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S1. TYPES OF NEURONS

In this work we considered two kinds of binary neurons, si ∈ {−1,+1} and si ∈ {0, 1}. The sigmoid-shaped
function σ (·) which appears in eq. (1) of the main text takes two slightly di�erent forms depending on the model, as
a consequence of the di�erent normalization term appearing in the two cases:

σ±1 (s|h;β) =
eβsh

eβh + e−βh
(S1)

σ01 (s|h;β) =
eβsh

1 + eβh
. (S2)

In the case of si ∈ {−1,+1} neurons, we sampled each component of the patterns independently from a potentially
biased probability distribution P (ξi) = b δ (ξi − 1) + (1− b) δ (ξi + 1), with a bias parameter 0 < b < 1. In most of
our tests, however, we considered the unbiased case b = 1/2, except for those presented in �g. 5 of the main text. In
this case, the local �elds are naturally balanced around 0 and the thresholds θi can be eliminated.
In the case of si ∈ {0, 1} neurons, we sampled each component of the memories from the prior P (ξi) =

(1− fv) δ (ξi) + fvδ (ξi − 1). Here fv should also correspond to the network sparsity level, i.e. the average frac-

tion of active neurons at a given time-step of the network dynamics, fv = 1
N

∑N
i=1 si. In this case, the thresholds θi

are necessary to shift the distribution of the local �elds around zero, and we used an inhibitory network to stabilize
the overall activity (see the `Inhibitory Network models' section below).

S2. ANALYTIC DERIVATION OF THE DCM LEARNING RULE

In this section we derive the equations for the DCM rule. For simplicity we will consider the case of β = 1. From
a mathematical perspective, we ask our learning rule to reduce the Kullback-Leibler (KL) divergence between two
di�erent conditional probability distributions, P (s′|s;λ1) and P (s′|s;λ2), with λ2 < λ1, averaged over an initial state
probability distribution P (s). This quantity is given by:

〈KL (P (·|s;λ1) ||P (·|s;λ2))〉P =
∑
s

P (s)
∑
s′

P (s′|s;λ1) log
P (s′|s;λ1)

P (s′|s;λ2)
. (S3)

The conditional probability is de�ned as a sigmoid-shaped neural activation function (cf. eq. (1) of the main text)

P (s′|s;λ) =

N∏
i=1

σ
(
s′i|hλi

)
, (S4)

with local �elds hλi given by: hλi = hext,λi +
∑
j 6=i J

λ
ijsj − θλi . Here we adopt the superscript λ to distinguish between

the two networks, subject to di�erent external �eld intensities λ.
Plugging the expression (S4) for the conditional probability into the de�nition (S3) of the KL divergence, we exploit

the factorization property of the single neuron conditional probabilities, in order to isolate the i-th contribution and
trace out all the others. Therefore, we get the �nal expression for the averaged KL divergence:
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〈KL (P (·|s;λ1) ||P (·|s;λ2))〉P =
∑
s

P (s)
∑
i

∑
s′i

σ
(
s′i|h

λ1
i

)
log

σ
(
s′i|h

λ1
i

)
σ
(
s′i|h

λ2
i

) (S5)

The next step is to minimize this quantity, by di�erentiating with respect to Jλ2

ik and θλ2
i , asking the second network

to compensate for the decrease in the external �eld through an adaptation of its parameters. For both expressions of
σ of eqs. (S1) and (S2), the following property holds:

1

β

∂

∂h
log σ (s|h;β) = s− 〈s〉h (S6)

where here 〈s〉h =
∑
s s σ (s|h;β). This allows us to derive the following simple formulas for the derivatives with

respect to the parameters, for both neuronal models:

− 1

β

∂

∂Jλ2

ik

〈KL (P (·|s;λ1) ||P (·|s;λ2))〉P =
∑
s

P (s)
∑
s′i

σ
(
s′i|h

λ1
i

)
(s′i − 〈s′i〉) sk

= 〈s′isk〉P,λ1
− 〈s′isk〉P,λ2

(S7)

− 1

β

∂

∂θλ2
i

〈KL (P (·|s;λ1) ||P (·|s;λ2))〉P =
∑
s

P (s)
∑
s′i

σ
(
s′i|h

λ1
i

)
(s′i − 〈s′i〉)

= −
(
〈s′i〉P,λ1

− 〈s′i〉P,λ2

)
(S8)

As mentioned above though, the second one is not actually used in the ±1 model since we did not use the thresholds
θi in that case.

A. Connection with maximum pseudo-likelihood method

In the fully visible case, the clamped probability distribution eq. (2) of the main text simply becomes Pclamp (s; ξ) =∏N
i=1 δsi,ξi , and the average KL divergence de�ned in eq. (S3) can be written explicitly as:

〈
KL

[
P
(
·|s;λext =∞

)
||P
(
·|s;λext = 0

)]〉
Pclamp(ξ)

= (S9)

= −
N∑
i=1

logP
(
si = ξi| {sj = ξj}j 6=i ;λext = 0

)
.

