Supporting Information

Figure S2. Schematic diagram showing the preparation of gelatin MPS substrates before spinning the fibers.

Figure S4. XRD Pattern for the TiO₂ Degussa P25.

13

17

Figure S5. TEM Feret size distribution for the TiO₂ Degussa P25.

19

- 22

Figure S6. Representative 3D reconstruction image of z-stacked confocal images of NRVMs grown on PCL/PDA nanofiber scaffold with a color depth.

Figure S7. Cytotoxicity tests for cardiomyocytes cultured on fiber MTFs. a) Comparison of 4 lactate dehydrogenase (LDH) release of cardiomyocyte MTFs, pre- and post-exposure to TiO₂ at 10 and 100 µg/mL. b) Comparison of cell viability based on MTT assay for cardiomyocytes unexposed and exposed to 50 μ g/mL Ag nanoparticles. Bars represent standard error, n=8 per condition for LDH assay, n=16 for MTT assay. For statistical comparison, **p<0.05.

Figure S8. Effect of silver nanoparticle exposure. a–b) Confocal images of calcium dye fluorescent (green) with calcium transient at the specific points (white boxes) for Ag (50 μ g/ml) exposure. Scale is 500 μ m. c) Confocal image of cardiomyocytes on nanofiber, stained for nuclei (blue) and α -actinin (grey). Scales are 100 μ m (for the top panels) and 20 μ m (for the bottom panels). The bottom panels are the zoom-in images from the red dots of the top panels.

	_		Primary P	Particle Size		Crystal	Structure
	ENM	SSA	dbet (nm)	d тем (nm)	dxrd (nm)	Crystal	Crystallinity
		(m^2/g)				System	(%)
-	TiO ₂ P25	$46.45 \pm$	$29.76 \pm$	$28.82 \pm$	Anatase:	Anatase	81.4
		2.32	1.49	11.07	21.3	81.4%	
					Rutile:	Rutile	
					30.40	16.2%	
	Ag-	N/A	N/A	$21.58 \pm$	N/A	N/A	
	citrate			2.83			N/A
	capped						
2 -	ENM. engir	neered nano	material: SSA	by nitrogen a	adsorption/Bru	nauer-Emme	tt-Teller (BET)
3	method: dpr	T drew and	dypp narticle	e			
<u>J</u>			and, purier	e			
5							
6							
7							
8							
0							
10							
10							
11							
12							
13							
14 15							
15							
10							
1/							
18							
19							
20							
21							
22							
23							
24							
25							
20							
27							
28							
29							
3U 21							
31 20							
32 22							
33							
34							
35							

1	Table S1.	Morphological	and structural	properties	of ENMs
---	-----------	---------------	----------------	------------	---------

			Shape Factors			osity	
	ENM	Aspect	Circularity	Roundness	TPV	APS §	$- \rho_{raw}$
		ratio			(cc/g)	(nm)	(g/tt)
	TiO ₂ P25	$1.276 \pm$	$0.926 \pm$	$0.795 \pm$	0.119	5.14	4.38±0.01
		0.162	0.034	0.094			
	Ag –	1.175 ±	0.999 ±	$0.858 \pm$	N/A	N/A	
	citrate	0.111	0.025	0.078			N/A
-	capped			1.1.5.2			<u> </u>
2	ENM, engin	neered nano	material; TPV	and APS, total	pore volun	ne and ave	rage pore size,
3	respectively	/ determined	by nitrogen a	dsorption/Brun	auer-Emm	ett-Teller (BET) method; ρ_{raw}
4	raw density	of ENMs d	etermined by n	itrogen volum	e displacen	ient (pycho	ometry); *IEM did
5	confirm the	presence of	pores but inte	rparticle spacif	ig instead.		
0							
7							
,							
8							
9							
10							
11							
12							
12							
13							
1							
14							
15							
15							
16							
17							
18							
19							
20							
N 1							
21							

Table S2. Physical properties of ENMs

		0	Chemical Ele	emental Compos	sition		S4 amil:4
	ENM	Trace Metal Analysis (%)	Carbon Content (%)*	Stoichiometry XPS	Stoichiometry ICP-MS	Recombinant Factor C (EU/mg) [£]	(bacterial growth observed) [†]
	TiO ₂ P25	99.98±4.86 Ti	0.22±0.13	TiO _{1.93}	TiO _{1.86}	< LOD	No growth
	Ag – citrate	99.69±0.60 Ag	0.17±0.21	N/A	N/A	4.870	No growth
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\end{array}$	ENM, en (w/w); [£] 50μg/ml	ngineered nan Suspension te	omaterial; L ssted at 10 μş	OD, limit of dete	ection; *Elementa in PBS is 76 EU/	l plus organic ca ml; [†] suspension (rbon content ested at

Table S3. Chemical and biological properties of ENMs

	Condition	% Cantilevers Beating
	Control (0 µg/mL)	95.0%
	TiO ₂ (10 μg/mL)	91.7%
_	TiO ₂ (100 μg/mL)	55.6%
	Ag (50 μg/mL)	28.6%
2		
3		
4		
5		
6		
7		
8		
0		
9		
10		
11		
12		
13		
14		
15		
16		
17		
17		
18		
19		
20		
21		
22		
23		
23		
2 4		
25		
26		
27		
n 0		

Table S4. Percentage of cantilevers beating during the time point of MPS optical recording.

1 Supplementary Movies

Movie 1. NRVM contraction on PCL/PDA nanofiber scaffolds. Scale is 100 μm.

5 Movie 2. NRVM contraction on fiber-coated gelatin MPS. Scale is 2 mm.
6

Movie 3. NRVM contraction on fiber-coated cardiac microphysiological device with embedded
contractility sensors.

Movie 4. Time-series images of a calcium-sensitive dye from cardiomyocytes grown on the 11 fiber-coated MTF sample without nanoparticle exposure.

Movie 5. Time-series images of a calcium-sensitive dye from cardiomyocytes grown on the 14 fiber-coated MTF sample with a low-dose TiO₂ (10 μ g/ml) nanoparticle exposure.

Movie 6. Time-series images of a calcium-sensitive dye from cardiomyocytes grown on the 17 fiber-coated MTF sample with a high-dose TiO_2 (100 µg/ml) nanoparticle exposure.