Discovery of JND3229 as a New EGFR^{C7978} Mutant Inhibitor with In

Vivo Mono-drug Efficacy

Xiaoyun Lu^{#*a}, Tao Zhang^{#b,e,f}, Su-Jie Zhu^{#c}, Qiuju Xun^{d,6}, Lingjiang Tong^b, Xianglong Hu^a, Yan Li^b, Shingpan Chan^a, Yi Su^b, Yiming Sun^b, Yi Chen^b, Jian Ding^b, Cai-Hong Yun^{*c}, Hua Xie^{*b}, Ke Ding^{*a}

^a International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China

^b Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China

^c Department of Biophysics and Peking University Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China

^d Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China

^eSchool of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China

^f School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

Supporting Information

Table of Contents:

General Methods for Chemistry	2
Protein Kinase AssayS-	.4
Cell Proliferation Inhibition Assay	.5
Western Blot Analysis	-5
In Vivo Efficacy for Mouse Tumor Xenografts	5
Immunohistochemical (IHC) Assays	5
Protein expression, crystallization and structure determinationS-	6
The kinases Profiling Study	-8

Reference	1	1	
-----------	---	---	--

EXPERIMENTAL SECTION

General Methods for Chemistry.

All reagents and solvents used were purchased from commercial sources and were of analytical grade. Flash chromatography was performed using 300 mesh silica gel. All reactions were monitored by thin-layer chromatography (TLC), using silica gel plates with fluorescence F254 and ultraviolet (UV) light visualization. ¹H NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 MHz or a Bruker AV-500 spectrometer at 500MHz. ¹³C NMR spectra were recorded on a Bruker AV-500 spectrometer at 125 MHz. Coupling constants (*J*) are expressed in hertz (Hz). Chemical shifts (δ) of NMR are reported in parts per million (ppm) units relative to an internal standard (TMS). Low resolution ESI-MS were recorded on an Agilent 1200 HPLC-MSD mass spectrometer. Purity of all of the final compounds was determined by reverse-phase high performance liquid chromatography (HPLC) analysis to be >95%. HPLC instrument: Dionex Summit HPLC (Column: Diamonsil C18, 5.0µm, 4.6×250 mm (Dikma Technologies); detector: PDA-100 photodiode array; injector: ASI-100 autoinjector; pump: p-680A). A flow rate of 1.0 mL/min was used with mobile phase of MeOH in H₂O with 0.1% modifier (ammonia, v/v).

Ethyl4-(((1r,4r)-4-((tert-butoxycarbonyl)amino)cyclohexyl)amino)-2-(methylthio)pyrimidine-5-

carboxylate (9). Compound **8** (7.33 g, 34.2 mmol) and potassium carbonate (7.88 g, 57.0 mmol) were added to a solution of **7** (6.63 g, 28.5 mmol) in DMF (30 mL). The resulting solution was stirred at 80 °C overnight. After cooling to room temperature, ice–water (300 mL) was added to the reaction mixture. The precipitate was filtered, and the filter cake was rinsed with additional cool water and then dried in a vacuum oven to give **9** (white solid, 9.96 g, yield 85%), which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.12 (d, *J* = 7.2 Hz, 1H), 4.70 (s, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 4.04–3.99 (m, 1H), 3.47 (s, 1H), 2.50 (s, 3H), 2.13–2.06 (m, 4H), 1.44 (s, 9H), 1.39–1.38 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33–1.30 (m, 2H). LRMS (ESI) for C₁₉H₃₀N₄O₄S [M + H]⁺, calcd: 410.5. Found: 411.2.

tert-Butyl((1r,4r)-4-((5-(hydroxymethyl)-2-(methylthio)pyrimidin-4-yl)amino)cyclohexyl)

carbamate (10). A suspension of LiAlH₄ (1.84 g, 48.4 mmol) in anhydrous THF (50 mL) was added dropwise to a solution of **9** (9.96 g, 24.2 mmol) in anhydrous THF (150 mL) under stirring for 1 h at -40 °C. The reaction mixture was stirred until the temperature was warmed to 0 °C, and then it was treated with 2 mL of water to decompose unreacted LiAlH₄. Then, a further 6 mL of water was added to the reaction mixture followed by 15% aqueous NaOH (2 mL). The resulting mixture was stirred for 15 min at room temperature and filtered through a pad of Celite. The Celite was washed with THF, and the washes were combined and then concentrated in vacuo. The concentrated mixture was poured into water and extracted with CH₂Cl₂. The organic layer was separated, washed with brine, dried with Na₂SO₄, filtered, and concentrated in vacuo. The resultant crude material was purified by column chromatography (SiO₂, CH₂Cl₂/ MeOH stepwise elution, 40:1 to 20:1) to give **8** (white solid, 4.47 g, yield 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 5.83 (d, *J* = 7.6 Hz, 1H), 4.46 (s, 2H), 4.45 (s, 1H), 3.96–3.93 (m, 1H), 3.50 (s,