This expression can be recognized as one of the terms appearing in the so called log-pseudo-likelihood L ({ξµ} |Jij , θ;β) =
1
M

∑M
µ=1

∑N
i=1 logP

(
si = ξµi |

{
sj = ξµj

}
j 6=i ;λext = 0

)
.

The pseudo-likelihood method provides a computationally inexpensive yet statistically consistent estimator [1] when
the functional form of the joint probability distribution over the con�gurations is unknown, and is thus approximated

in the factorized form P (s = ξµ) =
∏
i P
(
si = ξµi |

{
sj = ξµj

}
j 6=i

)
. In the framework of learning, the minimization of

eq. (S9) can be seen instead as a stability requirement for the memory ξ, as it progressively increases the probability
that the stochastic dynamics remains �xed in the attractor state.

B. Connection with the perceptron rule

In the noise-free limit β → ∞, where the state of the neuron st+1
i is deterministically obtained by taking the sign

of the local incoming current, the pseudo-likelihood synaptic weight update would read:

∆Jij =

{
0 ξihi ≥ 0

2ηξµi ξ
µ
j ξihi < 0

, (S10)
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which is the well-known perceptron rule. Indeed, since the next state of a neuron is conditionally dependent on the
previous state of the other N − 1 neurons, one can reinterpret the problem of learning a certain number of attractors
as N independent perceptron learning problems. In a zero temperature setting, the incoming weights of a neuron i
can be simply updated whenever its predicted state is misaligned with respect to the i-th component of the memory
to be learned, st+1

i 6= ξi, by shifting its weights in the direction of the desired state and in parallel to the pattern
itself. It is known that the perceptron rule saturates the theoretical Gardner bound αc = 2 for the critical memory
capacity of a fully-visible neural network at zero noise [2].
Moreover, if we follow [3] and consider negative �eld intensities λmin < 0 (instead of λmin = 0 as in the pseudo-

likelihood method), we obtain:

∆Jij =

{
0 ξihi ≥ |λmin|
2ηξµi ξ

µ
j ξihi < |λmin|

. (S11)

This is nothing but the perceptron rule with robustness parameter |λmin|, that forces the network to learn the memories
so that they are attractive in a full sphere of such radius. However, any λmin < 0 will also cause the maximum capacity
of the network to decrease [4].

S3. INHIBITORY NETWORK MODELS

We considered three di�erent schemes that can reproduce the e�ect of an inhibitory network. In the �rst one,
the inhibitory network is replaced by a global inhibitory unit connected to all the N excitatory neurons [5], which
elastically drives the system towards the desired activity level through a feed-back signal. An alternative scheme
can be obtained by introducing a soft �winner-takes-all� mechanism, e�ectively playing the role of a global inhibitory
unit [6�16]. This mechanism is meant to model a continuous time scale phenomenon: the neurons with higher local
activities could become active before the others and start to excite the inhibitory component of the network, whose
feed-back signal is triggered when the correct fraction fv of neurons is already active; this signal thus depresses all the
local activities of the network, preventing the remaining neurons from activating. The last inhibitory scheme is based
on the introduction of locally adaptive thresholds (from a biological point of view, this mechanism can be justi�ed
with the widely observed phenomenon of thresholds variability in the central nervous system [17]).
The aim of the inhibitory feedback is to maintain the excitatory network activity around a desired level, preventing

epileptic (all-on) or completely switched o� states in the {0, 1} model. In the following, we provide more detailed
explanations and some implementation details for each scheme.

A. The global inhibitory unit scheme

We consider a generalization of the global inhibitory unit scheme proposed in [5], for a purely excitatory stochastic
neural network constituted by an ensemble of N neurons. Suppose that, within the entire neuronal population, we

can distinguish G di�erent groups of neurons, such that N =
∑G
α=1Nα, with di�erent sparsity levels. We introduce

G global inhibitory units, whose task is to maintain the activity Sα =
∑N
i=1 s

α
i of each population of neurons at the

desired level fαNα. According to the global inhibitory unit scheme, each excitatory neuronal ensemble α receives a

feed-back signal Iα
({
fβ , Sβ

}G
β=1

)
, which can be parametrized as:

Iα
({
fβ , Sβ

}G
β=1

)
= Hα

0 + ναα (Sα − fαNα) +
∑
β 6=α

ναβ
(
Sβ − fβNβ

)
. (S12)

In this section we derive analytically an expression for both the global inhibition constant Hα
0 and the parameters

ναβ that control the elastic reaction to possible oscillations around the desired activities.
Assuming that the local �elds hαi in population α are Gaussian distributed, the inhibitory units are required to

correctly set the mean of the distribution around the mean threshold Tα = 〈θαi 〉, so that the integral of the distribution
above threshold contains exactly fαNα local �elds:

〈hαi 〉 = Tα −H−1 (fα)σα. (S13)
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Here H−1 (x) =
√

2erfc−1 (2x) represents an inverse error function, determining the proper shift to be applied,
measured in units of the standard deviation of the distribution σα. The latter can be easily computed, giving:

σα =

√
(σααJ )

2
(Sα − fα) +

∑
β 6=α

(
σαβJ

)2
Sβ , (S14)

where σαβJ stands for the standard deviation of the distribution of the synaptic couplings from population β to
population α.

