
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Vallania et al. derived a novel basis matrix (immunoStates) for use in computational deconvolution 
of gene expression from mixtures of blood cell types. They claim that their method leverages 
heterogeneity across platforms and disease stages, resulting in a reduction in biases observed in 
deconvolution using existing blood basis matrices and providing improved deconvolution accuracy.  
 
The problem of computationally deconvolving gene expression and cell type proportion variation in 
heterogeneous samples is an important one and blood is the most commonly targeted tissue for 
computational deconvolution, because cellular composition can vary substantially and can have 
clinically significant implications. It is reasonable to investigate the effect of using a broader range 
of samples in order to extract signature matrices. However, I was not convinced that the authors’ 
description of this as leveraging heterogeneity to overcome platform or state-specific biases is 
entirely apt. Because the dataset they used to extract the signatures spans multiple different 
platforms, the signature genes they identify should naturally be more representative of genes that 
robustly behave as signatures across diverse datasets. Regardless of how they are described (and 
that is not a major concern) the claims appear to be supported by the results presented. Crucially, 
immoStates consistently outperformed two existing basis matrices, regardless of the deconvolution 
method used, on the key problem of recovering cell type proportions from mixed samples (for 
which the cell proportions had been experimentally determined).  
 
In addition to providing a basis matrix that should lead to improved deconvolution of gene 
expression data from blood this manuscript also highlights the impact of the basis matrix on the 
accuracy of deconvolution and that performance may be more consistent across methods than 
between basis matrices. I believe this to be a novel result that has the capacity to influence the 
field. However, it was not true to the same extent for cell proportion estimation using the other 
basis matrices (particularly IRIS). This may need to be acknowledged more clearly in the 
manuscript and consideration given to an explanation of the sensitivity to choice of deconvolution 
method seen for one of the basis matrices (but not for immunoStates).  
 
It was not clear to me that the authors’ method for determining differential effect sizes takes into 
account the potential impact of differences in the number of samples for each cell type. Can the 
authors comment on whether their method is affected by this? Hedges g is also considered a 
biased estimator (for which a correction is available). Is it necessary to account for this bias or do 
they consider their method a heuristic for which the bias correction is not necessary? The choice of 
method to rank genes is not the only one and possibly not the obvious one. Several other methods 
have been applied in the past to identify signature genes. Have the authors compared to results 
obtained with different methods? Is the advantage of immoStates that it is derived from a more 
diverse set of input samples, or do the authors also have evidence to support the optimality of 
choice of method to derive the basis matrix?  
 
Minor  
 
Number the pages and equations for ease of review.  
 
There was no mention in the manuscript of the role of single cell transcriptomics in defining cell 
subtypes as well as informing the design of basis matrices for future computational deconvolution 
methods. Could this be addressed in the Discussion?  
 
“We then deconvolved the technical bias evaluation cohort…” the cohorts should be introduced.  
 
‘were converted in gene-specific expression matrices’ should this ‘in’ be ‘to’?  
 



‘in order to increase number of studies’ missing article before ‘number’  
 
Typo in Methods “For a given a basis matrix”  
 
Should the ‘proportional to’ sign in the equation giving the objective of deconvolution be ~ (i.e. 
approximated by).  
 
‘as the Pearson’s correlation’ should be ‘as the Pearson correlation’  
 
‘Analysis of disease effect to deconvolution’ This heading should be rephrased for clarity (at least 
‘to’ should be ‘on’). Occurs again in the first line of this section.  
 
‘…samples significantly reduce the biological bias and increase deconvolution accuracy’ reduce -> 
reduces; increase -> increases (for concordance)  
 
‘high correlated cell proportion’ -> ‘highly correlated cell proportion’  
 
‘the reduction biological’ missing ‘in’  
 
 
 
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Manuscript Summary  
 
 
The authors developed an immune signature gene set - "ImmunoStates" - from a large collection 
of publicly available microarray data. They compared ImmunoStates with two other signature sets: 
IRIS and LM22. The authors found that the performance of their signature is superior to the two 
other signatures independent of the underlying deconvolution models. Overall, the experiments 
are interesting, but needs stronger data to support their claims.  
 
Major Concerns:  
 
1. The author used the goodness of fit, which is the Pearson's correlation coefficient between 
mixtures and reconstituted mixtures derived from deconvolution analysis, to evaluate the 
performance of different algorithms. I want to point out this metric is not appropriate to evaluate 
the performance of the deconvolution algorithms. To evaluate the performance of the algorithms, 
especially in the case when not enough cell counting data is available, pseudo-mixtures should be 
generated and estimated frequency and signature profiles (not only genes in the basis matrix, but 
for all genes in the mixture profile) should be compared to the ground truth.  
2. For figure 1, even ImmunoStates showed some platform-based biases. Both IRIS and LM22 
have been constructed from the gene expression profiles derived from the Affymetrix U133A, but 
IRIS performs best for datasets derived from the Illumina platform. The better performance of 
ImmunoStates is derived from the facts that it was constructed from larger datasets. Similar 
phenomenon can be seen from xCell paper too, where basis matrix has been constructed from 
both array-based platforms and sequencing platforms. I suggest author add the xCell along with 
other basis matrices for comparison. Still the observed good performance of ImmunoState is 
based on the "goodness of fit", as I have stated earlier, this is not a direct way to assess the 
performance of deconvolution algorithms.  
3. The author observed limited difference between different methods. However, very limited 



number of deconvolution methods have been tested. I would recommend author to add more 
deconvolution algorithms for comparison: LLSR, PERT, MMAD, ssNMF and DSA. PERT assumes the 
difference between the basis matrix expression and expression of certain cell type in the mixture 
profile so that the deconvolution is more feasible for the disease sample. It would be necessary to 
include these methods to clarify author's strong conclusion that no differences were observed 
among main deconvolution methods in this Manuscript.  
4. Hedge's g score is biased upwards for small samples (< 50), the author should clarify the 
impact and try to use a modified version of the Hedge's g score to correct the bias.  
5. In Figure 2, It was not clear how the AUC was generated. There are many confounding factors 
between the healthy and the "disease" population. It is not immediately clear whether the 
difference between these signatures is merely a reflection of the differences between these 
populations.  
6. The result of Figure 3 is obvious and trivial. The basis matrix should have more impact on the 
deconvolution results compared to the methods.  
 