1H), 3.40 (s, 1H), 2.46 (s, 3H), 2.12–2.10 (m, 2H), 2.03–2.02 (m, 2H), 1.42 (s, 9H), 1.28–1.22 (m, 4H). LRMS (ESI) for C₁₇H₂₈N₄O₃S [M + H]⁺, calcd: 368.5. Found: 369.2.

tert-Butyl((1*r*,4*r*)-4-((5-formyl-2-(methylthio)pyrimidin-4-yl)amino)cyclohexyl)carbamate (11). MnO₂ (3.15 g, 36.3 mmol) was added to a solution of **8** (4.47 g, 12.1 mmol) in CH₂Cl₂ (120 mL). The resulting solution was stirred at room temperature overnight, and then the reaction mixture was filtered through a pad of Celite. Filtration and removal of the solvent gave an oily crude product that was subjected to flashcolumn chromatography (SiO₂, petroleum ether/ EtOAc stepwise elution, 3:1to 1:1) to give **11** (white solid, 4.09 g, yield 92%). ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 8.47 (s, 1H), 8.27 (s, 1H), 4.48 (s, 1H), 4.09-4.01 (m, 1H), 3.46 (s, 1H), 2.51 (s, 3H), 2.12–2.03 (m, 4H), 1.43 (s, 9H), 1.28–1.22 (m, 4H). LRMS (ESI) for C₁₇H₂₆N₄O₃S [M + H]⁺, calcd: 366.5. Found: 367.2

tert-Butyl((1r,4r)-4-((5-(((2-chlorophenyl)amino)methyl)-2-(methylthio)pyrimidin-4-yl)amino)

cyclohexyl)carbamate (13). Compound 12 (1.42 g, 11.2 mmol) and AcOH (0.1 mL) were added to a solution of 11 (2.05 g, 5.58 mmol) in toluene (20 mL). The resulting solution was stirred at 110 °C overnight. After the amine was converted completely to the imine as determined by TLC, NaBH₄ (1.06 g, 27.9 mmol) was added to the reaction mixture at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 4 h. The resulting mixture was concentrated in vacuo, partitioned between CH₂Cl₂ and saturated NaHCO₃, and extracted with CH₂Cl₂. The organic layer was separated, washed with brine, dried with Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude material was subjected to flash column chromatography (SiO₂, petroleum ether/EtOAc, 3:1) to give 13 (white solid, 2.13 g, yield 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 6.86–6.76 (m, 2H), 5.61 (d, *J* = 4.0 Hz, 1H), 4.38 (s, 1H), 4.18–4.09 (m, 3H), 3.97–3.94 (m, 1H), 3.42 (s, 1H), 2.50 (s, 3H), 2.08-2.01 (m, 4H), 1.44 (s, 9H), 1.25-1.22 (m, 4H). LRMS (ESI) for C₂₃H₃₂ClN₅O₂S [M + H]⁺, calcd: 478.0. Found: 478.1.

tert-Butyl((1r,4r)-4-(3-(2-chlorophenyl)-7-(methylthio)-2-oxo-3,4-dihydropyrimido[4,5-d]

pyrimidin-1(2*H*)-yl)cyclohexyl)carbamate (14). DIEA (2.37 mL, 13.4 mmol) and triphosgene (0.53 g, 1.78 mmol) were added to a solution of 13 (2.13 g, 4.46 mmol) in CH₂Cl₂ at 0 °C. The mixture was poured into a solution of 10% aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was separated, washed with 10% aqueous NaHCO₃ and brine, dried withNa₂SO₄, filtered, and concentrated in vacuo to give 14 (white solid, 2.11 g, yield 94%), which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.34-7.29 (m, 3H), 4.68-4.60 (m, 1H), 4.54-4.48 (m, 2H), 4.32 (s, 1H), 3.46 (s, 1H), 2.67 (s, 3H), 2.12 (d, *J* = 8.0 Hz, 2H), 1.81 (d, *J* = 8.0 Hz, 2H), 1.45 (s, 9H), 1.27-1.22 (m, 4H). LRMS (ESI) for C₂₄H₃₀ClN₅O₃S [M + H]⁺, calcd: 504.0. Found: 504.2.