By summing and subtracting
∑
β

(
σαβJ

)2
fβNβ in the square root, assuming small deviations of the activity of the

network Sα from the desired activity level fαNα, we can expand σα obtaining:

σα =

√
fα (Nα − 1) (σααJ )

2
+
∑
β 6=α

(
σαβJ

)2
fβNβ × (S15)

×

1 +
(σααJ )

2
(Sα − fαNα) +

∑
β 6=α

(
σαβJ

)2 (
Sβ − fβNβ

)
2

(
fα (Nα − 1) (σααJ )

2
+
∑
β 6=α

(
σαβJ

)2
fβNβ

)
 .

In the left hand side of eq. (S13), instead, each local �eld hαi is given by the sum of three di�erent contributions,
namely the external �eld, the recurrent input and the feed-back signal from the inhibitory unit:

〈hαi 〉 =

〈
hext,αi +

∑
j 6=i

Jααij s
α
j +

∑
β 6=α

∑
j

Jαβij s
β
j −H

α
0 + (S16)

−ναα (Sα − fαNα)−
∑
β 6=α

ναβ
(
Sβ − fβNβ

)〉
.

We can compute the average by summing and subtracting
∑
β J

αβSβ , obtaining:

〈hαi 〉 = hext,α + Jαα (Sα − fα)−
∑
β 6=α

JαβSβ −Hα
0 − ναα (Sα − fαNα) + (S17)

−
∑
β 6=α

ναβ
(
Sβ − fβNβ

)
.

We therefore get an expression for the global inhibitory constant Hα
0 and the parameters ναα and ναβ that satisfy

eq. (S13):

Hα
0 = hext,α + (Nα − 1) Jααfα +

∑
β 6=α

NβJαβf
β + (S18)

+ H−1 (fα)

√
fα (Nα − 1) (σααJ )

2
+
∑
β 6=α

(
σαβJ

)2
fβNβ − Tα

ναα = Jαα +
H−1 (fα) (σααJ )

2

2

√
fα (Nα − 1) (σααJ )

2
+
∑
β 6=α

(
σαβJ

)2
fβNβ

(S19)

ναβ = Jαβ +
H−1 (fα)

(
σαβJ

)2
2

√
fα (Nα − 1) (σααJ )

2
+
∑
β 6=α

(
σαβJ

)2
fβNβ

. (S20)

Notice that a contribution to the global inhibitory constant Hα
0 arises from the mean external �eld hext,α = λextfα,

so that neurons that do not receive an excitatory external stimulus are e�ectively depressed. Since the adaptation
of the synaptic couplings according to the plasticity rule is considered to be adiabatic, the means and the standard
deviations required for setting a correct inhibition are a�ected only over longer time scales and need not be updated
instantaneously.
The scheme described here can be easily specialized to the simple cases of fully visible or visible-to-hidden restricted

connectivity, which have been analyzed in detail in this work.
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B. Soft �winner takes all� mechanism

This inhibitory scheme can be easily implemented in the synchronous dynamics considered in this work: before
the new neuronal state gets extracted (eq. (1) of the main text), the local activities are �rst sorted with respect to
their magnitude, then a global inhibitory input is added, whose value is set just below the activation of the (fN)-
th highest excited neuron. This procedure guarantees a �ne-tuned control on the sparsity level f of the network.
When the network is composed of a number G of di�erent groups of neurons, each with a di�erent sparsity level,
the sorting operation is done inside each group. Some theoretical results show that neurons with adaptive threshold
perform better than those with a constant threshold in presence of highly correlated stimuli [18]: we con�rm these
observations, since we have seen that this scheme is the best one in the one-shot learning task.

C. The adaptive thresholds regulatory scheme

The si ∈ {0, 1} case can be mapped exactly on the si ∈ {−1,+1} case, but this operation requires the thresholds
to dynamically adapt to any change in the synaptic couplings.
In order to obtain the correct mapping one can consider the conditional probabilities of the two models, and look for

a transformation of the neural variables and of the parameters which allows to move between the two scenarios. After

inserting the simple change of variables si → s′i = (si+1)
2 in the expression for the local activities in the si ∈ {−1,+1}

model (note that in this section the s′ notation is not used to denote the next step of the dynamics), we get the
matching equation:

h′i = 2

hexti +
∑
j

Jij (2s′i − 1)

 = hexti
′
+
∑
j

J ′ijs
′
i − θ′i. (S21)

which is satis�ed by posing hexti
′

= 2hexti , J ′ij = 4Jij and θ
′
i = 2

∑
j Jij = 1

2

∑
j J
′
ij in the case of si ∈ {0, 1} neurons.