 
Minor Concerns:  
 
1. CIBERSORT performed the rescaling because support vector regression applies for the data with 
standard normal distribution. So, I suggest the author only keeps the rescaling strategy for 
CIBERSORT protocol, since this rescaling transformation is not fair for other methods.  
2. The authors claimed that the code "Code for all the analysis can be found at 
https://khatrilab.stanford.edu/immunoStates." However, the codeset only contains the 
visualization, but not the analysis part of the project.  
3. The sources where these signatures were generated are not clear. According to the authors, 
"Datasets used to build ImmunoStates are described in Supplementary Table 3." However, there is 
no such information in their Supp. Table 3. Only an ImmunoStates blood cell matrix was presented 
in Table 3.  
4. In Page 7, the authors state "Datasets used to estimate accuracy by comparing with measured 
cell counts are described in Supplementary Table 2", However, when I looked into this table, it 
states "Datasets used to generate immunoStates". If both statement are true, you basically 
generated and evaluated your signature using the same set of data. This is a serious concern for 
overfitting for results in Figure 4.  
5. In the Methods section, the math equation should be typed using proper math notes. S "alpha" 
M times P is odd.  
 
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
This work investigates the potential of deconvolving the cell type contributions of bulk 
transcriptomics measurements. Specifically, the authors study the biases introduced by type of 
sample, i.e. originating from diseased/healthy patients, and introduced by type of measurement 
platform. The authors further present a new single basis matrix for deconvolution across all these 
types of deconvolution situations.  
 
It is not surprising that such biases exist and turn out to be pronounced. The main contribution of 
this work is making these biases explicit by analyzing an unprecedented bulk of transcriptomic 
data for deconvolution. It is not surprising that existing approaches, not being trained on all the 
data utilized in this study underperform.  
 
However, the solution offered by the authors is likely to suffer from the same pitfalls as previous 
solutions since it builds on a single, one-fits-it-all basis matrix. Information about measurement 



platform and sample type are known before the deconvolution analysis. Why not simply providing 
a specific basis matrix for each of these situations? Specifically, why not first defining a sensible 
set of deconvolution situations (by platform and sample type) and fitting a basis matrix for each of 
these situations. For a specific application, the user would have to look up its (possibly closest) 
deconvolution situation and deconvolve using the appropriate basis matrix.  



Reviewer #1 (Remarks to the Author): 
• Vallania et al. derived a novel basis matrix (immunoStates) for use in computational deconvolution of gene 

expression from mixtures of blood cell types. They claim that their method leverages heterogeneity across platforms 
and disease stages, resulting in a reduction in biases observed in deconvolution using existing blood basis matrices 
and providing improved deconvolution accuracy. 

• The problem of computationally deconvolving gene expression and cell type proportion variation in heterogeneous 
samples is an important one and blood is the most commonly targeted tissue for computational deconvolution, 
because cellular composition can vary substantially and can have clinically significant implications. It is reasonable 
to investigate the effect of using a broader range of samples in order to extract signature matrices. However, I was 
not convinced that the authors’ description of this as leveraging heterogeneity to overcome platform or state-specific 
biases is entirely apt. Because the dataset they used to extract the signatures spans multiple different platforms, the 
signature genes they identify should naturally be more representative of genes that robustly behave as signatures 
across diverse datasets. Regardless of how they are described (and that is not a major concern) the claims appear to 
be supported by the results presented. Crucially, immoStates consistently outperformed two existing basis matrices, 
regardless of the deconvolution method used, on the key problem of recovering cell type proportions from mixed 
samples (for which the cell proportions had been experimentally determined).  

 
We thank the reviewer for the supportive comments. The reviewer is correct in pointing out that the use of 
multiple different platforms allowed us to identify more robust representative gene signatures for each cell type 
by accounting for technical variability between these platforms. However, we would like to point out that our 
use of the term “heterogeneity” also includes accounting for biological heterogeneity. Both IRIS and LM22 only 
used healthy control samples for deriving gene signatures for each cell type. In contrast, we also included 
samples from various diseases, with or without treatment, and with or without stimulation to represent 
biological heterogeneity in our data used for identifying cell-type specific genes. Our rationale was based on the 
observation in cytometry (FACS or CyTOF), where a cell surface marker is used as an immutable identifier of a 
cell type. For instance, CD14, CD56, and CD19 almost always represent monocytes, NK cells, and B cells, 
respectively, regardless of whether a sample comes from a healthy individual or from a patient with a disease. 
Similarly, our goal in this manuscript was to identify robust gene signatures that represent presence of a cell 
type with very high confidence. Traditionally, these factors (disease status, treatment, stimulation) are 
considered confounding factors (as mentioned by Reviewer 2 below) due to underlying biological heterogeneity. 
Hence, our use of the term “heterogeneity” is to ensure that both biological and technical heterogeneity are 
accounted for in the basis matrix. We have maintained the use of the term, but remain open to changing it to an 
appropriate term suggested by the reviewer and/or the editor. 
 

• In addition to providing a basis matrix that should lead to improved deconvolution of gene expression data from 
blood this manuscript also highlights the impact of the basis matrix on the accuracy of deconvolution and that 
performance may be more consistent across methods than between basis matrices. I believe this to be a novel result 
that has the capacity to influence the field. However, it was not true to the same extent for cell proportion estimation 
using the other basis matrices (particularly IRIS). This may need to be acknowledged more clearly in the manuscript 
and consideration given to an explanation of the sensitivity to choice of deconvolution method seen for one of the 
basis matrices (but not for immunoStates). 

 
We thank the reviewer for this constructive suggestion. We have modified the Discussion section to explicitly 
explain that choice of deconvolution method for a basis matrix is an important consideration when it is not 
created using heterogeneous data similar to immunoStates. Following the reviewer’s suggestion, we have 
modified the Discussion section as follows: 
 



“Improvements in methods are usually demonstrated in particular contexts, such as estimating proportions in 
the presence of background tissue7 or robustness to expression changes due to treatments21 . The design and 
execution of these studies typically involve the application of the same basis matrix, and results in improvements 
in accuracy provided by the new method for the dataset that represent the use case of interest. While the choice 
of method is therefore important in such specific cases, our results strongly support the argument that 
improvements on the basis matrix improve accuracy across all methods and datasets.” 

