Return of the lysergamides. Part III: Analytical characterization of N^6 ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD)

Simon D. Brandt,^{a,*} Pierce V. Kavanagh,^b Folker Westphal,^c Simon P. Elliott,^d Jason Wallach,^e Alexander Stratford,^f David E. Nichols,^g Adam L. Halberstadt^h

^a School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

^b Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland

^c State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Mühlenweg 166, D-24116 Kiel, Germany

^d ROAR Forensics, Malvern Hills Science Park, Geraldine Road, WR14 3SZ, UK

^e Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA

^f Synex Synthetics BV, Poortweg 4, 2612 PA Delft, The Netherlands

^{*g*} Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA

^h Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA

* Correspondence to: Simon D. Brandt, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. E-Mail: s.brandt@ljmu.ac.uk

Content	Page
Proposed EI-MS key fragmentation pathways for ETH-LAD	S3
Proposed EI-MS key fragmentation pathways for 1P-ETH-LAD	S4
Proposed EI-MS fragment ions for <i>m/z</i> 192 and <i>m/z</i> 265 (1P-ETH-LAD)	S5
GC-MS analysis of ETH-LAD hemitartrate and GC-induced formation of three additional isomers	S6
IR of ETH-LAD hemitartrate	S7
GC-sIR of ETH-LAD isomer I	S8
GC-sIR of ETH-LAD isomer III	S9
GC-sIR of ETH-LAD isomer IV	S10
Overlaid partial GC-sIR of ETH-LAD isomers I, III and IV	S11
IR of 1P-ETH-LAD hemitartrate	S12
GC-sIR of 1P-ETH-LAD	S13
HPLC-UV (DAD) spectra of ETH-LAD and 1P-ETH-LAD	S14
1P-ETH-LAD stability in human serum at 37°C and analysis by LC-ESI-Q-MS	S15–S17
¹ H NMR ETH-LAD hemitartrate	S18–S20
¹³ C NMR of ETH-LAD hemitartrate	S21
HSQC of ETH-LAD hemitartrate	S22–S24
HMBC of ETH-LAD hemitartrate	S25–S31
¹ H NMR 1P-ETH-LAD hemitartrate	S32–S34
¹³ C NMR of 1P-ETH-LAD hemitartrate	S35
HSQC of 1P-ETH-LAD hemitartrate	S36–S38
HMBC of 1P-ETH-LAD hemitartrate	S39–S42

HŃ

Liquid chromatography diode array detection

A Dionex 3000 Ultimate liquid chromatography system coupled to a UV diode array detector (Thermo Fisher, St. Albans, UK) was used for analysis using a Phenomenex Synergi Fusion column (150 mm × 2 mm, 4 μ m) that was protected by a 4 mm × 3 mm Phenomenex Synergi Fusion guard column (Phenomenex, Cheshire, UK). The Mobile phases were 70% acetonitrile with 25 mM of triethylammonium phosphate buffer (TEAP) and aqueous TEAP (25 mM) buffer. The gradient elution commenced with 4% acetonitrile and ramped to 70% acetonitrile in 15 min and held for 3 min, resulting in a total acquisition time of 18 min at a flow rate of 0.6 mL/min. The diode array detection window was set at 200 nm–595 nm (collection rate 2 Hz).

1P-ETH-LAD incubation (10 µg/mL) in human serum at 37°C.

Fifty μ L and 950 μ L (acetonitrile/water, 1/1 + 0.1 % formic acid); centrifuged at 18,000 rpm for 3 min, then passed through a Nylon spin filter (0.2 μ m). Samples were further diluted for LC-MS: 50 μ L of the above and 950 μ L (acetonitrile /water, 1/1 + 0.1 % formic acid).

TA = Tartaric acid

30

Drug Testing and Analysis – Brandt et al. – Supporting Information

TA = Tartaric acid

TA = Tartaric acid

TA = Tartaric acid

