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1 Estimating the channel capacity

In order to estimate the channel capacity from a set of dose-response data, we use the method
described in ref. (1), the code for which is published online at https://github.com/ryants/EstCC.
Here we provide an outline of our methodology, adapted from the calculations derived in ref. (2).
Note that the units of information are bits, assuming a base-2 logarithm.

1.1 Binning

The first step is to take the dose-response data set and partition the dose (signal) and response
(response) spaces into bins. This effectively results in a contingency table, showing frequencies of
dose-response pairs, given some discretization of the data set. From this contingency table, we can
perform a naive estimation of the mutual information:

I (S;R) = −
S∑
p (s) log p (s) +

R∑
p (r)

S∑
p (s|r) log p (s|r) (1)

where we substitute the appropriate frequencies from the contingency table into the marginal and
condtional probabilities seen in Eq 1.1.

The mutual information of a data set is dependent on the discretization, and so care must be
taken when choosing the numbers of bins. To achieve a reasonable discretization, we perform the
same mutual information calculation as above, but with shuffled pairings of the signal and
response values. Randomization should theoretically result in 0 bits of information, and so we
increase the number of bins in both dimensions until significant levels of information are observed
in the randomized data set (an artifact of excessive binning). This provides a cutoff for defining
this reasonable discretization of signal and response space.

1.2 Linear extrapolation

To remove bias that arises due to having a finite sample size, we use a bootstrapping procedure.
After finding a reasonable set of bins for the data as described above, we calculate the näıve
estimate of the mutual information for randomly sampled, smaller subsets of the data at varying
percentages. We then model the mutual information as a linear function of inverse sample size,
and extrapolate the value of the mutual information at infinite sample size.

1.3 Signal distribution trials

Since we are attempting to estimate the channel capacity (the supremum of the mutual
information over all signal distributions)

C = sup
pS(s)

I (S;R) (2)
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we perform a brute force optimization over a predefined set of signal distributions. We take the
original data set and apply weights along the signal dimension to alter the frequencies in the
contingency table, while maintaining a constant overall number of entries. Our estimated channel
capacity, Ĉ, is the greatest mutual information calculated over all attempted signal distributions.
This procedure provides a reasonable lower-bound estimate of the channel capacity.

2 Framework

2.1 Model with low Hill coefficient

Shown in Figure S1 are the channel capacity as a function of the signal window (A) and the
number of sampled signal values (B). These only differ from those in the main text in terms of the
Hill coefficient used to generate the data. These plots have Hill coefficients of 6 as opposed to
those in the main text that had Hill coefficients of 60. As can be clearly seen, there is no
significant difference between the two data sets.
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Figure S1: A & B. Similar to Figures 1C & D in the main text, but the data was generated with a Hill
coefficient of 6 instead of 60.

2.2 Varying the transition zone bounds

We performed a brief analysis of the simple model to characterize the effects of varying the
response range of the transition zone that is shown in Figure S2. In the main text all transition
zones are constructed using bounds of 10% and 90% maximal response (after subtracting basal
response). We thus varied the percentage of response space removed from consideration to
examine its effect on the transmission of information in this simple model. Though there is some
variation, the trends are relatively flat and appear to depend somewhat on the variability in
response. As a result, we will maintain our focus on the 10%-90% transition zone with the caveat

3



that modifying this parameter could introduce minor fluctuations in the resulting channel
capacity values.
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Figure S2: Varying the relative width of the transition zone shows minimal impact on the simple model
regardless of utilizing high (A) or low (B) Hill coefficients in generating the data. The x-axis shows the
fraction of response values that are removed from both high and low ends of response space (i.e.if the
response interval is [0,10] and the bound is set to 0.1, then the transition zone interval is [1,9]). As can be
seen, the choice of bound impacts the information estimation to some degree, but not sufficiently to warrant
the computationally intensive search for the bounds optimizing each calculation. We use a bound of 0.1 or
10% throughout this work, and in this example the deviation from the optimal values is marginal at best.

