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Derivation of KL-divergence for kernel density estimation

We wish to demonstrate the minimising the KL-divergence for a KDE representation of a dis-
tribution is asymptotically equivalent to the likelihood up to some constant. The likelihood for
a normal distribution with data {di} is

n∏
i=1

1√
2πσ2

exp(−(di − µ)2

2σ2
). (1)

Equivalently, the log-likelihood l is

l = −n
2

log(2πσ2)−
n∑
i=1

(di − µ)2

2σ2
. (2)

We will now derive an asymptotic approximation of the KL-divergence for a Gaussian KDE
representation of the data {di}. The empirical distribution p(x) is defined using a series of
Gaussian probability distribution with variance σ2K as,

p(x) =
n∑
i=1

rσK (x− di), (3)

where rσ(x) = 1√
2πσ2

exp(− x2

2σ2 ). The Kullback-Liebler Divergence between the true distribution

q(x) and the empirical distribution p(x) is defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (4)

Inputting Eq. 3 into Eq. 4 produces

DKL(P ||Q) =

∫ ∞
−∞

n∑
i=1

rσK (x− di) log

(∑n
i=1 rσK (x− di)

q(x)

)
dx. (5)
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Through manipulation of the right-hand side,

DKL(P ||Q) =

∫ ∞
−∞

n∑
i=1

rσK (x− di) log

(∑n
i=1 rσK (x− di)

q(x)

)
dx,

=

∫ ∞
−∞

[
n∑
i=1

rσK (x− di)

]
log

(
n∑
i=1

rσK (x− di)

)
dx−

∫ ∞
−∞

n∑
i=1

rσK (x− di) log (q(x)) dx,

= −H

(
n∑
i=1

RdiσK

)
−

n∑
i=1

∫ ∞
−∞

rσK (x− di) log (q(x)) dx. (6)

Where H is the differentiable entropy and Rmσ is the normal random variate with mean m and
variance σ2. Using the relationship H(X+Y ) ≤ H(X)+H(Y ) and the equation for the integral
between two univariate normal distributions is

∫∞
−∞ rσK (x − di) log (q(x)) dx = −1

2 log(2πσ2) −
σ2
K

2σ2 − (µ−di)2
2σ2 ,

DKL(P ||Q) = −H

(
n∑
i=1

RdiσK

)
−

n∑
i=1

∫ ∞
−∞

rσK (x− di) log (q(x)) dx,

≥ −n log(σK
√

2πe)−
n∑
i=1

(
−1

2
log(2πσ2)−

σ2K
2σ2
− (µ− di)2

2σ2

)
,

= −n log(σK
√

2πe) +
n

2

σ2K
σ2

+
n

2
log(2πσ2) +

n∑
i=1

(µ− di)2

2σ2
. (7)

We hence have DKL(P ||Q) ≥ −l(θ) and hence minimizing the KL divergence is equivalent to
maximising the likelihood as required.

Derivation of likelihood for stochastic SIS model

We derive the likelihood for a stochastic SIS model where number of infected individuals are
recorded at regular intervals. The SIS or susceptible-infected-susceptible model describes an
infectious disease where no immunity is acquired after an infection and an individual becomes
completely susceptible when the infection is cleared. It is also implicitly assumed that the
population remains constant (i.e. there is no immigration or emigration). The rates may be
written down as

S → I at rate β, (8a)

I → S at rate γ, (8b)

(8c)

where β is the infection rate and γ is the recovery rate. This is an example of a birth-death
process where both the birth and death rates are dependent on the population size. For a given
population size N the mean field dynamics may be written as an ODE of the form

dI

dt
=

β

N
S(I + ε)− γI. (9)

or more compactly,
dI

dt
=

β

N
(N − I)(I + ε)− γI. (10)

ε is used to ensure that extinction of the disease cannot occur and is the importation rate of the
pathogen. We may write down the equivalent Kolmogorov forward equation as

dpn
dt

= pn−1

[
β

N
(N − n+ 1)(n− 1 + ε)