tert-Butyl((1*r*,4*r*)-4-(3-(2-chlorophenyl)-7-(methylsulfonyl)-2-oxo-3,4-dihydropyrimido[4,5-*d*] pyrimidin-1(2*H*)-yl)cyclohexyl)carbamate (15). m-CPBA (1.69 g, 8.38 mmol) was added to a solution of 14 (2.11 g, 4.19 mmol) in anhydrous CH_2Cl_2 (50 mL) at 0 °C under argon. The reaction mixture was allowed to warm to room temperature and then stirred for 4 h. The solution was diluted with CH_2Cl_2 and then treated with 50% Na₂S₂O₃/NaHCO₃ solution. The organic layer was separated, washed with brine, dried with Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude material was subjected to flash column chromatography (SiO₂, CH_2Cl_2 /MeOH stepwise elution, 40:1 to 20:1) to give **15** (white solid, 1.98 g, yield 88%).¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.54-7.51 (m, 1H), 7.38-7.34 (m, 3H), 4.84-4.63 (m, 3H), 3.94 (s, 1H), 3.51 (s, 1H), 3.33 (s, 3H), 2.69-2.66 (m, 2H), 1.94-1.91 (m, 1H), 1.84-1.81 (m, 2H), 1.67-1.63 (m, 1H), 1.45 (s, 9H), 1.29-1.24 (m, 2H). LRMS (ESI) for C₂₄H₃₀ClN₅O₅S [M + H]⁺, calcd:536.0. Found:536.2.

1-((1*r*,4*r*)-4-aminocyclohexyl)-3-(2-chlorophenyl)-7-((3-methyl-4-(4-methylpiperazin-1-yl)phenyl)a mino)-3,4-dihydropyrimido[4,5-*d*]pyrimidin-2(1*H*)-one (18). Compound 16 (444 mg, 2.10 mmol) was added to a solution of 15 (938 mg, 1.75 mmol) in 2-butyl alcohol (5 mL), followed by trifluoroacetic acid (157 μ L, 2.10 mmol). The reaction mixture was stirred for 18 h at 110 °C in a sealed tube. The reaction mixture was cooled to room temperature and concentrated in vacuo to give crude product 17 which was used in the next step without purification. Then trifluoroacetic acid (2 mL) was added to a solution of 17 in CH₂Cl₂ (5 mL), and the resulting mixture was stirred at room temperature for 4 h. The reaction mixture was diluted with CH₂Cl₂, basified with saturated aqueous NaHCO₃ to pH = 9, and extracted with CH₂Cl₂. The organic layer was separated, washed with 10% aqueous NaHCO₃, brine, dried with Na₂SO₄ and then concentrated in vacuo. The resultant crude material was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH/NH₄OH, 40:1:0.4) to give **18** (white solid, 491 mg, yield 50% for twosteps).¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.50-7.47 (m, 1H), 7.40-7.28 (m, 5H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.96 (s, 1H), 4.75-4.72 (m, 1H), 4.58-4.57 (m, 1H), 4.46-4.43 (m, 1H), 2.95-2.92 (m, 4H), 2.69-2.68 (m, 1H), 2.60-2.58 (m, 6H), 2.36 (s, 3H), 2.33 (s, 3H), 1.95 (d, *J* = 9.2 Hz, 2H), 1.74 (d, *J* = 8.8 Hz, 2H), 1.27-1.25 (m, 2H). LRMS (ESI) for C₃₀H₃₇ClN₈O [M + H]⁺, calcd: 561.1 Found: 561.3

