𝑦𝑦) +
𝛙𝛙𝑦𝑦(𝑥𝑥,𝑦𝑦) of vectorial core modes of the MMF (see Sec. S2).  Each 
element of the complex MMITM T can be calculated by Eq. (6) for a 
given aSlit and NMode.  To determine T, the complex amplitudes AR,n 
are assumed to have identical magnitudes and random phases, 
corresponding to NMode uncorrelated code modes in the reference 
arm.  The total guided reference power, 𝑁𝑁Mode�𝐴𝐴𝑅𝑅,𝑛𝑛�

2, is always 
the same.  In this work, four MMITMs with NMode of 1702, 1300, 
900, and 500 are created, removing modes in order of increasing 
mode index (decreasing mode number) to decrease NMode.  
Because of the fixed input reference light polarization, any pair of 
orthogonally polarized modes with the same mode index have a 
fixed phase relationship, and therefore add to form a single mode 
with a superimposed polarization.  Compared to the 1702 excited 
core modes in the sample arm, the effective maximum number of 
core modes is 851 (i.e. half of 1702) for the reference arm in our 
setup [Fig. 2(a)].  So we set the reference modes with the same 
mode index have the identical phase in the MMITM computation.  
By comparison, in the sample arm, the complex amplitudes of any 
pair of orthogonally polarized modes with the same mode index 
are uncorrelated due to sample dynamics, leading to a random 
polarization.  Finally, P (the output dimension) is always 512 for 
preliminary generation of MMITMs.  Pixel binning (e.g. Sec. 3.A of 
the primary manuscript) is accomplished by summing either 
heterodyne signals or MMITM rows. 

2. The complex amplitudes, 𝐀𝐀𝑆𝑆,𝑚𝑚
∗ (𝑡𝑡𝑑𝑑), for sample core modes 

are created by the algorithm described in Ref. [5].  𝐀𝐀𝑆𝑆∗ (𝑡𝑡𝑑𝑑) 
constitutes 1702 time series of 1702 identically distributed, 
mutually uncorrelated, complex, circularly symmetric, and zero 
mean Gaussian random variables with an assumed 
autocorrelation decay rate of 0.05 μs-1.  This is relevant for in vivo 
experiments because the solution to the correlation diffusion 
equation for a semi-infinite homogenous medium [i.e. Eq. (S9)] can 
be approximated as an exponential decay for small lag times [6,7].  
The sampling rate (i.e. 1/δtd) and length of 𝐀𝐀𝑆𝑆,𝑚𝑚

∗ (𝑡𝑡𝑑𝑑) are set as 333 
kHz and 33333, respectively, corresponding to an integration time 
of ~0.1 second for each autocorrelation.  The heterodyne signals 
without any noise [i.e. 𝐏𝐏AC(𝑡𝑡𝑑𝑑)] can then be generated as per Eq. 
(S1), based on the MMITM and 𝐀𝐀𝑆𝑆∗ (𝑡𝑡𝑑𝑑).  



3. In real measurements, noise is present.  For heterodyne 
detection, if the detected sample photon number is much less than 
the detected reference photon number, the main noise source is 
shot noise in the reference photon number, which obeys a Poisson 
distribution.  In the following simulations, the total sample photon 
number, NS, detected by the 512 camera pixels is set as ~41 per 
sampling interval, δtd, of 3 μs, where the total reference photon 
number, NR, is set as 105 times higher than NS, estimated from 
experimental results.  Also, camera noise, with uniform statistics 
across camera pixels, is included.  So we include two additional 
Gaussian random variables of 𝐍𝐍SN,𝑝𝑝(𝑡𝑡𝑑𝑑) and 𝐍𝐍CN,𝑝𝑝(𝑡𝑡𝑑𝑑) as the shot 
noise and camera noise for each pixel, respectively, where  

( ) ( )
2

SN, ,std ,e
p d R n n

np

tt A x y dxdy
E

  =  ∑∫∫N Ψ , (S5) 

where te is the exposure time of camera pixel for each sampling 
period, E is the single photon energy.  Thus, the noise-added 
heterodyne signals, 𝐍𝐍AC,𝑁𝑁(𝑡𝑡𝑑𝑑), can be expressed as 