2.3 Finding the transition zone empirically

For the majority of stochastically simulated models, we empirically determined the bounds of the
transition zone by sampling a range of values that span the increasing regime of the dose-response
curve and appear to approach the minimum and maximum responses. In the case of the kinase
cascade models and the covalent modification cycles, the dose-response curves were sufficiently
sigmoid in nature to allow a least squares regression fit to a Hill function. The resulting functional
fit was inverted to find the signal values which bound the transition zone. Since the recruitment of
Sos to the EGFR molecule is not so well represented by a simple sigmoid function, we took a
different, but equally straightforward approach. We similarly characterized the majority of the
dose-response curve in signal space and proceeded to use linear interpolation to estimate values
corresponding to the signal bounds of the transition zone.

3 Ligand-Transmembrane Receptor model

The motif underlying this model is a simple, reversible binary interaction between two proteins;
while we refer to these two proteins as the Ligand and Transmembrane Receptor (hence LT
model), this really could represent any binary molecular interaction. As mentioned in the main
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text, the parameters we used for this model were not chosen to represent any specific case of such
an interaction in biology, but to rather range across a series of reasonable values. A binary
interaction model like this has two rate parameters (the association rate k+ and the dissociation
rate k−. Since we are only considering steady-state responses here, the only parameter of
importance is the dissociation constant, KD = k−/k+. In order to maintain a constant relative
level of saturation in the binding interaction as we increase the total number of T molecules in
the system, we kept the ratio TT /KD constant and equal to 1 for all of the cases we considered
here. To do that, we set the stochastic dissociation rate in our simulations as k− = 0.01, and set
the association rate for each simulation equal to the numerical value of TT . For each value of TT
we considered, we used the approach described in the main text to define a set of input ligand
numbers (i.e. the set of LT values) to use for the simulations. For each TT , LT pair, we
determined the length of time needed to reach steady-state in the simulaiton by visual inspection
of the average number of LT complexes over time. After determining a time that was sufficient
for the system to reach steady state, we ran a set of independent simulations, and used the final
value of LT from each simulation to create the data set needed for the channel capacity
calculation. The ‘LT.ka’ file provided as additional supplementary material contains a template
model, written in version 3 of the Kappa rule-based modeling language, for this system. The
simulations we performed were achieved by modifying the initial number of L and T agents, and
the kinetic parameters of the rules, as described above.

In oder to add synthesis and degradation to the model, we introduced four new rules: two that
introduce the L and T agents to the system (with rates QL and QT ), and two that remove them
from the system (with rates δL and δT . In this model, the total number of agents is controlled not
by changing the initial conditions, but by changing the ratio Q/δ. As above, since we are only
interested in steady-state behavior, it is only this ratio that matters for determining the behavior
of the system. In this model, we kept the Q parameters constant (equal to 1) and varied the δ
parameters to change protein numbers.

In order to determine the bounds of the transition zone, we used the following system of ordinary
differential equations for the LT model with synthesis and degradation:

dL

dt
= k−[C]− k+[L][T ]− δL ([L] + [C]) +Q

dR

dt
= k−[C]− k+[L][T ]− δT ([R] + [C]) +Q

dC

dt
= −k−[C] + k+[L][T ]− (δL + δT ) [C]

where [L],[R], and [C] are the Ligand, Transmembrane Receptor, and Complex concentrations,
δM and Q are the degradation and synthesis rates of some molecule M , and k− and k+ are
unbinding and binding rates. Note that total ligand and receptor concentrations are defined as
[LT ] = [L] + [C] and [TT ] = [T ] + [C] and that synthesis rates of L and T are equivalent, but not

degradation rates. Furthermore, we parameterized our model such that
Q

δM
= MT . We can then

solve for C as a function of LT at equilibrium and invert the equation to determine the transition
zone bounds, where Cmax = 0.9 · TT and Cmin = 0.1 · TT are the maximum and minimum
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responses in the transition zone, respectively. The equation for C given LT is quadratic:

0 = k+[LT ][TT ]− (k+[LT ] + k+[TT ] + k− + δL + δT ) [C] + k+[C]2

and finding LT is trivial, with knowledge of the parameter values.

We can see in Figure S3 how the number of sampled signal values in the transition zone alters the
estimated information transmission in the LT model that includes synthesis and degradation of
both ligand and receptor components.
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Figure S3: Similar to Figure 2C in the main text, but using the LT model that includes rules for synthesis
and degradation.