N-((1r,4r)-4-(3-(2-chlorophenyl)-7-((3-methyl-4-(4-methylpiperazin-1-yl)phenyl)amino)-2-oxo-3,4-d ihydropyrimido[4,5-d]pyrimidin-1(2H)-yl)cyclohexyl)prop ionamide (6). DIEA (72 µL, 0.41 mmol) and propanoic acid (24 µL, 0.32 mmol) were added to a solution of HATU (122 mg, 0.32 mmol) in anhydrous CH₂Cl₂ (10 mL) at rt. After stirring for 10 min, 18 (115 mg, 0.21 mmol) was added to the resulting mixture, and then the mixture was stirred at room temperature for 0.5 h. The reaction mixture was poured into H₂O and extracted with CH₂Cl₂. The organic layer was separated, washed with 10% aqueous NaHCO₃, brine and dried with Na_2SO_4 . The resultant crude material was purified by column chromatography (SiO₂). CH₂Cl₂/MeOH/NH₄OH, 40:1:0.4) to give **6** (White solid, 116 mg, yield 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.57–7.54 (m, 1H), 7.50–7.48 (m, 1H), 7.37–7.27 (m, 3H), 7.23 (s, 1H), 7.15 (s, 0.5H), 7.03 (s, 0.5H), 6.95 (s, 1H), 5.27 (d, J = 8.0 Hz, 1H), 4.70-4.64 (m, 1H), 4.60-4.57 (m, 1H), 4.47-4.44 (m, 1H), 4.60-4.57 (m, 1H), 4.47-4.44 (m, 1H)3.88-3.80 (m, 1H), 3.01–2.99 (m, 4H), 2.74 (br s, 6H), 2.48 (s, 3H), 2.33 (s, 3H), 2.19 (q, J = 7.6 Hz, 2H), 2.11-2.08 (m, 2H), 1.86–1.76 (m, 4H), 1.15 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 159.5, 158.0, 153.3, 153.1, 147.0, 139.6, 134.9, 133.7, 132.9, 130.7, 129.5, 129.3, 128.2, 123.0, 120.0, 118.8, 103.4, 55.9, 54.6, 51.8, 47.8, 47.1, 46.0, 33.2, 30.0, 27.7, 27.6, 18.0, 10.1. HRMS (ESI) for C₃₃H₄₁ClN₈O₂ [M + H]⁺, calcd: 617.3114. Found: 617.3093. HPLC analysis: MeOH-H₂O (85:15), 13.44 min, 97.01% purity.

Protein Kinase Assay

EGFR^{L858R/T790M} kinase protein was purchased from Eurofins Scientific. EGFR^{L858R/T790M/C797S} kinase proteins were purchased from BPS Bioscience. Tyrosine kinase activity was evaluated by an enzyme-linked-immunosorbent assay (ELISA) in 96-well plates pre-coated with 2.5 µg/well poly(Glu, Tyr)

4:1 (Sigma) as a substrate. Fifty microliters of 10 μ mol/L ATP solution diluted in reaction buffer [50 mmol/L HEPES, pH 7.4, 20 mmol/L MgCl₂, 0.1 mmol/L MnCl₂, 0.2 mmol/L Na₃VO₄, and 1 mmol/L DTT] was added to each well. Various concentrations of compounds diluted in DMSO were added to each reaction well. A total volume of 1 μ L DMSO was used as the vehicle control. The kinase reaction was initiated by adding purified tyrosine kinase proteins diluted in 49 μ L of kinase reaction buffer. After incubation for 1 h at 37 °C, the plate was washed three times with phosphate buffered saline containing 0.1% Tween 20 (PBST). Next, 100 μ L of antiphosphotyrosine (PY99; 1:500 dilution) antibody was added. After 0.5 h incubation at 37 °C, the plate was washed three times and goat anti-mouse IgG horseradish peroxidase (100 μ L of a 1:2000 dilution) diluted in PBST containing 5 mg/mL BSA was added. The plate was reincubated at 37 °C for 0.5 h and washed as before. Finally, 100 μ L of color development solution (0.03% H₂O₂ and 2 mg/mL o-phenylenediamine in 0.1 mol/L citrate buffer, pH 5.4) was added and the plate was incubated at room temperature until color emerged. The reaction was terminated by the addition of 50 μ L of 2 mol/L H₂SO₄, and the A490 was measured using a multi-well spectrophotometer (SpectraMax Plus384, Molecular Devices).

Cell Proliferation Inhibition Assay

Cell proliferation was evaluated using the Resazurin (7-hydroxy-3H- phenoxazin-3-one 10-oxide) Assay. BaF3-EGFR^{19D/T790M/C797S} and BaF3-EGFR^{L858R/T790M/C797S} cell lines were built by Jian Ding's laboratory, and cultured in RPMI-1640 (GE Healthcare) supplemented with 10% fetal bovine serum (Gibico) and 1µg/ml puromycin (Sigma). Cells were seeded in 96-well plates (10,000 cells per well) and grown overnight. The cells were treated with various concentrations of the compounds for 72 h. Then 10 µL of resazurin solution (500 µM resazurin solution in DPBS, Sigma) were added to each well, and the cells were incubated for 2h at 37° C. The Fluorescence signals were measured at an excitation wavelength at 540 nm and an emission wavelength at 590 nm using a microplate reader (Synergy2, BioTek). The percent inhibition rate for cell proliferation was calculated as $[1 - (A_{540/590}treated/ A_{540/590}control)] \times 100\%$. The IC₅₀ value was obtained using the Logit method.