( ) ( ) ( ) ( )AC, AC SN CNN d d d dt t t t= + +N N N N , (S6) 

where 𝐍𝐍AC(𝑡𝑡𝑑𝑑) = 𝐏𝐏AC(𝑡𝑡𝑑𝑑)𝑡𝑡𝑒𝑒 𝐸𝐸⁄  are the heterodyne signals 
without any additive noise.  The standard deviation of camera 
noise, std�𝐍𝐍CN,𝑝𝑝(𝑡𝑡𝑑𝑑)�, is set to 20.3 (in photon number) based on 
experimental camera background measurements under a camera 
exposure time of 3 μs.  Then, 𝐍𝐍AC(𝑡𝑡𝑑𝑑) and 𝐍𝐍AC,𝑁𝑁(𝑡𝑡𝑑𝑑) are digitized 
to 4096 DN, corresponding to 12 bits and camera full well capacity 
of 13,000.  Digitized heterodyne signals without [𝐍𝐍AC(𝑡𝑡𝑑𝑑)] and 
with [𝐍𝐍AC,𝑁𝑁(𝑡𝑡𝑑𝑑)] noise are used in simulations.  

4. Based on 𝐍𝐍AC,𝑁𝑁(𝑡𝑡𝑑𝑑), horizontal pixel binning can be applied 
by summing heterodyne signals over every 512/NPixel pixels to 
generate NPixel time series that estimate NPixel field autocorrelations.  
Each field autocorrelation has a different scale due to the non-
uniform distribution of the reference and sample light power 
across binned pixels.  Summing the NPixel field autocorrelations 
achieves speckle averaging, yielding a single autocorrelation, 
 𝐺𝐺1(𝜏𝜏𝑑𝑑), which can be fitted with the model,  

( ) ( ) ( )1 expd d dG A Bτ ξτ δ τ= − + ,   (S7) 

where ξ is the decay rate, and A and B are the sum of the squared 
heterodyne signals and the total white noise variance, respectively.  
The SANR is estimated by A/B. Based on A and B, the normalized 
field autocorrelation function, 𝑔𝑔1(𝜏𝜏𝑑𝑑), can be also estimated.  
 

S4. COMPLETE SANR AND SPECKLE NUMBER 
SIMULATIONS FOR VARIABLE HORIZONTAL PIXEL 
BINNING AND VERTICAL SLIT HEIGHT 
The primary manuscript shows SANR and speckle number results 
for variable pixel binning only for a slit height aSlit of 1 (Fig. 3), and 
results for variable slit height only for a binned pixel number NPixel 
of 64 (Fig. 5).  Here, we include the complete SANR and speckle 
number results in Fig. S2 and S3, respectively, estimated from the 
squared singular values corresponding to different aSlit, NPixel, and 
reference mode number NMode.  The tradeoff between SANR and 
speckle number incurred by horizontal pixel binning, shown in Fig. 
3, exists for all values of aSlit (Fig. S2 and S3).  Also, the aSlit threshold 
of 0.2, below which SANR and speckle number decrease in Fig. 5, 
remains for all other NPixel, except that speckle numbers for 1 ≤ NPixel 
< 8 in Fig. S3 seem insensitive to vertical slit height.  In this regime 
of weakly correlated or uncorrelated binned pixels, speckle 

number depends on NPixel instead of sample mode number, leading 
to speckle numbers that depend less on aSlit.  Finally, Fig. S2 and S3 
indicate that reference mode number NMode has a minimal effect on 
SANR and, a minor, but slightly more noticeable effect on speckle 
number.  More comprehensive investigation of reference mode 
number is needed in the future.  
 

 

Fig. S2. SANR estimated from MMITMs [i.e. Eq. (11)], versus NPixel for 
different aSlit, with NMode of 1702 (a), 1300 (b), 900 (c), and 500 (d).  
Insets show the reference MMF intensity speckle patterns.  Vertical 
dotted lines indicate NPixel of 64.  

 

 

Fig. S3. Speckle number, estimated from MMITMs [i.e. Eq. (12)], versus 
NPixel for different aSlit, with NMode of 1702 (a), 1300 (b), 900 (c), and 500 
(d).  Insets show the reference MMF intensity speckle patterns.  The 
red dashed lines indicate the expected speckle numbers for binning of 
fully uncorrelated pixels.  Vertical dotted lines indicate NPixel of 64.  



