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Supplementary Figure 1: Genome Browser screenshot and sequence alignment of
the CNE overlapping the 5" end of the known Shh ZRS limb enhancer.

top: Multiple sequence alignment visualization in the UCSC genome browser.
Sequences are visualized on a grey-scale; the darker the color, the higher is the
sequence similarity in the alignment. Double horizontal lines indicate sequence that
does not align between the reference (tegu lizard) and the query species.

bottom: Detailed sequence alignment. For space considerations, only the sequences
of Episquamata species are shown. Columns with gaps in all episquamates have
aligning sequence in other species that are not shown.
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(Andrey et al. 2017)
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Supplementary Figure 2: Example of a snake-diverged CNE regulating the limb-
related transcription factor GIi3.
(A) Alignment of this CNE shows several substitutions and small deletions in the snake
lineage. Only the sequences of Episquamata species are shown. Columns with gaps
in all episquamates have aligning sequence in other species that are not shown.



(B) UCSC genome browser screenshot of a larger genomic region shows that this
snake-diverged CNE (orange) is conserved among Amniota species (multiple
alignment visualization as in Supplementary Figure 1). Our ATAC-seq signal tracks
show that the snake-diverged CNE overlaps a genomic region with accessible
chromatin in limb but not in other developing tissues of the tegu lizard. Furthermore,
this CNE overlaps a Gli3 enhancer identified by Capture-C .



A Regulatory domain concept of GREAT

B Associating CNEs to putative target genes
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Supplementary Figure 3: Regulatory domain definition and statistical test to assess
if diverged CNEs are significantly associated with genes annotated with particular
functions.

(A) GREAT regulatory domain concept (adapted from the GREAT website). Similar to
reference 2, we define regulatory domains for each gene as a basal (promoter-
associated) domain of 5 Kb upstream and 1 Kb downstream of the transcription start
site and a distal domain extending up to the basal domain of the next gene or at most
300 Kb in either direction.

(B) To determine putative target genes for each CNE, we ask which regulatory
domains overlap this CNE. Genes annotated with a particular function (foreground) are
in green, all others are in black (background).

(C) A one-sided Fisher’s exact test is applied to test whether diverged CNEs exhibit a
significantly higher overlap with regulatory domains of genes annotated with a
particular function.



A Limb ATAC-seq versus brain, flank, heart, liver, remaining embryo
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B Brain ATAC-seq versus limb, flank, heart, liver, remaining embryo
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C Liver ATAC-seq versus limb, flank, heart, brain, remaining embryo
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Supplementary Figure 4: GREAT enrichments of ATAC-seq peaks from embryonic
tissues of the tegu lizard.

Tegu ATAC-seq peaks that show differential signal in one tissue versus all other
examined tissues were mapped to the mouse mm10 genome using liftOver 3
(parameters ‘-minMatch=0.7") and subjected to a GREAT analysis 2 using default
parameters. Up to 10 top enriched terms per ontology are shown. These enrichments
reveal knockout phenotypes, gene expression patterns and functional annotations that
are expected for regulatory elements active in limb, brain and liver tissue. No
enrichments were found for embryo, flank, and heart ATAC-seq peaks due to very low
numbers of tissue-specific peaks.
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Supplementary Figure 5: Limb-specific ATAC-seq peaks and snake-diverged CNEs
overlap functionally validated limb regulatory elements.



(A) Limb-specific ATAC-seq peaks overlap a known Twist7 enhancer that contacts the
Twist1 promoter 4. This region also overlaps an experimentally characterized VISTA
enhancer element hs2306 ° that drives expression only in the limbs at mouse
embryonic day E11.5 (image taken from https://enhancer.lbl.gov/cgi-
bin/imagedb3.pl?form=presentation&show=1&experiment_id=2306&organism_id=1).
(B) A snake-diverged CNE marked by a limb-specific ATAC-seq peak located
upstream of Gas7, a positive regulator of Shh activity &, overlaps an experimentally
tested VISTA enhancer element hs1463 ° that drives expression only in limbs (image
taken from https://fenhancer.Ibl.gov/cgi-
bin/imagedb3.pl?form=presentation&show=1&experiment_id=1463&organism_id=1).
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Supplementary Figure 6: Limb (A) and eye (B) regulatory elements overlap CNEs
diverged in snakes and CNEs diverged in subterranean mammals significantly more
often than regulatory elements active in non-limb or non-eye tissues.