Western Blot Analysis

Cells were collected and suspended in lysis buffer (100 mmol/L Tris-HCl, pH6.8, 200 mmol/L DTT, 4% SDS, 0.2% bromophenol blue, 20% glycerol). Equivalent amounts of proteins were loaded and separated by 10% SDS-PAGE and transfered to nitrocellulose membranes. Western blot analysis was subsequently performed using standard procedures. Antibodies used for immune detection of proteins p-EGFR (Y1068; #3777S), EGFR (#4267S), and Tubulin (#2128L) were purchased from Cell Signaling technology.

In Vivo Efficacy for Mouse Tumor Xenografts.

4-6 weeks-old BALB/c mice were purchased from the Shanghai Laboratory Animal Research Center (Shanghai, China). All studies conformed the Animal Care and Use Committee guidelines of China. Approximately 1.5 mm³ BaF3-EGFR^{19D/T790M/C797S} tumor tissue was implanted subcutaneously into the right flank per mice. The mice were randomized into vehicle and treated groups. Forty eight hours later (day 0), for efficacy studies, mice were dosed either vehicle or inhibitors using the indicated doses for maximum 10 days. The average tumor volume (TV) was measured with vernier calipers every 2 or 3 days

then was calculated with the formula $V = (L \times W^2)/2$, and L stands for length and W is width, the tumor growth inhibition (TGI) = [1- RTV(treated)/ RTV(control)] × 100%. Meanwhile, the body weight of mice was measured.

Immunohistochemical (IHC) Assays

After the treatment, BaF3-EGFR^{19D/T790M/C797S} xenograft mouse models were harvested and fixed in formalin. Tumor samples were embedded in paraffin and prepared in sections (4µm). The immunohistochemical analysis was conducted by Shanghai ZuoChengBio Ltd., and the assay was operated according to the manufacturer's instructions. Sections were stained with p-EGFR (Y1068; #3777S, Cell Signaling Technology) antibody using optimized protocols.

Protein expression, crystallization and structure determination

Construct spanning residues 696-1022 of EGFR^{T790M/C797S} were expressed and purified using the baculovirus/insect cell system as described.¹ Crystals used in this study were prepared by hanging drop vapor diffusion. For co-crystallization, the compound JND3229 was added to 10.5 mg/mL EGFR^{T790M/C797S} proteins to a final concentration of 2mM and incubated at 4°C for two hours before setting up the crystallization tray. The reservoir solution for growing crystals was 0.05 M HEPES pH 8.0, 0.2 M ZnSO₄, 25% PEG6000. The diffraction data were collected on beamline BL19U1 at Shanghai Synchrotron Radiation Facility (SSRF). The diffraction data were processed using HKL3000.² The structure was solved by molecular replacement with Phaser using the previously determined EGFR L858R+ANP structure (PDB ID 2itv)¹ as the search model. Repeated rounds of manual refitting and crystallographic refinement were then performed using COOT ³ and Phenix.⁴ The inhibitor was modeled into the closely fitting positive Fo-Fc electron density and included in following refinement cycles. Topology and parameter files for the inhibitor were generated using Phenix.⁴ The diffraction data collection and refinement statistics were summarized in Table 1.

	T790M/C797S + JND3229
Data collection	
Space group	123
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	148.7, 148.7, 148.7
$\alpha,\beta,\gamma(^{\circ})$	90.0, 90.0, 90.0
Resolution (Å)	50.0-2.65 (2.71-2.65)
R _{merge}	0.127 (0.353)
Ι/σ	6.0 (2.0)
Completeness (%)	100.0 (100.0)
Redundancy	18.0 (17.7)
Refinement	
Resolution (Å)	47.0-2.65
No. reflections	16080
$R_{ m work}$ / $R_{ m free}$	0.232/0.272
No. atoms	

Table S1. Data collection and refinement statistics of complex crystal structure of EGFR^{T790M/C797S} with JND3229.

Protein	2278
Ligand/ion	45
Water	38
B-factors	
Protein	66.5
Ligand/ion	64.4
Water	64.4
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	1.138
Ramachandran Plot	
Favored regions	272 (94.44%)
Allowed regions	16 (5.56%)
Outliers	0 (0.00%)

[§] Values in parentheses are for highest-resolution shell.

