	IFN _{P/R}	IFN _R		P value	Forward Primer	Reverse Primer		
TLR3	0.1412	-0.2189	0.1228	0.0131	ACCACCAGCAATACAACT	GAATCGTTACCAACCACATT		
CCND1	0.3391	-0.1493	0.0662	0.0235	CACTTCCTCTCCAAAATG	TGGAAATGAACTTCACAT		
CD24	0.3687	-0.1595	-0.2029	0.0008	TAAGAGACTCAGGCCAAGA	AATTAGTAGATTCGATGAAGACCT		
IFNA21	0.0418	-0.0478	-0.0694	0.8297	CTACTTGGGAACAGAGCCTC	TCCACATTCATCAGGGG		
TLR7	0.3439	-0.1888	-0.0925	0.0026	CAGAACTATATCTCTACAACAACA	GAGGGCAATTTCCACTTAG		
IFIT1	0.4240	-0.0613	-0.1664	0.0073	ACAGCAACCATGAGTACAA	CAATGGATAACTCCCATGTAAAG		
IFNA14	0.0363	-0.2431	0.2642	0.0025	GTGGTGCTCAGCTGCAAGTC	GGCTGTGGGTTTGAGACAGATT		
IFNB	0.1931	-0.2734	0.1935	0.0012	GTCTCCTCCAAATTGCTCTC	ACAGGAGCTTCTGACACTGA		
IFNA7	0.2548	-0.3836	0.2586	<0.0001	GCCCGGTCCTTTTCTTTACTG	TTCATGTCTGTCCTTCAAGC		
IFNA16	-0.1909	-0.3500	0.5277	<0.0001	TATGATTTCGGATTCCCCCAGGAGGTG	GTCTCATCCCAAGCAGCAGATGAATC		
IFNA10	-0.3317	-0.3818	0.6471	<0.0001	TAGGAGGGCCTTGATACTCCTGGG	TGCCATCAAACTCCTCCTGGGGGAT		
IFNA17	-0.1350		0.6083	<0.0001	CCGTGCTGGTGCTCAGCTA	TGTGGGTCTGAGGCAGATCA		
IFNA4	-0.2855	-0.4049	0.6811	<0.0001	ACTCCTGGCACAAATGGGAAGAATCTCTCA	GAGCCTTCTGGAACTGGTGGCCA		
IFNA2	-0.1058	-0.1516	0.1605	0.0975	CTTGAAGGACAGACATGACTTTGGA	GGATGGTTTCAGCCTTTTGGA		
IFNA1	0.1589	-0.2682	0.1449	0.0020	CTTCAACCTCTTTACCACAAAAGATTC	TGCTGGTAGAGTTCGGTGCA		
IFNA8	0.1362	-0.2620	0.2347	0.0008	CCTTCTAGATGAATTCTACATCGAACTTG	ACTCTATCACCCCCACTTCCTG		
IFNA5	-0.2513	-0.1990	0.3234	0.0002	CCCTGGTGGTGCTCAACTG	CTTCCCATTTGTGCCATTATC		
IFNA6	-0.3010	0.0025	0.0254	0.1212	TCCATGAGGTGATTCAGCAGAC	GCTGCTGGTAAAGTTCAGTATAGAGTTT		
IFIT2	-0.2386	0.3315	-0.3557	<0.0001	GATACGCAGGTAGAGAGGAA	TGTAACGTTGAACCAGTTGT		
IRF7	0.5169	-0.1419	-0.2711	<0.0001	TCCTGGTGAAGCTGGAA	CATAAGGAAGCACTCGATGTC		
ZBP1	0.6254	-0.1405	-0.2691	<0.0001	CCAACAACGGGAGGAAG	TTTGCTGTCCTCATTCCC		
MX1	-0.0943	0.1510	-0.3301	0.0018	CCACACTGCGAGGAGATC	GTAAGCTCTAATATACGTTCCTTC		
PKR	-0.0152	0.1101	-0.2613	0.0474	CTCCACATGATAGGAGGTTTAC	TGCTTCCTTCTTTGATCTACC		
IRF9	0.1803	0.0492	-0.3078	0.0158	CTCCAGGACTCCCTCAATAA	CCTCAGTTGTGTCTGTAACTTC		
TLR9	-0.1480	0.1240	-0.1546	0.1174	TGAGCTACAACAACATCAT	CAGAGTCTAGCATCAGGA		
CCND2	-0.2741	0.1984	-0.1981	0.0050	GACGTGGATTGTCTCAAA	GTTCATCCTCCGACTTGG		
CD69	0.0645	0.0276	-0.2690	0.0614	GATACGCAGGTAGAGAGGAA	TGTAACGTTGAACCAGTTGT		
BAFFR	0.0779	0.0114	-0.1345	0.5039	CCTCACCATCTTTGACAG	AAGCGGTCTTTTACTCAT		
IFNAR1	-0.1240	0.2065	-0.2415	0.0061	TCAGGTGTAGAAGAAAGGATTG	CCATGACGTAAGTAGTGCTG		
IFNAR2	-0.0904	0.1149	-0.1176	0.2799	TCACCGTCCTAGAAGGATTCAG	TCACCGTCCTAGAAGGATTCAG		
IRF3	0.2405	-0.0477	-0.1245	0.1583	TTCTGATACCCAGGAAGACA	GTGGGATTGTCCAAGCTG		
RIG1	-0.0004	0.2644	-0.3873	0.0002	TGGTTTAGGGAGGAAGAGG	CTCCAACAGGAACTTGAGAAA		

Supplemental Table 1. Genes differentially expressed in $IFN_{P/R}$ vs IFN_R vs IFN_P transitional B cell clusters derived from 3 SLE patients.