4 Covalent modification cycle model (the GK Loop)

In their seminal work on the covalent modification cycle, Goldbeter & Koshland mathematically
characterized the steady-state level of phosphorylation of a substrate protein W given two
enzymes, K and P which catalyze the addition and removal of the modification, respectively, and
the enzymatic parameters of those enzymes (their catalytic rates, the kcat’s, and their Michaelis
constants, the KM ’s) (3). Their analysis identified the primary variable that controls the
steady-state response of the substrate, which they termed “r”:

r ≡
kcat,K ·KT

kcat,P · PT
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where KT and PT are the total numbers of kinase and phosphatase molecules, respectively. The r
parameter is traditionally considered to be the input signal to a covalent modification cycle (3).
Traditionally, r is varied by modifying the copy number/concentration of the kinase, but this
approach would introduce three problems in our calculations. For one, varying the number of K
molecules in the simulation would simultaneously change both the input signal value and the
statistical properties of the system that might arise from low copy numbers. Secondly, a
stochastic simulation like the ones we performed can only have an integer number of each type of
species, so, at the low end of the signal spectrum, we could only ever realize signal values
corresponding to 0 or 1 K molecule. In performing our simulations, there were many cases in
which we needed to sample signal values that would correspond to numbers of kinases between 0
and 1, which is simply impossible in this kind of simulation framework. Finally, the fact that we
are limited to integer values of KT restricts to total number of signal values we could have in the
transition zone, limiting the maximum value of H(S) and thus the calculated channel capacity as
described in the main text.

Since we are only interested in steady-state responses in this case, only the parameter r, the
KM ’s, and the total amount of K, P and W matter for determining the response of the system
(3). We thus chose to vary r by varying the kinetic rate of the phosphatase, kcat,P . Of course,
varying this parameter effects not only r, but also the KM of the Phosphatas-substrate reaction:

KM,P =
kcat,P + k−,P

k+,P

where the kinetic constants represent the standard steps of a traditional Michaelis-Menten enzyme
reaction (3). To keep the level of saturation of the phosphatase constant while varying r, we used
the following procedure. First, we set the catalytic rate of the kinase, kcat,S to be 1 s−1, and we set
both of the off rates to be k−,K = k−,p = 0.01 s−1. Our simulations considered a variety of total
substrate numbers (WT values), and, for each WT , we also considered a set of saturation levels for
the enzymes (the KM/WT values). For any given KM/WT ratio that we wanted to consider, we
first defined the requisite KM for the kinase by setting k+,K to whatever value was necessary to
give us the KM that we wanted. We then varied r for that system by changing kcat,P as described
above. To ensure that KM,K = KM,P , we varied the association rate of the phosphatase:

k+,P =
k−,P + kcat,P

KM,K
.

which allows us to maintain a desired level of saturation for both enzymes regardless of the r
value we choose.

As described in the main text, we used a set of preliminary simulations at each value of WT and
the KM ’s to determine the boundaries of the transition zone, and then generated a set of signal
values within that transition zone to use for the channel capacity calculation. We ran simulations
at each value of signal as described for the LT model above. A template Kappa file for this model
is included as supplementary material, and one can obtain any simulation that we ran with the
appropriate modification of the kinetic rates for the rules.

Addition of synthesis and degradation in this model was done in a manner similar to that for the
LT case. We introduced new rules for the synthesis of the basic species (K, P and W ) and
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Parameter Value

Association 10−7 (molec · sec)−1

Dissociation 0.1 sec−1

Catalysis 1 sec−1

Kinase (1 ≤ i < d) 104 copies
Kinase (d) 105 copies
Scaffold 104 copies
Phosphatase (1) 105 copies
Phosphatase (1 < i ≤ d) 103 copies

Table S1: Table of parameter values for the scaffold and solution kinase cascade models, where d denotes the
depth of the cascade. Note that the association rate here is in units of “per molecule per second” because
the simulations are stochastic. If we posit a particular volume in which the reactions are occurring (say,
the volume of a yeast cell), it is straightforward to convert these units to the typical M−1s−1 used for
deterministic simulations.

degradation rules for all of the relevant species and complexes. As in the LT case, we set the Q
parameters uniformly to 1, and varied the total number of each relevant molecule type by varying
its corresponding degradation rate δ. Our approach to sampling signal space by varying kcat,P
while keeping the KM ’s constant was the same as for the model without synthesis and
degradation as described above. A template Kappa file for this model is also included as
additional supplementary material.