By looking at the case with fv = 0.5 sparsity, this mapping suggests that it is possible to set the thresholds in
correspondence of the average value of the incoming excitatory stimuli received by each neuron:

θi =

〈∑
j 6=i

Jijs
t
j

〉
t

= fv
∑
j 6=i

Jij . (S22)

This de�nition properly matches the one obtained from the exact mapping just in the case of fv = 0.5. However,
this choice was found to allow an extensive capacity in the on-line learning regime for the si ∈ {0, 1} neuronal state
variables even with di�erent sparsity levels. Having set the thresholds in such a way, one gets a slightly di�erent form
for the local activations hi = hexti +

∑
j 6=i Jij

(
stj − fv

)
and the learning rule eq. (S7) changes to:

∆Jij ∝
(〈
st+1
i

(
stj − fv

)〉
t,λ1
−
〈
st+1
i

(
stj − fv

)〉
t,λ2

)
. (S23)

S4. SIMULATION: IMPLEMENTATION DETAILS

We provide here detailed description of the learning algorithm in its heuristic version, described at the end of
'The Model' section, with the update rule eq. (6) of the main text. The learning protocol consists of an iterative
optimization procedure where the parameters J and θ are incrementally updated. Throughout this work we initialized

the weights J uniformly at random; for the ±1 models, they were sampled from the interval
[
− 1√

N
, 1√

N

]
, while for

the 0/1 models they were sampled from the interval
[
0, 1√

N

]
. The thresholds θ were set to 0 in the ±1 model, and

initialized all to the same value in the 0/1 model (the precise value is essentially irrelevant because of the e�ect of the
inhibitory network; we used 0.35 in our simulations).
Every pattern ξµ is presented in the form of an external �eld hext = λextξµ, where the signal intensity is initialized

at a �xed value λmax and then progressively decreased to zero in steps of ∆λ. Before the learning process starts, we
let the network evolve towards a state correlated with the pattern by waiting for a few iterations Tinit of the dynamics
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while the external �eld set to its maximum. Then, the learning process starts in the �positive� phase, registering the
correlations in a time window of T steps at an initial value of the external �eld λ, and subsequently at a value lowered
by ∆λ, in the �negative� phase. The parameters are updated with a �xed learning rate η, as in eq. (6) of the main
text.
This procedure is repeated until the external �eld reaches zero. The length of the time windows T has to be

chosen in such a way that the state reached at the end of each averaging procedure is still in nearly the same region
around the pattern, otherwise another initialization phase would be needed. In our experiments, we found that a good
performance is achieved when T ranges from ∼ 3 to ∼ 25, provided the learning rate is lowered when the average is
taken over very few iterations. This shows that a network implementing the DCM plasticity rule is able to learn even
in the presence of an extremely low signal-to-noise ratio.
The relevant computation can be parallelized, since all the quantities involved (both in the dynamics and in the

learning process) are local with respect to the synapses and the neurons. A simple pseudo-code implementation
scheme for the learning protocol can be found in algorithm 1.
The learning rate is constant in time and was arbitrarily set to η = 0.01 in our simulations.

Input: parameters: η, cycles, λmax, ∆λ, T , Tinit

Initialize J randomly ∼ U
(
−1√
N
, 1√

N

)
;

for cycle = 1 to cycles do
for µ in random permutation of [1 : p] do

Set the external �eld on the visible neurons to an intensity λmax;
Run the network for Tinit steps;
while λ > 0 do

Estimate
〈
st+1
i stj

〉
λ
for T steps;

Estimate
〈
st+1
i stj

〉
λ−∆λ

for T steps;

Jij ← Jij + η
[〈
st+1
i stj

〉
λ
−
〈
st+1
i stj

〉
λ−∆λ

]
;

λ← λ−∆λ;

end

end

if all patterns are learned then
BREAK;

end

end

Algorithm 1: Pseudo-code implementation scheme for the DCM learning protocol (�g. 1 of the main text). For
simplicity, we report the scheme used for ±1 network models.

A. Measuring the width of the basins of attraction

We introduced an operative measure of the basin size, relating it to the level of corruption of the memories before
the retrieval: a set of M = αN patterns is considered to be successfully stored at a noise level χ if, initializing the
dynamics in a state where a fraction χ of the pattern is randomly corrupted, the retrieval rate for each pattern is at
least 90% (as estimated from 100 separate trials per pattern) after at most 1000 learning cycles (250 in the simulations
with �nite �elds). A successful retrieval is measured when, in absence of external input, the network evolves towards
a neuronal state with an overlap ≥ 0.99 with the learned pattern in at most 50 steps of the dynamics.