BioMark qRT-PCR analysis was used to determine the expression of the indicated gene in Fluidigm single captured transitional B cells (CD24+CD38+IgD+CD27-) derived from each patient. Data are mean of gene expression after normalization using the Clustvis analysis. Gene cluster analysis (shown on the left) was carried out using the Clustvis online software. The order of genes shown is based on the cluster analysis as shown in Fig. 1. Significant differences among means were analyzed using a one way ANOVA test with p value shown. Significantly differentially expressed genes are red color coded (p<0.05). All primers used are shown in the right.

Β

	SLEDAI	α-dsDNA	Low C3/C4	α-Sm	α-SSA	Renal	AM	IS	CS	Race	Sex	Age
SLE 1	13	Positive	Positive	Positive	Positive	Positive	Yes	None	Yes	AA	F	34
SLE 2	4	Historic pos*	Negative	Positive	ND**	Positive	Yes	None	No	AA	F	40
SLE 3	5	Negative	Negative	Positive	ND**	Positive	No	MMF	No	AA	F	50

* Historically positive; ** ND = not determined; AM = anti-malaria; IS = immune suppressant; CS = corticosteroid

Supplemental Fig. 1. Type I IFN associated genes in SLE transitional B cells.

(A) qRT-PCR gene expression of the indicated gene in bulk transitional B cells (CD24⁺CD38⁺IgD⁺CD27⁻) from the PBMCs of healthy controls (HC), European American (EA) SLE patients, and African American (AA) SLE patients. Results are the expression of each gene after normalization with the expression of *GAPDH* (mean±s.e.m, n=6 for HC, 5 for EA SLE, and 6 for AA, SLE). (B) Clinical data of SLE patients whose PBMC Tr B cells were subjected for the Fluidigm/BioMark gene expression analysis shown in Figure 1. (C) Normalized expression values of the indicated TLR genes in in IFN_{P/R} vs. IFN_R vs IFN_P transitional B cell clusters derived from 3 SLE patients. Significant differences among means were analyzed using a one way ANOVA test with p value shown on the top of each graph. (D) Expression of the indicated genes in single Tr B cells in SLE Patient #3 (mean±s.d.; Differences between groups were analyzed using Tukey's multiple comparisons test (n=69 single Tr B cells). Significant differences among means (A, C, and D) were analyzed using a one way ANOVA test with p value shown on the top of each graph. U) were analyzed using a one way ANOVA test with p value shown on the top of each graph. (D) Expression of the indicated genes in single Tr B cells in SLE Patient #3 (mean±s.d.; Differences between groups were analyzed using Tukey's multiple comparisons test (n=69 single Tr B cells). Significant differences among means (A, C, and D) were analyzed using a one way ANOVA test with p value shown on the top of each graph. Differences between groups were analyzed using a one way ANOVA test with p value shown on the top of each graph. Differences between groups were analyzed using tukey's multiple comparisons test (* p<0.05, ** p<0.01 or *** p<0.005 between the indicated comparisons).

Supplemental Fig. 2. Detection of intracellular IFN β and its secretion by B cells.

(A) Histograms showing mode normalized counts of IFNβ staining in total CD19⁺ B cells from a representative SLE patient. Anti-IFNβ antibody was pre-incubated with either human IFNβ or mouse IFNα prior to FACS staining. In the bottom two histogram tracks, cells were either left unpermeabilized prior to anti-IFNβ antibody incubation (No-perm) or stained with an isotype control antibody (Isotype ctl.). (B) Super-resolution microscopy imaging (objective lens: 100x) of IFNβ in purified SLE B cells comparing two commercial Abs (*Top*: rabbit polyclonal Ab from Abcam; *Bottom*; mouse monoclonal FITC-conjugated Ab from PBL) with IgG1-k isotype control shown (right). (C) Immunoblot analysis of IFNβ in cytoplasmic lysates prepared from freshly isolated SLE B cells. (D) Left: Representative FACS plots showing the frequency of IFNβ⁺ Ramos B cells 8 hrs following stimulation with the indicted agonistic TLR ligand (5 µg/mL each); Right: HEK-blue reporter analysis of type I IFN secretion by Ramos cells under the indicated conditions of stimulation (5 µg/mL) or blocking antibody treatment (unspecific rabbit IgG or a polyclonal rabbit anti-human IFNβ,10 µg/mL each) 24 hrs post stimulation; (mean±s.e.m.; n=3, p<0.005 between the indicate comparison, Tukey's multiple comparisons test).