5 Kinase cascade models

The two scaffold models we considered are also meant to be schematic representations of the
types of signaling networks found in biological systems, but their complexity prevented us from
exploring the influence of parameters like copy number and saturation on information
transmission as completely as we did in the LT and GK Loop models. As discussed in the main
text, we parameterized these models using parameters broadly inspired by copy numbers and
catalytic rates observed in the yeast MAP Kinase signaling cascade. The parameters themselves
may be found in Table S1. As with all of the models discussed here, template rule files are
available as additional supplementary material.

In this model, we used the copy number of an explicit “activator” agent as the input signal. While
this more closely mimics the realistic biological situation observed in, e.g. MAPK cascades, the
issues with this approach that we discussed in the section on GK loops discussed above still apply.
In particular, the lowest possible non-zero input signal value in this case is S = 1. As the depth of
the solution cascade increases, the response becomes extremely sensitive to input signals; in other
words, it takes very little input signal to fully activate KF in larger solution cascade models
(Figure 4C in the main text). We used two parameters in the model to counteract this problem.
For one, the association rate between the kinases is relatively slow (Table S1), though still well
within the range of biologically feasible values. Perhaps more importantly, however, we introduced
a large number of phosphatases for the first kinase in the cascade (K1, see Table ??). This
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Figure S4: (A) Dose-response data for the solution model using the VTZ approach. Though difficult to see,
all observables approach 90% activation. (B) As (A) but for the scaffold model. The trends here are distinct
from (A), where only K1 approaches 90% activation. The other observables, including KF , fall well short of
maximal activation.

allowed us to capture all the transitions in activity in all the intermediates in the solution model
(Figure 4C in the main text) using an explicit activating molecule for the cascade.

To simplify the comparison between the solution and scaffold models, we used the same
parameter sets for both. A result of this, however, is the fact that, while the kinases in the
solution cascade reach full activation, those in the scaffold model do not S4. This lower level of
overall response may be one of the reasons that the scaffold model consistently encodes lower
levels of information than the solution model (Figure 5 in the main text). As mentioned above,
these models are large and have many parameters, so we have left a systematic exploration of the
sensitivity of information transfer to parameter values in this model to future work. Such an
exploration will be necessary in order to definitively understand the relative information
transmission potential of scaffold- vs. solution-based kinase cascades. Regardless, it is clear from
our analysis that both solution and scaffold-based kinase cascades can encode much more
information than has ever been observed experimentally for cell signaling at the molecular level.

The results presented in the main text focus on a single type of cascade with four kinases (i.e.
F = 4). We also considered other cascade depths (namely F = 2 and F = 3). As we can see from
Figre S4, the general trend here is similar to that seen for a single cascade: as the number of
interactions in the cascade increases, overall information transfer capacity decreases.

5.1 Two component signaling

Bacterial two component signaling motifs are similar in certain aspects to the covalent
modification cycle described above. A key distinction, however, is the fact that the histidine
kinase, when inactive, operates as the phosphatase in the cycle. In contrast to the models
discussed above, this model is meant to represent a specific biological example in cell signaling,
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Figure S5: Information transmission to final kinase (C (S;KF )) for various cascade depths

and so our parameters were taken from experimental data on TCS signaling in bacterial cells. The
specific example in this case was the EnvZ/OmpR system in E. coli, but those parameters are
applicable to many other TCS systems (4; 5; 6). The specific values of all of the parameters (off
rates, on rates, etc.) may be found in the Kappa rule file provided as additional supplementary
material.

Although this is a specific biological example, we did perform a local exploration of how changes
in enzyme saturation and total substrate copy number would influence information transmission.
As described in the main text, the autophosphorylation rate of the HK is the biologically realistic
input parameter for this model (4; 5), so less care was needed here when changing saturation than
was required in the GK Loop model. Changes in saturation were achieved by varying the
association rate between the HK and the RR substrate (keeping the ratio between the KM ’s for
the active vs. inactive HK constant). The most likely parameter regime in terms of KM ’s and
substrate copy numbers is highlighted with the red box in Figure 6C in the main text.

5.2 EGFR model

We obtained this model from ref. (7) and translated it into Kappa without any modification of
the rules or parameters. The Kappa file we used as the basis for these simulations is provided as
additional supplementary material, and all the parameters we used may be found there. A full
discussion of how this model was developed and parameterized, as well as an analysis of a number
of its dynamical properties, may be found in ref. (7).
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