B. Spurious attractors

In the numerical experiments for �g. 7 of the main text, the storage load α was chosen to be su�ciently small, such
that both the DCM rule and the Hebb rule are able to learn stable attractors. The presence of spurious attractors
was detected as follows: the network state was initialized at random, and was then allowed to evolve freely for 200
time steps. After this initialization period, the magnetization was recorded for a few iterations and compared with
the stored attractors. If the modulus of the overlap with any one of them was > 0.95, the state was considered to have
reached a known attractor. Otherwise, the magnetization was recorded for some more iterations, in order to check if
a stable state was reached, and if this condition occurred the magnetization was clipped to ±1 and a new spurious
attractor was counted. In the following random restart, this attractor was inserted in the list of known attractors.
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Of course, this procedure only provides an estimate of the number of distinct spurious attractors introduced by the
learning rule, but su�cient to highlight a large, qualitative di�erence in the behavior of DCM compared to the Hebb
rule.
The �rst peak in �g. 7 of the main text, in the Hebb's curve plot, is due to �nite size e�ects: the number of spurious

states is expected to grow at least exponentially in a sub-extensive regime M � N . In the extensive regime, mixtures
of odd number of memories can still be observed, but as the storage load α is increased the mixture states composed
of larger number of patterns are expected to disappear, and the growth in the number of spurious attractors is no
longer exponential [19].

C. One-shot tests and palimpsest regime

In the one-shot simulations every pattern is seen by the network only once, and its memory will eventually be
overwritten by the new ones. The goal is to reach a steady state regime in which, at each new presentation, the last
M learned memories maintain the required stability. This storage load is called the palimpsest capacity.
In order to reach the maximal capacity, the parameters have to be �ne tuned so that the learning process for each

memory is slow and the most recently learned ones are minimally perturbed: one has to ensure that in the freely-
evolving dynamics, i.e. the last time window during the external �eld pulse, the neuronal state does not escape the
basin of attraction of the new memory and enters a previously learned one, causing the loss of existing memories. In
the simulations presented in �g. 8 of the main text we addressed this problem rather drastically by simply removing
this last window, which only resulted in a slight improvement in the palimpsest capacity.
We also set η = 0.01, λmax = 4, ∆λ = 1 and the length of the time windows was chosen to be slightly faster then in

the other tests, T = 10. In this setting the number of presentations of the same pattern, i.e. the number of external
�eld pulses, required for reaching its desired stability is around ∼ 1000. This number would grow in time, because of
the increase in the average connectivity of the network as new memories are added, a problem that can be overcome
with the introduction of a synaptic weight L2-regularization.
In the case of si ∈ {0, 1} neurons, we surprisingly lose the property of an extensive palimpsest capacity. The

problem seems to be related to the need for a substantial shift in the threshold, that would allow a wide basin of
attraction for a new pattern, as expressed by eq. (6) of the main text. This modi�cation seems to strongly a�ect the
network dynamics also when it hovers around a di�erent, previously learned memory, introducing a disruptive e�ect
in the palimpsest regime. In the normal learning task, instead, the thresholds are eventually set to a level which is
compatible with all the patterns, since the learning protocol can cycle through the pattern set many times. The only
way we found to obtain a good performance in the one-shot learning task for si ∈ {0, 1} neurons with our model is to
introduce an adaptive threshold regulatory scheme, stemming from a direct mapping to the si ∈ {−1,+1} case.

D. Generation of correlated patterns

In the case of si ∈ {−1,+1} neurons, we only introduced correlations in the form of a bias in the generation of the
patterns, see section `Types of neurons' above. Note that, in the biased case b 6= 1/2, it is known that the naive Hebb
rule Jij = 1

M

∑
µ ξ

µ
i ξ

µ
j has to be generalized to Jij = 1

M

∑
µ (ξµi − 2b+ 1)

(
ξµj − 2b+ 1

)
.

In the si ∈ {0, 1} case, instead, we also generated correlated patterns as combinations of sparse features φν , with

P (φνi ) = f δ (φνi − 1) + (1− f) δ (φνi ), chosen from a �nite length dictionary D = {φν}Lν=1. Every pattern contains a
�xed number of features, F , and its components can be written as: ξµi = Θ (

∑
ν c

µ
νφ

ν
i ), with cµν ∈ {0, 1} determining

whether the feature ν appears in pattern µ, and Θ (·) is the Heaviside theta function, Θ (x) = 1 if x > 0 and Θ (x) = 0
otherwise.