 
• It was not clear to me that the authors’ method for determining differential effect sizes takes into account the 

potential impact of differences in the number of samples for each cell type. Can the authors comment on whether 
their method is affected by this? Hedges g is also considered a biased estimator (for which a correction is available). 
Is it necessary to account for this bias or do they consider their method a heuristic for which the bias correction is 
not necessary? The choice of method to rank genes is not the only one and possibly not the obvious one. Several 
other methods have been applied in the past to identify signature genes. Have the authors compared to results 
obtained with different methods? Is the advantage of immoStates that it is derived from a more diverse set of input 
samples, or do the authors also have evidence to support the optimality of choice of method to derive the basis matrix? 

 
The reviewer brings up multiple points. First, we corrected for the small sample bias as needed when computing 
Hedges’ g. We have modified the Methods section to explicitly state it as follow: 
 
“We applied a correction for small sample size bias to Hedge’s g as needed.” 
 
Second, indeed many different methods can be used to rank genes. We chose Hedge’s g because of our 
experience in using it to generate and validate robust and consistent gene expression signatures (Khatri et al. J. 
Exp Med 2013, Sweeney et al. Science Trans Med 2015, Andres-Terres et al. Immunity 2015, Sweeney et al. Science 
Trans Med 2016, Sweeney et al. Lancet Resp Med 2016, Chowdhury et al. Nature 2018). Indeed, during the 
development of immunoStates, we tried several methods to select cell-type specific genes, which include greedy 
forward-search and ranking by fold-change. For each method, we selected a set of genes for each immune cell 
type using the discovery cohorts, and evaluated accuracy of these genes sets in identifying the correct cell type 
in the validation cohorts. Across these methods we found that gene-set selection by Hedges’ g as described in 
the manuscript performed the best in distinguishing immune cell types. We have included the following in the 
Methods section: 
 
“We compared our gene-set selection strategy with greedy forward-search and ranking by fold-change. We 
found using Hedge’s g with our selection strategy to be more accurate in distinguishing cell types (data not 
shown).” 
 
Third, when evaluating different gene sets using different selection strategies, we found that the accuracy of a 
basis matrix is strongly dependent on its set of signature genes rather than the expression values of the gene 
themselves. We generated a basis matrix using the genes from the LM22 matrix and the expression values from 
the datasets used to construct immunoStates. We found that the pattern of platform bias mirrored that of LM22. 
This result also further supported our choice of using the Hedges’ g to select robust cell-type specific genes as it 
has been shown to do for disease-specific genes. 
 
In response to the reviewer’s comment, we have modified the Methods section to mention other methods we 
evaluated. We have also included a new supplementary figure (Supplementary Figure 4 in the revised 
manuscript) to illustrate that the set of genes matter more than expression values themselves. We have modified 
the Results section to include the following: 
 



 “Arguably, higher goodness of fit of immunoStates could be due to higher amount of data used to create it. It 
is possible that if the same amount of data were used to create one of the existing basis matrices, it would have 
higher goodness of fit as well. We investigated this argument by modifying LM22 such that it contained the 
same genes, but their expression values were computed using the data sets used for creating immunoStates. We 
found that despite increasing the amount of data used to estimate expression values for LM22 genes, it continued 
to have platform bias as before with significant heterogeneity in goodness of fit (MAD = 0.05, p = 0.05, 
Supplementary Figure 4). These results suggest that better estimation of expression values for genes in a basis 
matrix using large amount of data is not sufficient to increase deconvolution accuracy. Further, these results 
strongly suggest that selection of genes in a basis matrix from biologically and technologically heterogeneous 
data is more important in reducing bias. Together, our results demonstrate that a basis matrix created using 
heterogeneous data from multiple platforms reduces technical bias.” 

Minor 
 

• Number the pages and equations for ease of review.  
We have inserted page and equation numbers 
 

• There was no mention in the manuscript of the role of single cell transcriptomics in defining cell subtypes as well 
as informing the design of basis matrices for future computational deconvolution methods. Could this be addressed 
in the Discussion?  

This is a point well taken. We have revised the Discussion section at two places as follows: 
 
“We expect that continued accumulation of additional sorted-cell datasets in public repositories over time will 
increase both the accuracy and the breadth of future basis matrices. Furthermore, increased availability of single 
cell RNAseq data will further facilitate creation of better and more refined basis matrices.” 
 
and  
 

 
Supplementary Figure 4: Increasing the amount of data to estimate expression values for genes in a basis matrix does not 
improve deconvolution accuracy. We used the datasets used to create immunoStates to calculate expression values for 
each gene in LM22, and deconvolved the technical bias evaluation cohort. We found increasing the amount of data to 
estimate expression value of a gene in a basis matrix did not increase accuracy.  
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“Third, arguably, all basis matrices require a priori knowledge of the populations within the sample of interest. 
However, current cytometry-based methods also require a priori selection of markers. We expect these 
limitations will be overcome as more single-cell transcriptomic data become available. These data will allow for 
the discovery of previously unknown cell subsets that can be included in a basis matrix. These data will also 
increase heterogeneity and the sample size, which based on our analysis presented here, will further improve 
accuracy of deconvolution.” 
 

• “We then deconvolved the technical bias evaluation cohort…” the cohorts should be introduced.  
We have modified the Results section to introduce the evaluation cohort as follows: 
 
“We deconvolved 17 independent datasets consisting of 1071 whole transcriptome profiles of human peripheral 
blood mononuclear cells (PBMCs) measured across eight microarray platforms from two different 
manufacturers (see Methods and Supplementary Table 1) using both basis matrices. We define this set as a 
“technical bias evaluation cohort”.” 
 

• ‘were converted in gene-specific expression matrices’ should this ‘in’ be ‘to’?  
Thank you for pointing out the error. We have fixed the typo. 
 

• ‘in order to increase number of studies’ missing article before ‘number’ 
We have rephrased this as “in order to increase the number of studies”. 
 

• Typo in Methods “For a given a basis matrix” 
We have removed the extra “a” before “basis matrix”. 
 

• Should the ‘proportional to’ sign in the equation giving the objective of deconvolution be ~ (i.e. approximated by). 
We have replaced “proportional to” sign with “approximation” sign. 
 

• ‘as the Pearson’s correlation’ should be ‘as the Pearson correlation’ 
We have corrected the typo. 
 

• ‘Analysis of disease effect to deconvolution’ This heading should be rephrased for clarity (at least ‘to’ should be 
‘on’). Occurs again in the first line of this section.  

Thank you for the suggestion. We have modified the manuscript to say “on”. 
 