]
+ pn+1 [γ(n+ 1)]− pn

[
β

N
(N − n)(n+ ε) + gn

]
. (11)
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More compactly this may be written as a linear ODE using the notation p = (p0, . . . , pN ) as,

dp

dt
= pQ, (12)

where Q is a matrix defined as,

Q =


−βε βε 0 0 . . . 0
g −(β(N − 1)(1 + ε)/N + g) β(N − 1)(1 + ε)/N 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −Ng

 . (13)

Solving Eq. 12 gives the probability of being in a given state at time t given a state at time 0,

p(t) = p(0) exp(tQ) (14)

For example if it is known that at time 0 there are n0 infected individuals then the probability
at time t is

p(t) = I[n0] exp(tQ). (15)

This provides a way of calculating the likelihood for a set of parameters θ = (β, γ, ε) and data
D = (ik; tk) for k = 1, . . . ,m.

l(θ|D) = [p(θ; t1)]i1

m∏
k=2

[exp((tk − tk−1)Q)]ik−1,ik
. (16)

For simplicity we assume that prevalence is recorded at regular intervals and all parameters are
scaled such that this time-interval is one. The associated log-likelihood is then,

log l(θ|D) =
m∑
k=2

log
(
[exp(Q)]ik−1,ik

)
. (17)

Ricker Model

The Ricker model was constructed as an example of an ecological chaotic system [1]. The Ricker
model is a discrete stochastic map, where the density of a population (Nt) is dependent on the
previous time’s density (Nt−1) with some noise term εt. The map has the following form

Nt = Nt−1 exp(−rNt + εt) (18)

The noise term is drawn from a normal with zero mean and variance σe, i.e. εt ∼ N(0, σe).
r represents the density-dependent reduction in population growth, where a small r produces a
stable fixed point, with larger r values leading to chaos. Finally the population density Nt is
connected to the observed population size yt by the Poisson distribution.

yt ∼ Poi(φNt) (19)

where φ is some observation factor. Previous methods have considered constructing a synthetic
likelihood for this system [2]. Here we consider using the KDE-ABC scheme to determine the
parameters (φ, σe, r). The fitting scheme was set up in similar fashion to the stochastic SIS
model in the main text. Each observation yt was used to construct a matrix of adjacent values,

yt+1|yt =

(
y0 y1 . . . yT−1
y1 y2 . . . yT

)ᵀ

. (20)

.
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Data were generated from the model for 200 time-steps and with parameters log(r) = 2,σe =
1, and φ = 10, where the system is nearly chaotic. Uniform priors were chosen for each parame-
ters with log(r) ∼ U(0, 10), σe ∼ U(0, 5), and φ ∼ U(0, 20). The KDE-ABC fitting scheme was
ran with 1000 particles for 20 tolerance steps.

The results are given in Fig. 3. The KDE-ABC scheme was able to recover all three pa-
rameters and the sampled particles differed greatly from the priors indicating the scheme was
strongly informing the estimated posterior.
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Figure 1: Effect of number of particles on the posterior samples. The orange shading represents
the median, inter-quartile range and 95% percentiles of the true posterior and the box-plots are
the estimated posterior for each particle number. Results shown for (a) Estimated mean and
(b) estimated shape parameter.
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Figure 2: ABC fitting to simple epidemiological model of parasitic infection. The initial distri-
bution of particles is shown in (a), the distribution half-way through is shown in (b) and the
final distribution is given in (c). The true values λ = 10,δ = 0.5 and γ = 1.0 are shown as red
dotted lines in the marginal distributions and as a red asterix in the joint distributions.
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Figure 3: Example of fitting to the Ricker model. Figure shows the estimated posterior distribu-
tion derived from the particles sampled from the ABC-KDE scheme. The marginal distribution
for parameters log(r), σe and φ are shown along the diagonal, with the pair-wise joint distri-
butions shown as density contour plots (where density increases from light to dark). The true
values used to generate the data are shown as red dashed lines in the marginal plots and as red
points in the joint plots. All three parameters were recovered from the scheme.
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