The kinases Profiling Study

For most assays, kinase-tagged T7 phage strains were grown in parallel in 24-well blocks in an E. coli host derived from the BL21 strain. E. coli were grown to log-phase and infected with T7 phage from a frozen stock (multiplicity of infection = 0.4) and incubated with shaking at 32°C until lysis (90-150 minutes). The lysates were centrifuged (6,000 x g) and filtered (0.2μ m) to remove cell debris. The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1 % BSA, 0.05 % Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific phage binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x binding buffer (20 %SeaBlock, 0.17x PBS, 0.05 % Tween 20, 6 mM DTT). Test compounds were prepared as 40x stocks in 100% DMSO and directly diluted into the assay. All reactions were performed in polypropylene 384-well plates in a final volume of 0.02 ml. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1x PBS, 0.05 % Tween 20, 0.5 μ M non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.

Table S2. Matrix of Compound Screen for JND3229 (Assigned the name as D3003 in the assay)

Target	D3003	Target	D3003
Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
AAK1	20	BRK	0.05
ABL1(E255K)-phosphorylated	0.35	BRSK1	54
ABL1(F317I)-nonphosphorylated	1.1	BRSK2	100
ABL1(F317I)-phosphorylated	7.8	BTK	0
ABL1(F317L)-nonphosphorylated	0.1	BUB1	0
ABL1(F317L)-phosphorylated	0.2	CAMK1	1 \
ABL1(H396P)-nonphosphorylated	0	CAMK1B	19
ABL1(H396P)-phosphorylated	0	CAMK1D	0
ABL1(M351T)-phosphorylated	0.3	CAMK1G	43
ABL1(Q252H)-nonphosphorvlated	0	CAMK2A	78
ABL1(Q252H)-phosphorylated	0.05	CAMK2B	91
ABI 1(T315I)-nonphosphorylated	35	CAMK2D	91
ABL 1(T315I)-phosphorylated	22	CAMK2G	98
ABL 1(Y253E)-phosphorylated	0.05	CAMK4	100
ABI 1-nonphosphorylated	0	CAMKK1	97
ABI 1-phosphorylated	0.05	CAMKK2	95
ABI 2	0.35	CASK	83
ACVR1	29	CDC2L1	80
ACV/R1B	2.0	CDC2L2	66
ACV/R2A	0	CDC2L5	85
ACVR28	0	CDK11	100
ACV/RL1	7.8	CDK2	55
ADCK3	10	CDK3	87
ADOKA	19	CDK4	1.8
AUCK4	100	CDK4-cyclinD1	0.3
AKTO	100	CDK4-cyclinD3	3
AKT2	40	CDK5	97
ANTS	31	CDK7	7.2
ALK (C1156V)	10	CDK8	32
ALK(L110CN)	0.0	CDK9	98
ALK(L1196M)	4.6	CDKL1	99
AMPK-alpha1	971	CDKL2	4.2
AMPK-alpha2	17	CDKL3	0
ADKA	100	CDKL5	100
AKKS	16	CHEK1	32
ASK1	100	CHEK2	33
ASK2	U	CIT	6.9
AUKKA	19	CLK1	53
AUKKB	36	CLK2	39
AURKC	26	CLK3	59
AXL	U	CLK4	100
BIKE	1.5	CSF1R	0.05
BLK	0	CSF1R-autoinhibited	0.05
BMPR1A	5.4	CSK	0.05
BMPR1B	0	CSNK1A1	7.9
BMPR2	9	CSNK1A1L	22
BMX	0.4	CSNK1D	22
BRAF	13	CSNK1E	0.8
BRAE(V600E)	37	CSNK1G1	83