• ‘…samples significantly reduce the biological bias and increase deconvolution accuracy’ reduce -> reduces; increase 
-> increases (for concordance)  

We have corrected these errors. 
 

• ‘high correlated cell proportion’ -> ‘highly correlated cell proportion’ 
We have corrected the typo. 
 

• ‘the reduction biological’ missing ‘in’ 
We have inserted “in”. 
 
Reviewer #2 (Remarks to the Author): 
 
Manuscript Summary 
 



The authors developed an immune signature gene set - "ImmunoStates" - from a large collection of publicly available 
microarray data. They compared ImmunoStates with two other signature sets: IRIS and LM22. The authors found that the 
performance of their signature is superior to the two other signatures independent of the underlying deconvolution models. 
Overall, the experiments are interesting, but needs stronger data to support their claims.  
 
Major Concerns: 
 

• The author used the goodness of fit, which is the Pearson's correlation coefficient between mixtures and 
reconstituted mixtures derived from deconvolution analysis, to evaluate the performance of different algorithms. I 
want to point out this metric is not appropriate to evaluate the performance of the deconvolution algorithms. To 
evaluate the performance of the algorithms, especially in the case when not enough cell counting data is available, 
pseudo-mixtures should be generated and estimated frequency and signature profiles (not only genes in the basis 
matrix, but for all genes in the mixture profile) should be compared to the ground truth. 

 
We are in complete agreement with the reviewer that using cell count data, especially from high-resolution 
technologies such as FACS and CyTOF, is the most appropriate way to evaluate the performance of 
deconvolution algorithms. We further argue that it is a higher bar for estimating accuracy of a deconvolution 
method than creating a pseudo-mixture that may or may not represent real biology. Therefore, as shown in 
Figure 4 and Supplementary Figures 7-14, we evaluated deconvolution accuracy of each of the 3 basis matrices 
across 5 deconvolution methods using 402 human blood samples from 5 independent datasets. These datasets 
are published from independent groups that generated transcriptome data using different microarrays 
(Affymetrix and Illumina) and also performed cellular profiling to identify cellular proportions in each sample. 
In these real-world data, we showed that irrespective of the method used, immunoStates had higher positive 
correlations between estimated and measured cellular proportions from these samples, just as the reviewer 
suggested. 
 
We realized we were not clear in our manuscript about this comparison. In response to the reviewer’s comment 
we have added the following statement to make this comparison explicit: 
 
“Despite demonstrated utility of goodness of fit in evaluating accuracy of deconvolution7, cell count data from 
high-resolution technologies such as FACS is the most appropriate way to evaluate the performance of 
deconvolution algorithms. Therefore, we explored …” 
 
Most importantly, we evaluated ability of basis matrices (immunoStates and LM22) to identify hitherto 
unknown changes in cell proportions between healthy controls and those with latent mycobacterium (Mtb) 
infection (LTBI). In an independent manuscript – now accepted for publication in Nature – we deconvolved 
whole blood transcriptome data from 12 datasets composed of 1276 samples using immunoStates, and found 
that NK cell proportions are higher in LTBI patients than healthy controls (P = 2.85e-05, FDR = 0.018%). In 
comparison, LM22 did not identify the increase in NK cell proportions in LTBI subjects compared to healthy 
controls (P = 0.157, FDR = 25.8%). We did not compare IRIS as our analysis in the current manuscript 
demonstrated it had the lowest accuracy among the 3 basis matrices. Next, we validated increased NK cells in 
LTBI patients compared to healthy controls using CyTOF and flow cytometry in an independent cohort of 
adolescents from South Africa (N=52, 26 healthy controls, 26 LTBI; Figure R1A-C below).  
 
Similarly, in the same analysis we found that according to immunoStates, T cell proportions did not change 
between healthy controls and LTBI subjects (P = 0.71), but changed significantly according to LM22 (P = 6.18e-
03, FDR = 5.8%). Cellular phenotyping of PBMC samples from adolescents in South Africa using CyTOF or FACS 



showed that none of the T cell subsets changed in LTBI subjects compared to healthy controls (Figure R1D-F 
below).  
 
These results clearly demonstrate that immunoStates has substantially increased deconvolution accuracy that 
identifies hitherto unknown biology that is independently validated using CyTOF and FACS. These results are 
not included in the revised manuscript, as they are part of an already accepted independent manuscript. These 
results are the most stringent independent evaluation and validation of immunoStates and its application to 
identify hitherto unknown biology that the other basis matrices missed. 

 

 
Figure R1. CyTOF and FACS in an independent cohort validate changes predicted immunoStates, but not 
by LM22. We performed deconvolution of whole blood transcriptome data from children and adults using 
immunoStates or LM22, and compared with cellular proportions measured using CyTOF or FACS in an 
independent cohort of PBMC samples from adolescents from South Africa. Deconvolution using (A) 
immunoStates predicted increase in NK cell proportions in LTBI subjects, but (B) LM22 predicted no change. 
(C) Cellular phenotyping of PBMC samples from adolescents in South Africa showed increased NK cells in 
LTBI subjects, which validated immunoStates results. Deconvolution using (D) immunoStates predicted no 
change in T cell proportions in LTBI subjects, but (E) LM22 predicted no change. (F) Cellular phenotyping of 
PBMC samples from adolescents in South Africa showed no change in any subject of T cells in LTBI subjects, 
which validated immunoStates results. Positive and negative effect size indicate higher and lower proportion, 
respectively, in LTBI patients compared to healthy controls. 
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Given our use of more stringent evaluation criteria than suggested by the reviewer, and demonstrated increased 
accuracy of deconvolution using the same basis matrices in another manuscript, we have refrained from creating 
pseudo-mixtures in the revised manuscript. 
 
Finally, we are confused by the reviewer’s comment about “signature profiles for not only genes in the basis 
matrix, but for all genes in the mixture profile”. As we expect the reviewer is aware, cell mixture deconvolution 
is broadly divided into two types of estimations. First, given a basis matrix, estimating proportions of various 
cell types within a sample, and second, given cellular proportions, estimating cell-type specific expression 
profiles that estimates expression of each gene in each cell type. Is the reviewer referring to the second type of 
deconvolution? If yes, we note that our manuscript is only focused on the first type of deconvolution (estimating 
cellular proportions), and estimating expression of each gene in each cell type is out of scope of our manuscript. 
For further details, we reference a comprehensive review by Shen-Orr and Gaujoux, Current Opinion in 
Immunology 2013, 25(5):571-578, that discusses various methods spanning both types of deconvolution 
approaches.  
 