Limb regulatory elements have no significant overlap with the top 5,439 CNEs diverged
in limbed lizards that was used as a control set (A). While eye regulatory elements also
have a significant overlap with the control set comprising the top 9,364 CNEs diverged
in mammals with good vision (most of these having a FDR value greater than our cutoff
of 0.005), the significance is substantially lower compared to the CNEs significantly
diverged in subterranean mammals (FDR < 0.005). Please note that we are
investigating here whether regulatory elements active in limb or eye tissue overlap
diverged CNEs significantly more often than regulatory elements active in non-limb or
non-eye tissues, which is different from asking whether diverged CNEs overlap certain
regulatory data sets significantly more often than non-diverged CNEs (Figure 2 and 3,
main text). We combined all limb/eye regulatory elements for this analysis. Bars depict
p-values derived by a one-sided Fisher’s exact test.
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Supplementary Figure 7: FDR distribution between diverged CNEs that do and do
not overlap regulatory data.

The distribution of FDR values is similar between the 933 snake-diverged CNEs that
overlap limb-regulatory data and the remaining snake-diverged CNEs that do not (left
side). Likewise, the distribution of FDR values is similar between the 575 CNEs
diverged in subterranean mammals that overlap eye-regulatory data and the remaining
diverged CNEs that do not (right side). Violin plots are used to visualize the FDR value
distributions (white dot represents the median, thick black lines represent the
interquartile range, and thin black lines represent the 95% confidence interval).
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Supplementary Figure 8: Snake-diverged CNEs significantly overlap eye regulatory
elements active in whole eye, retina, and lens.

Left: orange bars represent the Benjamini & Hochberg adjusted p-values derived by a
one-sided Fisher’s exact test and show the significance of the overlap between snake-
diverged CNEs and eye regulatory datasets derived from functional experiments in
multiple mouse embryonic and adult eye tissues. ATAC-seq datasets generated in this
study are highlighted in green. Right: Observed (orange vertical bar) and expected
number (grey violin plots, based on 10,000 random subsets sampled from all CNEs)
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of snake-diverged CNEs overlapping eye regulatory elements. The thick box inside the
violin plot indicates the first quartile, the median, and the third quartile. The Z-score
measuring the number of standard deviations that the observed number is above the
random expectation is indicated.

A. CNEs diverged in snakes B. CNEs diverged in subterranean mammals
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Supplementary Figure 9: Overlap of diverged CNEs with genes and regulatory
elements that are specifically active in particular tissues within limbs or within eyes.
(A) Snake-diverged CNEs are not preferentially associated with fore- or hindlimb up-
regulated genes (test set comprises 58 and 127 genes up-regulated in mouse E11.5
fore- and hindlimbs, respectively ), or with fore- or hindlimb-specific enhancers (test
set of fore- and hindlimb-specific enhancers determined with H3K27ac ChIP-seq in
mouse E10.5 and E11.5 limb buds’). The lack of enrichments for any of the tested sets
is most likely explained by the low number of elements in each test set.

(B) CNEs diverged in subterranean mammals are preferentially associated with genes
which result in lens-specific phenotypes when knocked-out in mouse, compared to
genes which result in retina-specific phenotypes (test set of 162 and 485 lens and
retina genes, respectively; obtained from Mouse Genome Informatics
http://www.informatics.jax.org/). These CNEs also overlap lens-specific regulatory
elements significantly more often than retina-specific regulatory elements (mouse
ATAC-seq data from this study).

Bars depict p-values derived by a one-sided Fisher’'s exact test.
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Supplementary Figure 10: Sequence alignment of the CNE shown in Figure 4D.
This CNE exhibits higher sequence divergence in subterranean mammals, as shown
in both alignment visualizations. In addition to an excess of substitutions, the blind
mole rat has a deletion at the 3’ end of this CNE. The CNE is 20 Kb upstream of the
RNA granule component Tdrd7 that plays an important role in lens development 8.
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A E11.5 whole eye ATAC-seq versus E11.5 limb+midbrain
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E11.5 limb versus E11.5 midbrain+eye and E14.5 lens+retina
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C E11.5 retina ATAC-seq versus E11.5 limb+midbrain
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Supplementary Figure 11: GREAT enrichments of mouse eye-, lens-, retina-, limb-

and midbrain-specific ATAC-seq peaks.

These enrichments reveal knockout phenotypes, gene expression patterns and
functional annotations that are expected for regulatory elements active in these
respective tissues. Up to 10 top enriched terms per ontology are shown.
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Supplementary Figure 12: Eye-specific ATAC-seq peaks overlap functionally
validated eye regulatory elements.

(A) ATAC-seq peaks in eye, lens and retina tissues overlap an experimentally
characterized Pax6 regulatory element °.

(B) A retina-specific ATAC-seq peak located in between Irx5 and Irx6 overlaps the
VISTA enhancer element hs26 ° that drives expression in eyes and other tissues.
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Supplementary Figure 13: Transcription factor (TF) motif scores for mouse genomic
regions bound by the TF.