S5. SOLUTION TO CORRELATION DIFFUSION 
EQUATION 
The modified diffuse correlation spectroscopy (DCS) model, for 
fitting experimental 𝐺𝐺1(𝜏𝜏𝑑𝑑 ,𝜌𝜌), is 

( ) ( ) ( )DCS
1 1, ,d d dG Ag Bτ ρ τ ρ δ τ= + ,   (S8) 

where the fitting coefficients A and B account for the heterodyne 
signal and additive noise, respectively.  Note that 𝑔𝑔1DCS(𝜏𝜏𝑑𝑑 ,𝜌𝜌) is the 
normalized DCS autocorrelation model.  Based on the CW 
Correlation Diffusion Equation, the normalized solution (i.e. 
normalized field autocorrelation), 𝑔𝑔1DCS(𝜏𝜏𝑑𝑑 ,𝜌𝜌), for a semi-infinite 
homogenous turbid medium with an S-D separation of ρ is given 
by [8],  

( ) ( ) ( )
( ) ( )

2 1 1 2DCS
1

2 1 1 2

exp exp
,

exp 0 exp 0
d d

d

r K r r K r
g

r K r r K r
τ τ

τ ρ
− − −      =
− − −      

, (S9) 

where 𝐾𝐾(𝜏𝜏𝑑𝑑) = �3𝜇𝜇𝑎𝑎(𝜇𝜇𝑠𝑠′ + 𝜇𝜇𝑎𝑎)(1 + 2𝜇𝜇𝑠𝑠′𝑘𝑘02𝛼𝛼𝐷𝐷𝐵𝐵𝜏𝜏𝑑𝑑/𝜇𝜇𝑎𝑎) , 𝑟𝑟1 =
�𝜌𝜌2 + 𝑧𝑧02 , 𝑟𝑟2 = �𝜌𝜌2 + (𝑧𝑧0 + 2𝑧𝑧𝑏𝑏)2 , 𝑧𝑧0 = 1 (𝜇𝜇𝑠𝑠′ + 𝜇𝜇𝑎𝑎)⁄ , 𝑧𝑧𝑏𝑏 =
2�1 + 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒� �3(𝜇𝜇𝑠𝑠′ + 𝜇𝜇𝑎𝑎)�1 − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒��� , 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = −1.44𝑛𝑛−2 +
0.71𝑛𝑛−1 + 0.668 + 0.064𝑛𝑛, n is the ratio of RIs between the 
medium and air, and k0 is the wavenumber of the light propagating 
in the medium.  For liquid phantoms, DB is the Brownian diffusion 
coefficient of moving scatters and α = 1; while for biological tissues, 
the term of αDB is referred to blood flow index (BFI), where the 
unitless factor α accounts for static scatters in the tissue.  

S6. EXPERIMENTAL CONFIRMATION OF OPTIMAL 
HORIZONTAL PIXEL BINNING 
Fig. 7 in the primary manuscript only shows experimental 
phantom and in vivo results for horizontal pixel binning (NPixel of 
64), determined to be optimal from simulation.  To experimentally 
confirm the simulation results leading to this choice (Fig. 3), in Fig. 
S4, we show experimental estimates of 𝑔𝑔1(𝜏𝜏𝑑𝑑) for 10 different 
NPixel ranging from 512 to 1, measured from the liquid Intralipid 
phantom at 3.61 cm S-D separation.  As in Fig. 3(a), noise in 𝑔𝑔1(𝜏𝜏𝑑𝑑) 
estimates appears to be minimized for NPixel ~ 32−64. The 
minimum 95% confidence intervals for the fitted diffusion 
coefficient, DB, appear at NPixel of 64 in Fig. S4(k).  This NPixel also 
yields the minimum RMSE in Fig. 3(b).  Furthermore, Fig. S4(l) 
shows SANRs estimated from fitting experimental 𝐺𝐺1(𝜏𝜏𝑑𝑑) (i.e. 
A/B) for different NPixel.  SANRs calculated from the MMITMs with 
NMode of 1702 and aSlit of 1 [rescaled from Fig. 3(c) to account for the 
different sample photon number] are included for comparison 
(black solid curve).  The simulated SANRs agree with the 
experimental results very well.  Also, the theoretical SANR for 
binning fully correlated pixels is shown by the red dashed curve 
[Fig. S4(l)].  In agreement with simulations [Fig. 3(c)], the 
improvement in experimental SANR achieved by horizontal 
binning deviates from the theory for fully correlated pixels for NPixel 
≲64.  