• 2. For figure 1, even ImmunoStates showed some platform-based biases. Both IRIS and LM22 have been constructed 
from the gene expression profiles derived from the Affymetrix U133A, but IRIS performs best for datasets derived 
from the Illumina platform. The better performance of ImmunoStates is derived from the facts that it was 
constructed from larger datasets. Similar phenomenon can be seen from xCell paper too, where basis matrix has 
been constructed from both array-based platforms and sequencing platforms. I suggest author add the xCell along 
with other basis matrices for comparison. Still the observed good performance of ImmunoState is based on the 
"goodness of fit", as I have stated earlier, this is not a direct way to assess the performance of deconvolution 
algorithms. 

 
The reviewer brings up multiple points. First, the reviewer is correct that immunoStates still showed some 
platform biases. We have been very conscious to ensure that we never claimed that immunoStates removed all 
biases. We emphasized this issue by stating in the title of our manuscript that it “reduces biological and technical 
biases”. In response to the reviewer’s comment, we have included the following in the Discussion to state is 
explicitly: 
 
“Second, we emphasize that immunoStates did not remove these biases entirely, but reduced them substantially, 
which in turn significantly improved accuracy of deconvolution. We expect that these biases will continue to 
reduce as more data for sorted cells becomes available and are used to update immunoStates in the future.” 
 
Next, we agree with the reviewer that the better performance of immunoStates is derived from the fact that it 
was constructed from larger datasets. The goal of our work is to highlight how incorporating large amounts of 
data improves performance of cell-mixture deconvolution by reducing biological and technical biases. Similar 
philosophy underlies the design of xCell. However, we would like to point out that xCell is not a basis matrix 
but a signature-based method. xCell is used to estimate which cell types are enriched – as represented by xCell 
scores – in a sample for a given set of genes. It does not estimate proportions of various cell types in a sample. 
xCell belongs to a different group of methods that are not comparable to deconvolution methods, and are not 
the focus of our work. Therefore, we have chosen not to include xCell in the revised manuscript. 
 
Finally, with respect to the suitability of goodness of fit, we reiterate that goodness of fit is one of the ways we 
assessed performance of deconvolution algorithms. As we stated above, we additionally used more stringent 
criteria for assessing performance of these basis matrices and algorithms by comparing estimated and measured 
cellular proportions from 5 independent cohorts of >400 blood samples. Finally, we have demonstrated accuracy 



of immunoStates in identifying hitherto unknown changes in cellular proportions in latent Mtb infection that 
other basis matrices failed to identify (please see Figure R1 above). 
 

• 3. The author observed limited difference between different methods. However, very limited number of 
deconvolution methods have been tested. I would recommend author to add more deconvolution algorithms for 
comparison: LLSR, PERT, MMAD, ssNMF and DSA. PERT assumes the difference between the basis matrix 
expression and expression of certain cell type in the mixture profile so that the deconvolution is more feasible for 
the disease sample. It would be necessary to include these methods to clarify author's strong conclusion that no 
differences were observed among main deconvolution methods in this Manuscript. 

 
This is a point well taken. First, we note that LLSR is already included in our initial submission, labeled as Linear 
Model. We had considered DSA and ssNMF for comparison but excluded them because these methods rely on 
marker genes and do not use a basis matrix. We also excluded MMAD for our comparison as it has been shown 
to be more accurate as a marker gene approach than expression-based deconvolution due to the presence of 
scaling artifacts (Liebner et al. Bioinformatics 2013, pages 682-689). We observed significantly lower 
deconvolution accuracy using any of the 3 basis matrices with MMAD (Figure R2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, in response to the reviewer’s comment, we have included PERT in the revised manuscript. As Figure 
R2 above (and revised Figure 1 in the manuscript) Our results remain unchanged when including PERT. All 
figures in the manuscript have been updated to include deconvolution results when using PERT. 

 
Figure R2. MMAD has lowest accuracy across all basis matrices. 
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• 4. Hedge's g score is biased upwards for small samples (< 50), the author should clarify the impact and try to use a 

modified version of the Hedge's g score to correct the bias. 
 
The reviewer raises the same concern as Reviewer 1. We corrected for the small sample bias as needed when 
computing Hedges’ g. We have clarified this point in the methods section. 
 

• 5. In Figure 2, It was not clear how the AUC was generated. There are many confounding factors between the 
healthy and the "disease" population. It is not immediately clear whether the difference between these signatures is 
merely a reflection of the differences between these populations. 
 

We apologize for the confusion. For comparison purposes, Figure 2 in our manuscript presents the results of an 
analysis that is exactly the same as described in Figure 1C by Newman et al Nature Methods 2015 performed on 
the same dataset (E-MTAB-62). This dataset is a compendium of gene expression data profiled across a single 
Affymetrix platform (GPL96); hence, there is no technical variation, but contains biological heterogeneity as it 
integrates samples from multiple diseases, showing that our results are not driven by a single study. These 
samples consist of transcriptomes from blood and tissue biopsy samples from healthy and disease-affected 
individuals. Briefly, we deconvolved each sample, estimated the significance of the goodness of fit as previously 
described by Newman et al Nature Methods 2015, and used it as a score to distinguish blood-derived samples 
from biopsies for either healthy or disease-affected samples. We modified the Methods section to clarify this 
analysis as follows: 
 
“To estimate the effect of disease to sample deconvolution, we analyzed dataset E-MTAB-62 which contains 
samples profiled on Affymetrix HG-U133A arrays (GPL96). For the purpose of this analysis, we excluded all cell 
line samples and removed samples that had been used to generate immunoStates. We performed this analysis 
as described previously7. Briefly, we deconvolved each sample across every matrix and method combination, 
and estimated a p-value indicative of the significance of its goodness of fit as previously described7. We then 
grouped all samples based on whether they originated from a healthy or a disease affected donor. Within each 
group, we compared the significance of goodness of fit between samples originating from blood and those 
originating from solid-tissue biopsies. Using the p-values as scores, we measured their accuracy in 
distinguishing blood-derived samples from solid tissue biopsies by computing an area under the receiver 
operating characteristic curve (AUROC) , as previously described7, for all combinations of basis matrices and 
deconvolution methods. Analysis and visualization was performed using the R programming language. Code 
for all the analysis can be found at https://khatrilab.stanford.edu/immunoStates.” 
  