S5. TAP APPROXIMATION IN ASYMMETRIC SPARSE MODELS

In the heuristic version of DCM, the time-delayed correlations of a network subject to varying external �eld intensi-
ties are needed in order to update the model parameters. In our approach, we employed a Monte Carlo scheme � which
relies solely on the network dynamics � for their evaluation, as a means to ful�ll some basic biological constraints. A
better approximation though can be achieved with the so-called TAP approach, consisting in a second order expan-
sion around a mean �eld limit, which can provide an estimation for the marginal probabilities of the neuronal state
variables. The related magnetizations can then be used to compute approximate values for the pairwise correlations.
In what follows, we will apply the same procedure proposed in ref. [20] for the si ∈ {−1,+1} case and the

sequential Glauber dynamics, to the si ∈ {0, 1} and the synchronized dynamics case. Since we are dealing with an
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asymmetric model, where the form of the joint probability distribution P (s|θ, J) is unknown, we have to assume a

weakly interacting regime, with small O
(

1/
√
N
)
couplings J , and in addition to be close to a mean �eld model with

a factorized distribution:

PMF
(
s|θMF

)
=

N∏
a=1

exp
(
θMF
a sa

)
1 + exp (θMF

a )
. (S24)

We introduce the parametrization θMF
a = θa − dθa where dθa is small and θMF are the parameters of the mean �eld

model, which can be found by minimizing the KL divergence:

KL
[
P ||PMF

]
=
∑
s

P (s|θ, J) log

(
P (s|θ, J)

PMF (s|θMF)

)
. (S25)

The TAP approximation is obtained by performing a Taylor expansion of the magnetizations ma =
∑
s P (sa) sa in

the small parameters Jjk and dθi and applying the matching condition ma −mMF
a = 0 for all a ∈ {1, . . . , N} up to

second order:

0 = ma −mMF
a ≈

∑
i

∂ma

∂θi

∣∣∣∣
MF

dθi +
∑
i<j

∂ma

∂Jij

∣∣∣∣
MF

dJij + (S26)

+
∑
ij

∂2ma

∂θi∂θj

∣∣∣∣
MF

dθidθj +
∑
i<j

∑
k<l

∂2ma

∂Jij∂Jkl

∣∣∣∣
MF

dJijdJkl +

+2
∑
i<j

∑
k

∂2ma

∂Jij∂θk

∣∣∣∣
MF

dJijdθk

After some calculations, the following derivatives, evaluated in correspondence of the mean �eld probability distribu-
tion, are obtained:

∂ma

∂θi

∣∣∣∣
MF

= ma (1−ma) δai (S27)

∂ma

∂Jij

∣∣∣∣
MF

= mjma (1−ma) δai (S28)

∂2ma

∂θi∂θj

∣∣∣∣
MF

=
(
ma (1−ma)

2 − (ma)
2

(1−ma)
)
δaiδaj (S29)

∂2ma

∂Jij∂θk

∣∣∣∣
MF

= mjma (1−mj) (1−ma) δaiδjk + (S30)

+mj

[
ma (1−ma)

2 − (ma)
2

(1−ma)
]
δaiδak

∂2ma

∂Jij∂Jkl

∣∣∣∣
MF

= mjml (1−ml)ma (1−ma) δliδak + (S31)

+mlmj (1−mj)ma (1−ma) δjkδai +

+ 〈sjsl〉MF

(
ma (1−ma)

2 − (ma)
2

(1−ma)
)
δaiδak.

Using the identity 〈sjsl〉MF = δjlmj + (1− δjl)mjml and neglecting higher orders up to O
(
dΘ2

)
, the moment

matching condition reads:

θMF
a = θa +

∑
j

mjJaj +
1

2
(1− 2ma)

∑
j

(mj (1−mj)) J
2
aj . (S32)

This leads to the TAP equations for the single neuron marginal probabilities when the sigmoid activation function is
applied. The �xed point of these equations can be found by recursion, with a crucial caveat, namely that during the
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iterative procedure the time indices of the magnetization appearing in the Onsager reaction term have to be chosen
carefully, according to:

mt+1
i = sigm

θi +
∑
j

mt
jJij −

(
mt−1
i − 1

2

)∑
j

(
mt
j

(
1−mt

j

))
J2
ij

 (S33)

where sigm (x) = (1 + e−x)
−1

is the sigmoid function. Note that in the model presented in the main text the constant

�eld θi is further decomposed into the e�ect of an external �eld and of a negative threshold θi → λext
(
ξi − 1

2

)
− θ̃i.