 
 

 

Fig. S4. Experimental investigation of pixel binning.  (a)-(j) Normalized field autocorrelations, 𝑔𝑔1(𝜏𝜏𝑑𝑑), for NPixel values ranging from 512 to 1, 
measured from diluted Intralipid phantom with 𝜇𝜇𝑠𝑠′  of 6.0 cm-1 and 𝜇𝜇𝑎𝑎 of 0.05 cm-1 at 3.61 cm S-D separation.  (k) Brownian diffusion coefficients, DB, 
(with 95% confidence intervals) estimated from fits in (a)-(j), using the modified DCS model [Eq. (S8)].  (l) Corresponding SANR, estimated from 
fitting experimental 𝐺𝐺1(𝜏𝜏𝑑𝑑) [i.e. A/B from Eq. (S8)], versus NPixel.  (m) Speckle number, estimated from heterodyne signals measured from the same 
phantom at S-D separations of 0.76 and 1.07 cm, using Eq. (12).  Black solid curves in (l) and (m) indicate the rescaled SANR and speckle number 
from simulations (Fig. 3), respectively.  Red dashed curves in (l) and (m) indicate theoretical SANR and speckle number for binning of fully correlated 
and uncorrelated pixels, respectively.  The optimal NPixel of 64 is indicated by vertical dotted lines in (k), (l), and (m).  

 
Experimental speckle numbers for different NPixel were 

estimated by substituting mean-subtracted time courses of binned 
pixels, measured at S-D separations of 0.76 and 1.07 cm, for 
heterodyne signals in Eq. (12).  Since additive noise may cause 
overestimation of speckle number, relatively small S-D separations 
with higher SANRs were chosen to estimate speckle number. In 

Fig. S4(m), the two sets of experimentally obtained speckle 
numbers agree with simulations very well for NPixel ranging from 1 
to 64.  However, the SANR decay and consequent additive noise 
contribution for NPixel ≳ 64 causes overestimation of speckle 
number.  The theoretical speckle number for binning fully 
uncorrelated pixels is shown by the red dashed curve in Fig. S4(m). 



In agreement with simulations [Fig. 3(d)], the enhancement of 
experimental speckle number with reduced binning deviates from 
the theory for uncorrelated pixels for NPixel ≳ 8. Besides confirming 
optimal horizontal pixel binning parameters experimentally, these 
results also confirm the predictive capabilities of our statistical 
iDWS model.  

Finally, although the impact of vertical slit height is not directly 
investigated experimentally, as discussed in Sec. 3.A.2 of the 
primary manuscript, changes in SANR and speckle number as 
vertical slit height is varied arise from spatial correlations of 
measurements.  Agreements of Fig. S4(l) and S4(m) with Fig. 3(c) 
and 3(d), respectively, suggest that these spatial correlations are 
indeed well-represented by our simulations.  
 

S7. SHOT NOISE LIMITED PERFORMANCE OF 
MULTIMODE IDWS SYSTEM 
To test whether or not the experimental multimode iDWS setup 
achieves shot noise limited performance, SANR and additive noise 
variance were estimated at various reference photon numbers.  
These measurements were performed with the same Intralipid 
phantom used in Sec. 3.B.1, at an S-D separation of ~1.5 cm.  With 
the experimental setup in Fig. 2(a), dynamic multimode 
interference time courses were recorded at nine different 
reference powers, without changing the sample power.  Then, 
SANRs and additive noise variances were estimated by fitting the 
experimental 𝐺𝐺1(𝜏𝜏𝑑𝑑) with Eq. (S8).  A full well capacity of 13,000, 
specified by the manufacturer, was assumed in converting all 
quantities from camera gray level (DN) to photon number.  SANR 
and additive noise variance (in units of photon number) for NPixel of 
512 and 64 are shown in Fig. S5.  With and without horizontal pixel 
binning, SANRs plateau with increased reference gain [Fig. S5(a)].  
Moreover, by comparing experimental additive noise variances to 
the shot noise limit (SNL) of the total reference photon number NR, 
we conclude that the multimode iDWS setup achieves shot noise 
limited performance for sufficiently large NR [Fig. S5(b)].  Note that 
experimental noise variances slightly below the SNL, observed in 
Fig. S5(b) for NPixel of 512, may be due to an inaccurate assumed full 
well capacity.  
 

 

Fig. S5. The multimode iDWS system achieves the shot noise limit.  
SANR (a) and additive noise variance (b) were estimated by fitting 
experimental 𝐺𝐺1(𝜏𝜏𝑑𝑑) [i.e. A/B and B from Eq. (S8), respectively] for 
different total reference photon numbers, NR, and for NPixel of 512 and 
64.  The shot noise limit, determined by assuming that the noise 
variance equals the reference photon number, is indicated by the red 
dashed line in (b).  