	CRAME AND A DOMESTIC AND A DOMESTICA AND A DOMESTIC AND A DOMESTICA AND A DOMEST	Target	D3003
Target	D3003	Gene Symbol	%Ctrl @ 1000nM
Gene Symbol	%Ctrl @ 1000nM	ERBB4	18
CSNK1G2	87	ERK1	46
CSNK1G3	83	FRK2	86
CSNK2A1	92	FRK3	58
CSNK2A2	100	ERKA	77
стк	18	EDVE	2.0
DAPK1	50	ERK8	27
DAPK2	81	ERN1	25
DAPK3	53	EAK	5.3
DCAMKL1	1.9	EED	0.05
DCAMKL2	3.8	FER	0.05
DCAMKL3	0.95	FCEP4	0.25
DDR1	1.5	FGFRI	0.4
DDR2	0	FGFR2	0.15
DLK	8.1	FGFR3	0.8
DMPK	8.2	FGFR3(G697C)	0.95
DMPK2	2.5	FGFR4	0.55
DRAK1	1.2	FGR	0
DRAK2	99	FLT1	0.45
DYRK1A	99	FLT3	0.05
DYRK1B	16	FLT3(D835H)	2.1
DYRK2	79	FLT3(D835V)	0
EGFR	2.8	FLT3(D835Y)	12
EGFR(E746-A750del)	0	FLT3(ITD)	1.2
EGFR(G719C)	0.15	FLT3(ITD,D835V)	0
EGFR(G719S)	0.65	FLT3(ITD,F691L)	0
EGFR(L747-E749del, A750P)	10	FLT3(K663Q)	11
EGFR(L747-S752del, P753S)	2.5	FLT3(N841I)	12
EGFR(L747-T751del Sins)	8.1	FLT3(R834Q)	1.9
EGFR(L858R)	2.4	FLT3-autoinhibited	19
EGFR(L858R.T790M)	1.4	FLT4	0.05
EGFR(L861Q)	0.15	FRK	0.05
EGFR(S752-I759del)	2.4	FYN	0.2
EGFR(T790M)	0.3	GAK	2.7
EIF2AK1	31	GCN2(Kin.Dom.2,S808G)	7.2
EPHA1	0.15	GRK1	66
EPHA2	0	GRK2	83
EPHA3	0.35	GRK3	76
EPHA4	0	GRK4	2.3
EPHA5	0.5	GRK7	86
EPHA6	0	GSK3A	100
EPHA7	53	GSK3B	41
EPHA8	0.25	HASPIN	87
EPHB1	0.2	HCK	0.15
EPHB2	0	HIPK1	84
EPHB3	0	HIPK2	82
EPHB4	0	НІРКЗ	1.8
EPHB6	0	HIPK4	24
ERBB2	0	HPK1	91
ERBB3	0	HUNK	8.8
A CANADA CALLER AND A			

Target	D3003
Gene Symbol	%Ctrl @ 1000nM
ICK	100
IGF1R	60
IKK-alpha	78
IKK-beta	13
IKK-epsilon	0
INSR	49
INSRR	73
IRAK1	18
IRAK3	75
IRAK4	100
ІТК	71
JAK1(JH1domain-catalytic)	2.9
JAK1(JH2domain-pseudokinase)	10
JAK2(JH1domain-catalytic)	0
JAK3(JH1domain-catalytic)	0
JNK1	0.4
JNK2	0.25
JNK3	0.85
KIT	0.05
KIT(A829P)	1.5
KIT(D816H)	0
KIT(D816V)	0
KIT(L576P)	0
KIT(V559D)	0.05
KIT(V559D, T670I)	3.5
KIT(V559D,V654A)	0
KIT-autoinhibited	0.2
LATS1	2.1
LATS2	0
LCK	0.15
LIMK1	3.9
LIMK2	0
LKB1	22
LOK	0
LRRK2	20
LRRK2(G2019S)	9.3
LTK	5.1
LYN	0
LZK	21
МАК	80
MAP3K1	0
MAP3K15	88
MAP3K2	0
MAP3K3	0.1
MAP3K4	2.1
MAP4K2	4.5
MAP4K3	0.3
MAP4K4	3.9
MAP4K5	0
	198

Target	D3003	Target	D3003
Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
MAPKAPK2	100	NEK6	71
MAPKAPK5	100	NEK7	89
MARK1	27	NEK9	86
MARK2	1.8	NIK	85
MARK3	1	NIM1	59
MARK4	66	NLK	0.2
MAST1	46	OSR1	5.5
MEK1	0	p38-alpha	0.2
MEK2	0	p38-beta	0
MEK3	1.8	p38-delta	58
MEK4	0.15	p38-gamma	60
MEK5	0.1	PAK1	3.3
MEK6	30	PAK2	49
MELK	7.2	PAK3	11
MERTK	2	PAK4	8.9
MET	4.5	PAK6	5.2
MET(M1250T)	4.9	PAK7	0.3
MET(Y1235D)	6.8	PCTK1	2.1
MINK	2.5	PCTK2	9.4
MKK7	96	РСТКЗ	86
MKNK1	81	PDGFRA	0
MKNK2	41	PDGFRB	0
MLCK	100	PDPK1	98
MLK1	1.8	PFCDPK1(P.falciparum)	0
MLK2	7.2	PFPK5(P.falciparum)	65
MLK3	1	PFTAIRE2	53
MRCKA	59	PFTK1	73
MRCKB	19	PHKG1	100
MST1	1.2	PHKG2	66
MST1R	46	PIK3C2B	4.1
MST2	66	PIK3C2G	43
MST3	2.4	PIK3CA	100
MST4	3.6	PIK3CA(C420R)	98
MTOR	86	PIK3CA(E542K)	100
MUSK	37	PIK3CA(E545A)	100
MYLK	80	PIK3CA(E545K)	100
MYLK2	66	PIK3CA(H1047L)	88
MYLK4	100	PIK3CA(H1047Y)	96
MYO3A	44	PIK3CA(I800L)	74
MYO3B	11	PIK3CA(M1043I)	86
NDR1	24	PIK3CA(Q546K)	100
NDR2	25	PIK3CB	98
NEK1	50	PIK3CD	58
NEK10	34	PIK3CG	61
NEK11	0.6	PIK4CB	59
NEK2	1.2	PIKFYVE	35
NEK3	99	PIM1	94
NEK4	100	PIM2	100
NEK5	16	PIM3	88