Once the magnetizations are estimated, one can calculate the time-delayed correlations in the same TAP approxi-
mation. The dependence of these correlations on the magnetizations can be derived starting from:

〈s′isj〉 =
∑
s

P (s) sj
∑
s′i

P (s′i|s) s′i. (S34)

After expanding the sum over s′i, one simply obtains: 〈s′isj〉 = 〈sigm (hi) sj〉. In order to simplify some of the following
derivations, we �rst consider the Taylor expansion of the connected time-delayed correlations:

χDij = 〈s′isj〉 −mimj = 〈si (sigm (hj)−mj)〉 . (S35)

In order to �nd an expression up to second order in dΘ, we need the following derivatives:

∂χDba
∂θi

∣∣∣∣
MF

= 0 (S36)

∂χDba
∂Jij

∣∣∣∣
MF

= mbma (1−mb) (1−mj) δajδbi (S37)

∂2χDba
∂θi∂θj

∣∣∣∣
MF

= 0 (S38)

∂2χDba
∂Jij∂θk

∣∣∣∣
MF

= mamb (1−ma) (1−mb) (1− 2mb) δajδbkδbi (S39)

∂2χDba
∂Jij∂Jkl

∣∣∣∣
MF

= mamb (1−mb) (1− 2mb) δbkδbi × (S40)

× (δajδal + (1− δaj) δalmj (1−ma)) . (S41)

Using the following relation:

〈sasjsl〉MF = δaj (δalma + (1− δal)maml) + (S42)

+ (1− δaj)
(
δalmamj + (1− δal)ma 〈sjsl〉MF

)
,

we obtain the expression for the Taylor expansion up to second order:

χDij = (mi (1−mi)) (mj (1−mj))

(
Jij +

1

2
(2mi − 1) (2mj − 1) (Jij)

2

)
, (S43)

and therefore the �nal expression for the time-delayed correlations reads:

〈s′isj〉 = (mi (1−mi)) (mj (1−mj))× (S44)

×
(
Jij +

1

2
(2mi − 1) (2mj − 1) (Jij)

2

)
+mimj .
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S6. VISIBLE-TO-HIDDEN DIRECTED SYNAPSES

In the case of an architecture restricted to visible-to-hidden directed connections, the network can be seen as a
bipartite graph. At any given time the state of a neuron in one of the two subsets is conditionally dependent only on
the state of the complementary subset of neurons at the previous time:

P (s′i, i ∈ V|s) = P (s′i, i ∈ V|sH) (S45)

P (s′i, i ∈ H|s) = P (s′i, i ∈ H|sV) . (S46)

Because of this property the joint conditional probability P (sH|sV) can be factorized, and the clamped probability
distribution can be written explicitly:

Pclamp (s; ξ) =
∏
i∈V

δsi,ξi
∏
j∈H

P (sj |sV = ξ) . (S47)

The learning rule can be derived from the minimization of the KL divergence between the conditional probabilities
obtained when the external �eld intensity is λext =∞ and λext = 0, averaged over the clamped probability distribution.
By di�erentiating the KL with respect to a hidden to visible synaptic coupling Jij with i ∈ V, j ∈ H, we get the
following update rule:

∆Jij ∝ P (sj |sV = ξ) ξisj −
∑
s∈H

∏
k∈H

P (sk|sV = ξ)P (s′i|sH) s′isj . (S48)

As in the case of fully visible networks, the same increment would be obtained if an on-line optimization of the
pseudo-likelihood of the model was instead implemented, except that now its estimation implies an average over all
the possible hidden neuronal states:

L ({ξµ} |Jij , θ;β) =
1

M

M∑
µ=1

∑
i∈V

log

∑
sj∈H

∏
k∈H

P (sk|sV = ξ)P
(
s′i = ξµi |sH;λext = 0

) . (S49)

A. MNIST Simulations

Instead of trying to construct an arti�cial stimulus ensemble, we use the MNIST database benchmark [21], which
consists of 7 · 104 28 × 28 grayscale images representing hand-written digits in 10 classes from 0 to 9. Images are
sparse, with an average luminosity of fξ = 0.13066 and every component ranging in the interval ξµi ∈ [0, 1]. It is
rather natural to consider each pattern as an array of probabilities of �nding the corresponding neurons in the active
state: we therefore consider a stochastic network of si ∈ {0, 1} neurons, whose visible component will be successively
subject to an external �eld corresponding to each one of the images, as before multiplied by a �eld intensity λext. We
hold out the last 104 images as a test set for the generalization performance, and employ the �rst 6 · 104 images to
learn the statistics of the data.
We consider an architecture with |V| = 784 + 10 visible neurons, plus |H| = 1000 hidden neurons to guarantee a

high representational capacity. The additional 10 visible neurons, one for each digit, can allow the network to learn
input-output correlations: these neurons received a supervised input indicating the correct label of the image during
the learning phase [22], and were present in all the simulations described in the following; however, they are exploited
only for the classi�cation task, being unessential for the usual generative tasks.
In order to point out how the DCM is able to deal with all the biological constraints we are considering in this work,