(A) Mouse genomic regions that are bound by GLI3 °, HOXD13 "' and PITX1 2,
according to ChIP-seq experiments in mouse limb tissue, have significantly higher
motif scores for these TFs, compared to the same number of randomly selected
genomic regions of the same size.

(B) Mouse genomic regions that are bound by CRX '3, NRL '* and OTX2 ', according
to ChiP-seq experiments in mouse eye tissue, have significantly higher TF motif scores
for these TFs, compared to the same number of randomly selected genomic regions
of the same size. The ChlP-seq peaks for the three eye transcription factors are
smaller than the peaks in (A) (average 223 vs. 1140 bp), explaining why most of the
randomly selected controls have a score of 0.

Benjamini & Hochberg adjusted p-values derived by a one-sided Wilcoxon rank sum
test.
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Supplementary Figure 14: CNE divergence in snakes and in subterranean mammals
results in an overall decay of transcription factor binding sites.

(A,C,E) The 933 snake-diverged CNEs that overlap limb regulatory data were scored
with (A) 44 eye TF motifs present solely in the eye TF list (Supplementary Tables 20
and 21), (C) motifs of only those eye TFs whose binding motif is not similar to a limb
TF, and (E) randomized motifs of limb TFs.

(B,D,F). Equivalent tests considering the 575 CNEs diverged in subterranean
mammals that overlap eye regulatory data.

Regardless of the motifs used to score the CNEs, snakes and subterranean mammals
have no significant tendency to preserve binding sites, which shows that there is no
selective loss of binding sites for limb or eye TFs but rather general sequence
divergence. In contrast, sequence conservation in other species often results in a
tendency to preserve predicted binding sites (matches to the TF motif), even if these
binding sites occur purely by chance as for randomized TF motifs. As expected, the
significances are substantially lower (compare to Figure 4A,C), suggesting that the
respective predicted binding sites occur less often than predicted binding sites of
limb/eye TFs.

As in Figure 4A/C, the difference in the median motif scores is shown on the x-axis. p-
values were computed with a one-sided Wilcoxon rank sum test and corrected for
multiple testing using the Benjamini & Hochberg method.
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Supplementary Figure 15: Luciferase assays to compare regulatory activity of CNEs
from limbed and limbless species.

(A) CNE overlapping the Shh ZRS limb enhancer. While the sequence of mouse and
the green anole lizard has enhancer activity, the sequence of the python does not. This
expression pattern recapitulates previously published results 617, thus serves as a
positive control for the assay.

(B) CNEO11755, which overlaps tegu lizard limb ATAC-seq, HOXA13 and HOXD13
ChIP-seq ', H3K27ac marks '8, and a hindlimb enhancer detected from chromatin
capture and histone modification marks '. This CNE is located 69 Kb upstream of
Msx1, an important gene in the Bmp pathway '°. Both the mouse and tegu lizard
sequences have significantly higher enhancer activity compared to the python
sequence, suggesting that sequence divergence resulted in loss of enhancer activity
in the python.

(C) CNE107371, which overlaps tegu lizard limb ATAC-seq, mouse HOXA13 ChIP-
seq ", and a hindlimb enhancer detected from chromatin capture and histone
modification marks '. This CNE is located 378 Kb downstream of gene Ebf2, potentially
downstream effector of hedgehog signaling 2°. The python sequence drives
significantly higher levels of expression compared to the mouse and tegu lizard

18



sequences, suggesting that sequence divergence in the python released a potential
repressing activity. This is consistent with previous findings that repressing histone
H3K27me3 marks overlap this locus in mouse .

p-values were computed with a two-sided Wilcoxon rank sum test.

2.5 1

0.0 1

Z-score

CNEs without overlap CNEs with overlap
overlap with a limb enhancer from Limb Enhancer Genie (Monti et al. 2017)

Supplementary Figure 16: Z-scores of the 5,786 CNEs that overlap a limb enhancer
from Limb Enhancer Genie 2! are significantly lower than Z-scores of 135,824 CNEs
that do not overlap these limb enhancers (two-sided Wilcoxon rank sum test p < 2.2e-
16). For visual clarity, we cut the Y-axis at a Z-score of -5 and thus do not show outliers.
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Supplementary Figure 17: Distribution of normalized sequence identity values for the
CNEs that overlap known limb regulatory elements.

CNEs that overlap the HLEB enhancer regulating Tbx4 (top) and the Prox enhancer
regulating HoxD genes (middle) are not significantly diverged in snakes, even though
some of these CNEs show some degree of sequence divergence. Two of the four
CNEs that overlap the 2.7 Kb Island I, another enhancer regulating HoxD genes in the
limb and genitals, are significantly diverged in snakes, with local and global Z-scores
< -3 (CNE044251 and CNE044253; bottom).
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