S8. IDWS IS NOT SENSITIVE TO AMBIENT LIGHT 
One advantage of the iDWS approach is coherent amplification of 
weak sample light levels, potentially rendering iDWS less sensitive 
to ambient light than photon counting methods.  The effect of 
ambient light was tested on the Intralipid phantom used in Sec. 
3.B.1 (S-D separation ~4.1 cm, temperature ~18.5°C).  Two sets of 
dynamic interference patterns were continuously recorded for 10 
seconds with ambient light levels of <3 lux and >500 lux 
(measured by a digital illuminance meter, LX1330B, Dr. Meter), 
respectively.  Note that illumination ranges from 300 to 750 lux for 
medical examination rooms at hospitals.  Under each illumination 
level, 10 field autocorrelations, 𝐺𝐺1(𝜏𝜏𝑑𝑑) , were estimated in 
sequence with an integration time, tint, of 1 s, from the mean-
subtracted temporal fluctuations of NPixel = 64 binned pixels.  
Autocorrelation functions, 𝐺𝐺1(𝜏𝜏𝑑𝑑), and diffusion coefficients, DB, 
determined by fitting with Eq. (S8), are shown in Fig. S6, both 
without (a) and with (b) ambient light.  Neither the mean nor the 
standard deviation of DB across 10 trials is affected by ambient 
light (Fig. S6 insets), suggesting that iDWS is not sensitive to the 
ambient light.  
 

 

Fig. S6. Effect of ambient light on iDWS.  Normalized field 
autocorrelations, 𝑔𝑔1(𝜏𝜏𝑑𝑑), averaged over 10  trials, each with tint = 1 s, 
and either <3 lux (a) or >500 lux (b) ambient light are shown.  
Corresponding DCS model fits are also shown (red dotted lines).  
Shaded regions indicate standard deviations across trials. DB estimates 
and 95% confidence intervals are shown in the insets.  Means and 
standard deviations across 10 trials are similar for both ambient light 
levels (red text in insets).  

 

S9. RELIABILITY AND REPEATABILITY OF CEREBRAL 
BLOOD FLOW IN VIVO 
Repeated measurements of CBF were performed in two subjects 
to assess repeatability.  For each subject, BFI time courses for an S-
D separation of 2.5 cm were measured in multiple sessions lasting 
30 seconds each, at the same forehead location.  Exemplary data 
from one session for Subjects 1 and 2 are shown in Fig. S7(a) and 
(b), with BFI across multiple sessions [(0.74 ± 0.04) × 10-8 and 
(1.05 ± 0.04) × 10-8 cm2/s] in the upper right insets of each 
respective panel.  Subject 2 consistently exhibited a higher 
pulsatile BFI than Subject 1, which is reflected in the larger within-
session standard deviation.  Intrasubject coefficients of variation 
were 0.054 for Subject 1 and 0.038 for Subject 2, respectively, 
indicating repeatability across sessions.  Though our results 
suggest that iDWS measurement errors are small in relation to 



differences between subjects, future studies designed to quantify 
reliability are warranted. 
 

 

Fig. S7. Exemplary pulsatile fluctuations of cerebral blood flow 
measured from Subject 1 (a) and Subject 2 (b).  Upper left insets show 
the corresponding FFT spectra of BFI fluctuations, with estimated 
heart rates of ~78 and ~60 bpm for Subjects 1 and 2, respectively.  
Upper right insets show mean BFIs across multiple sessions.  Error 
bars in the insets indicate within-session standard deviations of BFI, 
mainly due to pulsatility. Mean and standard deviation of BFI across 
multiple sessions are indicated for each subject (red text). 

 

S10. COMPARISON BETWEEN NON-CONTACT AND 
CONTACT IDWS 
 

 

Fig. S8. Pulsatile cerebral blood flow measured from Subject 1 with 
non-contact (a) and contact (b) iDWS probes. Insets show 
corresponding FFT spectra of BFI fluctuations, both of which show a 
heart rate of ~66 bpm.  Mean and standard deviation of BFI are 
indicated for each probe.  

 
Contact measurements may be preferable to non-contact 
measurements for continuous monitoring in settings such as 
critical care.  Fig. S8 shows a preliminary comparison of contact 

and non-contact measurements of BFI in the same subject at a 
similar forehead location, acquired less than 15 minutes apart.  The 
variability between measurements is comparable to the within-
subject variability of the non-contact measurement (Fig. S7).  
While motion artifacts in non-contact and contact approaches 
should be rigorously compared, this comparison demonstrates 
feasibility of contact iDWS probes in the future.  
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