• 6. The result of Figure 3 is obvious and trivial. The basis matrix should have more impact on the deconvolution 
results compared to the methods.  

 
We respectfully disagree with the reviewer that the results are obvious and trivial. As Reviewers 1 and 3 have 
pointed out in their comment, it is a novel finding with unprecedented amount of data, and will move the field 
forward. For more than 17 years — since deconvolution was first described in 2001 — the field has been mostly 
focused on developing novel methods instead of developing better basis matrix. This is evident from the fact 
that most of the existing basis matrices were created by using as much data as possible, while restricting either 
biological or technical heterogeneity or both. The fundamental focus in the field has been to develop a method 
to improve accuracy of deconvolution instead of a basis matrix, which as our results show, has more impact on 
the deconvolution. One of our goals in this manuscript is to explicitly point out this observation that has received 
virtually no attention in the literature. We provide a method to demonstrate how it can be done. Our hope, as 
Reviewer 1 pointed out, is that the field will take note of this and invest more efforts in developing matrices that 



are more robust and continue to reduce methodological, technical, and biological biases to further improve cell 
mixture deconvolution that can in turn be used to leverage existing transcriptome data to identify hitherto 
unknown biology as we demonstrate in Figure R1 above using results from our upcoming manuscript in Nature. 
 
Minor Concerns: 
 

• 1. CIBERSORT performed the rescaling because support vector regression applies for the data with standard normal 
distribution. So, I suggest the author only keeps the rescaling strategy for CIBERSORT protocol, since this 
rescaling transformation is not fair for other methods. 

 
This is a point well taken. In principle, re-scaling can be unfair to deconvolution methods other than 
CIBERSORT. To test the effects of re-scaling, we compared results from linear model and robust regression with 
and without re-scaling where in principle re-scaling can be detrimental. We found that the results were highly 
correlated observed high correlations for both methods, indicating that the effect of re-scaling is negligible. In 
response to the reviewer’s comment, we have included a new supplementary figure in the revised manuscript 
to show our comparative analysis, as well as a description in the methods section. 
 
“Arguably, support vector regression re-scales expression data prior to deconvolution, which is not required for 
other methods such as linear model and robust regression. Rescaling gene expression data when using these 
methods could potentially reduce accuracy of these methods. Therefore, we compared estimated proportions 
for linear model and robust regression with and without rescaling gene expression data in the technical bias 
evaluation cohort using IRIS and LM22 as basis matrices. We found there was very high correlation in estimated 
cellular proportions suggesting rescaling did not adversely affect linear model and robust regression 
(Supplementary Figure 2). Based on these results, we chose to maintain the uniform preprocessing strategy 
across all methods for the rest of the manuscript.” 
 

• 2. The authors claimed that the code "Code for all the analysis can be found 
at https://khatrilab.stanford.edu/immunoStates." However, the codeset only contains the visualization, but not 
the analysis part of the project. 

 
We have included all the results of deconvolution for all expression datasets across all matrices and methods. 
We have also ensured that all code performs all analyses described in each figure, and produces the figures in 
the manuscript. We have divided our code into two parts: (1) perform all analyses and save results as an R object, 
and (2) use R object from the first part and generates figures. 
 

• 3. The sources where these signatures were generated are not clear. According to the authors, "Datasets used to 
build ImmunoStates are described in Supplementary Table 3." However, there is no such information in their Supp. 
Table 3. Only an ImmunoStates blood cell matrix was presented in Table 3. 

 
We sincerely apologize for the mistake. We incorrectly referenced Supplementary Table 3 instead of 
Supplementary Table 2 in the manuscript. We have fixed the error. The correct statement now in the manuscript 
is: 
 
“Datasets used to build immunoStates are described in Supplementary Table 2.” 
 

• 4. In Page 7, the authors state "Datasets used to estimate accuracy by comparing with measured cell counts are 
described in Supplementary Table 2", However, when I looked into this table, it states "Datasets used to generate 



immunoStates". If both statement are true, you basically generated and evaluated your signature using the same 
set of data. This is a serious concern for overfitting for results in Figure 4. 

 
We sincerely apologize for the mistake. We incorrectly referenced Supplementary Table 2. There is no table for 
these datasets as they are described inline in the manuscript as follows:  
 
“These datasets were generated using Illumina HT12 V4.0 or Affymetrix Primeview microarrays as follows: (1) 
two independent datasets consisting of 176 healthy human PBMC samples profiled using Illumina HT-12 V4.0 
arrays paired with flow-cytometry data (GSE65133, GSE59654)7,25, and (2) a whole blood dataset of 226 healthy 
samples, a subset of which were profiled over three consecutive years using Affymetrix PrimeView arrays (see 
Methods).” 
 

• 5. In the Methods section, the math equation should be typed using proper math notes. S "alpha" M times P is odd. 
 
We have modified the manuscript following the reviewer’s suggestion. 
 
Reviewer #3 (Remarks to the Author): 
 

• This work investigates the potential of deconvolving the cell type contributions of bulk transcriptomics 
measurements. Specifically, the authors study the biases introduced by type of sample, i.e. originating from 
diseased/healthy patients, and introduced by type of measurement platform. The authors further present a new 
single basis matrix for deconvolution across all these types of deconvolution situations. 

• It is not surprising that such biases exist and turn out to be pronounced. The main contribution of this work is 
making these biases explicit by analyzing an unprecedented bulk of transcriptomic data for deconvolution. It is not 
surprising that existing approaches, not being trained on all the data utilized in this study underperform.  

 
We thank the reviewer for recognizing the main contribution of our work as unprecedented. 
 

• However, the solution offered by the authors is likely to suffer from the same pitfalls as previous solutions since it 
builds on a single, one-fits-it-all basis matrix. Information about measurement platform and sample type are known 
before the deconvolution analysis. Why not simply providing a specific basis matrix for each of these situations? 
Specifically, why not first defining a sensible set of deconvolution situations (by platform and sample type) and 
fitting a basis matrix for each of these situations. For a specific application, the user would have to look up its 
(possibly closest) deconvolution situation and deconvolve using the appropriate basis matrix. 

 
This is a point well taken. It is possible that having a specific basis matrix for different situations may be better 
than one-size-fits-all solution. However, we chose one-size-fits-most approach due to a number of practical 
considerations described below. 
 