Target	D3003				
Gene Symbol	%Ctrl @ 1000nM				
PIP5K1A	77				
PIP5K1C	71				
PIP5K2B	3.5				
PIP5K2C	0.1				
PKAC-alpha	0.2				
PKAC beta	14				
	48	Target	D3003		
DKN4	40 60	Gene Symbol	%Ctrl @ 1000nl	М	u .
PKNI	09	RSK1(Kin.Dom.2-C-terminal)	17		
PKN2	20	RSK2(Kin.Dom.1-N-terminal)	12	_	
PKNB(M.tuberculosis)	0.2	RSK2(Kin.Dom.2-C-terminal)	0.15		
PLK1	100	RSK3(Kin.Dom.1-N-terminal) RSK3(Kin.Dom.2.C.terminal)	50		
PLK2	97	RSK3(Kin.Dom.2-C-terminal) RSK4(kin.Dom.1-N-terminal)	15		
PLK3	69	RSK4(Kin Dom 2-C-terminal)	10		
PLK4	29	S6K1	26		
PRKCD	5.7	SBK1	5		
PRKCE	0	SGK	86		
PRKCH	14	SgK110	0		
PRKCI	13	SGK2	97		
PRKCQ	26	SGK3	89	_	
PRKD1	19	SIK	0.9		
PBKD2	27	SIK2	1.1	_	
PRKD2	0	SLA	0.5		
PRKUS	0	SNRK	94		
PRKG1	55	SRC	0.1		
PRKG2	76	SRMS	4.9		
PRKR	69	SRPK1	5.1		
PRKX	96	SRPK2	17		Tarast
PRP4	5.5	SRPK3	20		Gene Symbol
PYK2	5.3	STK16	0		TRPM6
QSK	1.4	STK33	7.2		TSSK1B
RAF1	68	STK35	3.2		TSSK3
RET	0	STK30	0.2		TTK
RET(M918T)	01	STRUB	1.2		TXK2(JH1domain-catalytic)
RET(V804L)	0.05	TAK1	1.2		TYK2(JH2domain-pseudokinase
RET(V804M)	0.25	TAOK1	0.05		TYRO3
PIOK4	0.25	TAOK2	0		ULK1
RIOKI	2.0	TAOK3	0.9		ULK2
RIOK2	33	TBK1	4.4		ULK3
RIOK3	7.5	TEC	1.2		VPS34
RIPK1	52	TESK1	0		VRK2
RIPK2	0.6	TGFBR1	2.5		WEE1
RIPK4	93	TGFBR2	2.7		WEE2
RIPK5	2.4	TIE1	15		WNK1
ROCK1	54	TIKI	0.75		WNK2
ROCK2	24	TLK2	87		WNK4
BOS1	28	TNIK	0.25		YANK1
RDS6KA4(Kin Dom 1 N terminal)	97	TNK1	0.3		YANK2
PDCCKA4(Kin Dom 2 C torning)	100	TNK2	0.2		YANK3
RPS0KA4(Kin.Dom.2-C-terminal)	100	TNNI3K	1.2		YES
RPS6KA5(Kin.Dom.1-N-terminal)	100	TRKA	0		YSK1 VSK4
RPS6KA5(Kin.Dom.2-C-terminal)	74	TRKB	1.8		ZAK
RSK1(Kin.Dom.1-N-terminal)	83	TRKC	0.9		ZAP70

Reference

- Yun, C. H.; Boggon, T. J.; Li, Y.; Woo, M. S.; Greulich, H.; Meyerson, M.; Eck. M. J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. *Cancer Cell*. 2007, 11, 217-227.
- Minor, W.; Cymborowski, M.; Otwinowski, Z.; Chruszcz. M. HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. *Acta Crystallogr. D Biol. Crystallogr.* 2006, *62*, 859-866.

- Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan. K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486-501.
- Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart. P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, *66*, 213-221.