we o�er the direct comparison between two di�erent learning models. In the �rst numerical experiment, which serves
as a benchmark reference, the network was trained in the in�nite signal limit (λmax ∼ 50 is su�cient) corresponding
to the pseudo-likelihood method, with unconstrained synapses, no inhibitory mechanism and using the time-delayed
correlations obtained in the TAP approximation. In the second numerical experiment, meant to test the DCM rule
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a 

b 

Figure S1. Receptive �elds of the hidden neurons. In this �gure we show some of the receptive �elds of the neurons belonging to
the hidden subset, in the two proposed experiments. a. Receptive �elds learned in the �rst experiment, where the TAP approx-
imation was employed in the clamped limit with no inhibition. b. Receptive �elds learned in the second experiments, where
the correlation were registered during the time evolution of the network, and where �nite time-dependent �elds, constrained
synapses and the �winner-takes-all� inhibition scheme where considered.

in a more biologically plausible, we studied a purely excitatory network and implemented the soft �winner-takes-all�
inhibitory scheme, �xing an average hidden activity of fh = 0.2. The network was required to learn from �nite
external �elds (λmax = 3, ∆λ = 3/2 and λmin = 0) and to estimate the correlations simply through its own dynamics
(speci�cally, we considered T = 15), as described in sec. 1. In both experiments the networks cycled 2 times through
the 6 · 104 training images of the MNIST dataset.

In the second experiment setting, a very high level of noise can become extremely detrimental: with large hidden
layers the network is often prone to falling into a completely symmetric state, with very poor performance. One
would instead want to exploit the initial randomness in the synaptic couplings as a tool for breaking this otherwise
problematic symmetry between the hidden neurons. This can be either achieved by choosing a lower temperature
β = 30 (we choose this setting, to be compared with β = 2 in the �rst experiment) or by rescaling the initial random
con�guration of the synaptic couplings.

Receptive �elds

A �rst comparison of the learning performance in the two cases is attained by visualizing the receptive �elds of the
hidden neurons, which can show how each di�erent hidden unit specializes in the detection of a unique feature of the
pattern set learned by the neural network. The receptive �elds of the hidden neurons are represented by the synapses
Jij with a �xed i ∈ H and j running through the visible indices V. These arrays can be reorganized as a 28 × 28
grayscale images as well, after renormalizing each component in the interval [0, 1]: the obtained image represents, for
any hidden unit, its optimal stimulus. A sample is shown in �g. S1.

It is apparent that most of the hidden units develop interesting internal representations which can be interpreted
as simple detectors for edges of parts of single digits. Both experiments also show the presence of a small fraction
of extremely noisy features (that usually become irrelevant since the threshold of the corresponding neuron raises in
order to inhibit its activation during the dynamics).
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Figure S2. Generation of samples. The two series of plots show the probability of obtaining an active state for the visible neurons
after 100 time-steps of the dynamics, starting from 8 di�erent initial states. a. Samples generated in the �rst experiment,
where the TAP approximation was employed in the clamped limit with no inhibition. b. Samples generated in the second
experiments, where the correlation where registered during the time evolution of the network, and where �nite time dependent
�elds, constrained synapses and the �winner-takes-all� inhibition scheme where considered. The superior smoothness of the
samples from the �rst experiment is also due to the choice of a higher temperature in the dynamics (β1 = 2 against β2 = 30,
see Methods).

Generative tasks

A better way of assessing the quality of the internal representation of the learned dataset in the two experiments is
to test the generative properties of the networks. As shown in �g. S2, we obtained some visible con�gurations from the
steady-state distribution of the models, generated according to the information learned from the training images. The
steady-state distribution is reached by the dynamical evolution of the network when starting from a visible neuronal
state induced by one of the learned images. In order to initialize the network, visible neurons are clamped with a
very strong �eld (λext = 50) in the direction the image and of the correct label for an initial period of 30 time steps.
The �eld on the �rst 784 neurons is then removed, while the visible neurons receiving the supervised stimulus are
maintained clamped, and the network is left evolving for some iterations. Keeping the output labels clamped only
mildly encourages the network to produce new samples from the same category, and this small signal does not have
a major e�ect.
Alternatively the networks can be asked to generate the correct label of a test image, presented to the network

with a clamping signal. In the �rst experiment, the output of the network was read directly from the magnetizations
obtained at convergence of the TAP equations iterative procedure, by simply picking the maximum magnetization
between the ones corresponding to the visible neurons associated to the label of each category. This network was
able to reach a generalization error rate of 2, 76%. This result is far from state-of-the-art classi�cation performance
(around 0.3% [21]), but is remarkably low if one takes into account the highly noisy environment and the small size
of the network. In the second experiment, the magnetizations were instead explicitly registered during the dynamical
evolution of the network. In this case, the performance declined to a 7.74% generalization error rate. This result is
nevertheless of interest, considering that the entire learning process was done without a clear supervised signal and
that the system was subject to a number of biological requirements restraining the computational performance of the
network.
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