First, we believe that instead of replacing cytometry-based experimental approaches such as FACS or CyTOF, 
statistical deconvolution of mixed-tissue expression profiles will complement these technologies. Current 
cytometry approaches are limited in the number of variables they can profile simultaneously due to the number 
of channels available for measurements. As we demonstrated in response to a comment by Reviewer 2, a one-
size-fits-most approach such as immunoStates is simpler from a practical standpoint as a researcher could 
directly apply without having to select the matrix most appropriate for their dataset of interest. The researchers 
can then design a panel of cell type markers for a mass cytometry experiment that is focused on the cell types 
identified through statistical deconvolution of transcriptome data. Such a strategy would reduce ‘wasting’ of 



channels by allowing the researchers to eliminate markers unlikely to show any differences, and better utilize 
the available channels by including markers that allow better phenotyping. 
 
Second, the amount of sorted-cell transcriptome data available for different platforms can be extremely limited, 
making it nearly impossible to build a robust basis matrix for each available platform. We have previously 
demonstrated that incorporating multiple heterogeneous data sets is the key in identifying robust gene 
expression signatures (Khatri et al 2013 J. Exp Med., Sweeney et al 2015 Science Trans. Med, Andres-Terres et al 
Immunity 2015, Sweeney et al NAR 2017). As we try to divide available data into specific platforms, they become 
very scarce such that even within a given microarray platform, they may not be representative of biological 
heterogeneity. 
 
Finally, as we mentioned in response to a comment by Reviewer 1, we found that the choice of genes is more 
important than their expression value. We have included the results of this analysis as Supplementary Figure 4 
in the revised manuscript. Using data from across multiple datasets profiled using different platforms is likely 
to identify a robust set of cell type specific genes than limited amount of platform-specific data, as it may not be 
sufficient to build a robust platform-specific basis matrix. Furthermore, we found that, by incorporating 
sufficient heterogeneity, our matrix was accurate on expression data profiled using platforms that were not 
represented in training and RNA-seq. Results of this analysis have recently been accepted for publication on a 
separate paper (Chowdury RR et al. Nature 2018 in press). We thank the reviewer for the insightful comment. 
We have updated the Discussion section as follows in response to the reviewer’s comment:  
 
“Our results across multiple independent platforms also suggest that immunoStates may be a one-size-fits-most 
basis matrix readily applicable to future deconvolution methods that rely on the use of a basis matrix to estimate 
cell proportions. This strategy has a number of practical advantages. First, researchers could directly apply 
immunoStates without having to select a basis matrix most appropriate for their dataset of interest. Second, the 
application of a single basis matrix facilitates comparison and integration of cell proportions from multiple 
datasets across multiple platforms and different centers. Third, the amount of sorted-cell data available for 
different platforms can be extremely limited, compromising the robustness of basis matrices created for each 
available platform. Fourth, we believe that instead of replacing cytometry-based experimental approaches such 
as FACS or CyTOF, statistical deconvolution of mixed-tissue expression profiles will complement these 
technologies. Current cytometry approaches are limited in the number of variables they can profile 
simultaneously due to the number of channels available for measurements. a one-size-fits-most approach such 
as immunoStates is simpler from a practical standpoint as a researcher could directly apply without having to 
select the matrix most appropriate for their dataset of interest. The researchers can then design a panel of cell 
type markers for a mass cytometry experiment that is focused on the cell types identified through statistical 
deconvolution of transcriptome data. Such a strategy would reduce ‘wasting’ of channels by allowing the 
researchers to eliminate markers unlikely to show any differences, and better utilize the available channels by 
including markers that allow better phenotyping.” 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed all of the points raised in my review.  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors addressed most of my concerns.  
 
One last concern is the open source of the analysis code. The authors still didn't provide the source 
code for their analysis... The end results were saved as RDS files, but the parameters and scripts 
are still missing... It should be deposited for reproducibility purposes.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors do not address my only major concern about the proposed deconvolution approach 
with a single, one-fits-it-all basis matrix, that conceptually does not differ from the already 
available deconvolution approaches and will likely suffer from the same pitfalls as these.  
 
The authors elaborate in more detail on three reasons why they stick to a single basis matrix 
solution and do not consider the suggested multi basis matrix solution that incorporates the a 
priori known information about measurement platform and sample type.  
 
As the first reason the authors put forward the practical simplicity of the single matrix approach. 
However, I do not see a significant increase in complexity for the user for a multi matrix solution. 
The user would only have to additionally specify the type of transcriptomics platform that was 
used, the software would subsequently automatically choose the corresponding basis matrix and 
compute the deconvolution.  
 
Further the authors claim that incorporating multiple datasets “is the key in identifying robust gene 
expression signatures” and list a few own previous publications to back up this claim. These 
publications report results on integrating multiple transcriptomic datasets in different contexts. 
However, none of these publications integrates these datasets to the end of cell type 
deconvolution, and therefore do not support the benefit of integrating multiple datasets for single 
matrix based cell type deconvolution.  
 
As the third reason the authors put forward better generalization capability of their single matrix to 
analyze transcriptomic datasets from new platforms. This is a fair statement but not getting to the 
initial point that a multi-matrix solution could achieve superior performance on the platforms 
considered for deriving the basis matrix.  
 
It would be straightforward to address this concern by demonstrating the performance of a multi-
matrix solution for the data considered in this study and comparing it to the performance of the 
proposed single-matrix solution.  
 



Reviewer #3 (Remarks to the Author): 
• The authors do not address my only major concern about the proposed deconvolution approach with a 

single, one-fits-it-all basis matrix, that conceptually does not differ from the already available 
deconvolution approaches and will likely suffer from the same pitfalls as these.  
The authors elaborate in more detail on three reasons why they stick to a single basis matrix solution and 
do not consider the suggested multi basis matrix solution that incorporates the a priori known information 
about measurement platform and sample type. 

We respectfully disagree with the reviewer for the reasons described below. 

• As the first reason the authors put forward the practical simplicity of the single matrix approach. However, 
I do not see a significant increase in complexity for the user for a multi matrix solution. The user would 
only have to additionally specify the type of transcriptomics platform that was used, the software would 
subsequently automatically choose the corresponding basis matrix and compute the deconvolution. 

