
S.1. ESTIMATION OF FISHER INFORMATION

To trace the Fisher Information over a logarithmic
scale, we substitute

u = log10(ν) (S.1)

so that

du

dν
=

1

ν log 10
=

10−u

log(10)
. (S.2)

This substitution is chosen for smoothness and resilience
to noise as the difference between distributions becomes
significant, the effect of noise on the calculation of the
Fisher Information is diminished.

The Fisher Information of I, C and the joint random
variable (I, C) with respect to ν can be expressed using
the reparametrisation of the Fisher Information (15) as
follows:

FIM (ν) = FIM (〈I∗〉)
(
d〈I∗〉
du

)2(
du

dν

)2

(S.3)

FIO (ν) = FIO (u)

(
du

dν

)2

(S.4)

Substituting equations (S.2) and (16) with n = V and
q = 〈I∗〉 into equations (S.3) and (S.4) yields

FIM (ν) =
V

〈I∗〉(1− 〈I∗〉)

(
d〈I∗〉
du

)2(
1

ν log 10

)2

(S.5)

and

FIO (ν) = FIO (u)

(
1

ν log 10

)2

(S.6)

When there is no closed form expression for the Fisher
Information, it can be estimated numerically using suit-
able discretisations over system states x1, . . . , xn. The
derivative with respect to λ is calculated using a finite
difference method with step length ∆λ. In this paper
we will use the backwards finite difference method to ap-
proximate the Fisher Information, denoted F̂X(λ):

F̂X(λ) =

N∑
i=1

p(xi;λ)

(
log (p(xi;λ))− log (p(xi;λ−∆λ))

∆λ

)2

(S.7)

S.2. THERMODYNAMIC EFFICIENCY OF
COMPUTATION η

To determine the thermodynamic efficiency of compu-
tation η, as defined in equation (24), we firstly identify

the zero-response point(23). For our system it is simply
zero, as there is no work expended in changing the trans-
mission probability near zero, that is, ν∗ = 0. Hence,
using (22), we obtain:

d〈βWgen〉
dν

= −
∫ ν

0

FI,C(ν′)dν′ (S.8)

Again, we substitute u = log10(ν), resulting in:

dS

dν
=
dS

du

du

dν
=
dS

du

10−u

log 10
(S.9)

and

d〈βWgen〉
dν

= −
∫ u(ν)

u(0)

FI,C(ν′(u′))
dν′

du′
du′

= −
∫ u(ν)

u(0)

FI,C(ν′(u′))10u
′
log(10)du′ (S.10)

These quantities are both calculated numerically for 100
values of u between −4 ≤ u ≤ −2. With dS

dν calculated
numerically using a backwards difference method, and
d〈βWgen〉/dν calculated using a cumulative trapezoidal
numerical integration.

The entropy in proximity of the critical point was ap-
proximated using a nonlinear least-squares fit to a lo-
gistic growth curve. The fitted values for the entropy
were used exclusively for the calculation of the numerical
derivative dS/du in the calculation of η in the interval
ν = [1.26× 10−4, 2.21× 10−4].

We approximate the entropy of (I, C) as a logistic
growth curve for ν = 1 × 10−4 to 2.9 × 10−4. Explic-
itly, we fit

Sfit =
L

1 + e−k(ν−ν0)
. (S.11)

Using the MATLAB curve-fitting tool, we obtain a
curve of best fit with L = 6.12, k = 1.67 × 105 and
ν0 = 1.855 × 10−4, see Fig. S.1. For the data on
ν = 1× 10−4 to 2.9× 10−4, this curve has an R-squared
value of 0.99.
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FIG. S.1: Comparison of configuration entropy of the joint
random variable (I, C) and the best fit Sfit.
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S.3. RELATING R0 TO PROBABILITY OF
INFECTION

We show that, for the system described in this study,
the reproductive ratio R0 can be expressed analytically as
a function of ν, δ and k, the average degree of the graph.
Let Y be the event when some infected individual x, be-
fore recovering from the infection, infects a neighbour y.
Let us also denote the degree of x as kx. Then

R0 = E[kxE[Y ]]. (S.12)

In the case of the Watts-Strogatz graph, the average de-
gree within the population is equal to k, and so

R0 = kE[Y ] (S.13)

In this case, a closed form of P (Y ) is given by

P (Y ) = ν + ν(1− ν)(1− δ) + ν(1− ν)2(1− δ)2 + . . .

= ν

∞∑
j=0

(1− ν)j(1− δ)j (S.14)

where the jth term of the sum represents the probability
of j consecutive unsuccessful infections of y by x, and j
unsuccessful recoveries of x, followed by one successful
infection. Since ν is in the interval [0, 1] and δ is in the
interval [0, 1], this geometric series converges to
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FIG. S.2: The reproductive ratio R0 as a function of ν varying
δ

ν

1− (1− ν)(1− δ)
=

ν

ν + δ − νδ
(S.15)

Thus,

R0 =
kν

ν + δ − νδ
(S.16)