• Further the authors claim that incorporating multiple datasets “is the key in identifying robust gene 
expression signatures” and list a few own previous publications to back up this claim. These publications 
report results on integrating multiple transcriptomic datasets in different contexts. However, none of these 
publications integrates these datasets to the end of cell type deconvolution, and therefore do not support 
the benefit of integrating multiple datasets for single matrix-based cell type deconvolution. 

In our previous response, we provided an example from our manuscript, accepted for publication in Nature 
(Figure R1 provided below for convenience), that demonstrated immunoStates outperformed LM22. We 
apologize for not providing additional details at the time that we now provide below. 

In this upcoming manuscript, we deconvolved 15 
datasets using immunoStates that were profiled using 9 
microarray platforms from 4 microarray manufacturers 
and RNA-seq (Table 1). These datasets profiled blood 
samples from children, adolescents, and adults from 9 
countries. Despite the biological (age, countries, etc.) and 
technical (microarray, RNA-seq) heterogeneity observed 
in these datasets, we identified robust changes in NK cell 
proportions associated with different stages of 
Mycobacterium tuberculosis (Mtb) infection and protection 
to progression to active tuberculosis disease. This 
analysis is a strong evidence in favor of integrating 
multiple datasets for single matrix-based cell type 
deconvolution to identify hitherto unknown changes in 
cellular proportions. 

When presenting Figure R1, we incorrectly assumed that 
the broader (and lengthy) discussion was out of scope in 
the response. We acknowledge that Figure R1 only 
presented a subset of these data and analysis, and in the 
context of comparing immunoStates and LM22 without 
highlighting integration of multiple cohorts in the context 
of cell type deconvolution. In light of the reviewer’s 
comment, we are happy to provide the manuscript prior 
to its publication for the reviewer, although the 
manuscript is scheduled for online publication on August 
22, 2018, and in print on August 30, 2018. 

 
Table 1. List of 12 tuberculosis datasets profiled 
using 9 microarray platforms from 4 microarray 
manufacturers. Two datasets were profiled using 
RNA-seq. 



• As the third reason the authors put forward better generalization capability of their single matrix to 
analyze transcriptomic datasets from new platforms. This is a fair statement but not getting to the initial 
point that a multi-matrix solution could achieve superior performance on the platforms considered for 
deriving the basis matrix. 
It would be straightforward to address this concern by demonstrating the performance of a multi-matrix 
solution for the data considered in this study and comparing it to the performance of the proposed single-
matrix solution.  

We thank the reviewer for this excellent helpful suggestion. Indeed, as the reviewer suggested, Figure 2 in the 
manuscript already demonstrated superior performance of a single matrix solution (i.e., immunoStates) 
compared to the performance of the reviewer’s proposed multi-matrix solution in the manuscript. Briefly, Figure 
2 compared performance of the three basis matrices in E-MTAB-62 that profiled >4,000 samples using 
Affymetrix, using different deconvolution methods. Although IRIS and LM22 were created using only sorted 

 
Figure R1. CyTOF and FACS in an independent cohort validate changes predicted immunoStates, but not 
by LM22. We performed deconvolution of whole blood transcriptome data from children and adults using 
immunoStates or LM22, and compared with cellular proportions measured using CyTOF or FACS in an 
independent cohort of PBMC samples from adolescents from South Africa. Deconvolution using (A) 
immunoStates predicted increase in NK cell proportions in LTBI subjects, but (B) LM22 predicted no change. 
(C) Cellular phenotyping of PBMC samples from adolescents in South Africa showed increased NK cells in 
LTBI subjects, which validated immunoStates results. Deconvolution using (D) immunoStates predicted no 
change in T cell proportions in LTBI subjects, but (E) LM22 predicted no change. (F) Cellular phenotyping of 
PBMC samples from adolescents in South Africa showed no change in any subject of T cells in LTBI subjects, 
which validated immunoStates results. Positive and negative effect size indicate higher and lower proportion, 
respectively, in LTBI patients compared to healthy controls. 
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immune cell expression data from Affymetrix, immunoStates outperformed both Affymetrix-specific basis 
matrices, irrespective of the deconvolution method used. Similar comparison is also present in Figure 4, where 
each of the Ellison cohorts were profiled using Affymetrix. As shown in Figure 4, immunoStates consistently 
outperformed both Affymetrix-specific basis matrices irrespective of the deconvolution method used. 

Following the reviewer’s suggestion, we created two Illumina-specific basis matrices. One of these two basis 
matrices is specific to GPL10558 as it 
was created using only sorted 
immune cell expression profiles 
using this microarray platform (8 
datasets, 336 samples); the second 
Illumina-specific basis matrix was 
created using sorted immune cell 
expression profiles that were 
generated using any of the Illumina 
microarrays (28 datasets, 1,670 
samples).  

Using these two basis matrices and 
immunoStates, we deconvoluted 
GSE65133, which was profiled using 
Illumina microarray platform 
GPL10558 (Figure R2). As expected, 
expression data using GPL10558 is 
available for a limited number of 
immune cells. Hence, a GPL10558-
specific basis matrix is missing a 
number of important cell types. 
Importantly, when we deconvoluted 
GSE65133 using GPL10558-specific 
basis matrix, there was inverse 
correlation between estimated and 
measured cellular proportions, 
irrespective of the method used (first 
column in Figure R2).  

Data for more immune cell types 
were available when using all 
microarrays from Illumina, which 
allowed us to create an Illumina-
specific basis matrix with more 
immune cell types. However, it still 
lacked a few immune cell types 
(gamma-delta T cells, naïve B cells, 
memory B cells). There was low to moderate correlation between estimated cellular proportions and measured 
cellular proportions (second column in Figure R2). In contrast, immunoStates has consistently high correlation 
with measured cell proportions (third column in Figure R2). 

Collectively, these results demonstrate that our proposed one-size-fits-most single matrix has higher accuracy 
than creating different basis matrix for each microarray platform. 

 
Figure R2: Comparison of Illumina-specific basis matrices with immunoStates. 
GPL10558-specific basis matrix, used in the first column, was created using only 
sorted immune cell gene expression profiles using GPL10558; Illumina-specific 
basis matrix, used in the second column, was created using sorted immune cell 
gene expression profiles using any Illumina microarrays; the third column used 
immunoStates for deconvolution. Irrespective of the method used, estimated cell 
proportions using immunoStates has higher correlation than both Illumina-
specific basis matrices when deconvoluting GSE65133 that was generated using 
Illumina-based microarrays, GPL10558. 
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