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A. SUPPLEMENTARY RESULTS  

1. Observations from data analyses of cytosolic Fenton reactions 

 Extracellular superoxide is found to make substantial contributions to cytosolic Fenton 

reactions in BRCA, COAD, ESCA, HNSC, KIRC, KIRP, STAD, and THCA while mitochondrial 

superoxide has considerable contributions in BRCA, ESCA, KIRC, KIRP, LUAD, LUSC and 

STAD, based on our co-expression analyses. For the other four cancer types, contributions 

from either source is moderate.  

 Regarding the source of superoxide, we noted that the gene-expression levels of the 

NADH oxidases NOX1 and NOX4 in all cancer types correlate negatively with the predicted 

tumor purity of each sample with high statistical significance, as shown in Supplementary 

Figure S3, hence suggesting that these genes are expressed in immune or stromal cells 

rather than cancer cells. In addition, the expression levels of the VDAC genes significantly 

positively correlate with that of the mitochondrial superoxide dismutase SOD2 in the cancer 

types with significant contribution of mitochondrial superoxide in the fitted regression model, 

namely BRCA (p-value =1.62e-4), KIRC (p-value = 3.71e-7), KIRP (p-value = 4.28e-8), LUAD 

(p-value = 1.64e-7), and LUSC (p-value = 1.21e-6), indicating that superoxide from 

mitochondria gets to cancer cell cytosols. Figure S4 shows the levels of correlation between 

the endogenous superoxide genes and the predicted level of cytosolic Fenton reaction as 

well as between the mitochondrial superoxide genes and the level of cytosolic Fenton 

reaction across the 14 cancer types. We can see from the figure that some cancers have 

higher correlations for the former while other cancers have higher correlations for the latter.  
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 Gene-expression levels of cytosolic transferrin, ferritin and ferric reductases all show 

significant contributions to the strong correlation between the two sides of Eq. 13, indicating 

that a substantial amount of unreduced Fe3+ from cytosolic Fenton reactions is accumulated 

in cancer cytosol and hence contributing to overwhelming the pH buffer and changing its pH, 

where the predicted Fe3+ accumulation is consistent with published studies (Chen and Paw, 

2012). In addition, gene-expression levels of transferrin and ferritin show positive and ferric 

reductases show negative correlations with the predicted levels of Fenton reactions, all 

supporting our prediction. 

 The two outcomes of Fe3+ as given in Eq. 10 and Eq. 11 that lead to OH- accumulation 

correlate highly negatively with H+ exporter genes, namely the SLC4A4-11 and SLC9, as 

shown in Figure S6. In addition, the predicted rates of OH- production (Eq. 9) correlate at 

least as strongly with the expressions of both acid-loading and acid-extruding transporter 

genes: SLC4A-3, -4, -5, -s7, -9, -10, ATP2B-3, SLC9A-1, -6, -7, -9 and ATP6V-0A2, -0C, 

-0D2, -0E1, -0E2, -1A, -1E2, -1F, -1H, all with p-values < 0.05 by Mann Whitney test (detailed 

in Supplementary Figure S7), as the correlation between the predicted rates of hydroxyl 

radical production (predicted ∙ OH $ in Eq. 13) and the observed rate of ∙ OH $ in Eq. 13, 

measured using the expression levels of the marker genes for hydroxyl radical, all supporting 

our model. 

 

2. Impact of cytosolic Fenton reactions on intracellular pH 

Note from Figure S8 that the three main sources for cytosolic pyruvate production in 

cancer are glucose, malate originated from glutamine, and serine/glycine; and the five main 

effluxes from pyruvate are acetyl-CoA; oxaloacetate; amino acids alanine, lysine or aspartate; 

lactates; and sialic acids. Gene expression data analyses revealed that pyruvate production 

from glucose and serine is increased across all 14 cancer types, based on up-regulated 

glucose transporters, glycolytic enzymes, and serine dehydratase genes SDS and SDSL, 

which is consistent with the literature. In contrast, pyruvate effluxes as well as intracellular 

concentrations vary substantially across different cancers based on publicly available 

metabolomics data (Hirayama et al., 2009; Kami et al., 2013).  
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To assess if all or only a fraction of the pyruvate produced through glycolysis goes 

towards lactic acid production and secretion, we have conducted two random-effect linear 

regression analyses between the expression levels of the influx enzymes to pyruvate 

production vs. the efflux enzymes from pyruvate: one including the contribution of the 

gene-expressions of PKM2 & PKLR, and the other not. Lactate producing enzyme, LDHA, is 

considered as a random effect on the intercept, and the two linear models are compared 

based on the goodness of the fit. 

  Specifically, under the steady state assumption, we should have the total influx to 

pyruvate equal to the total efflux out of pyruvate; hence there should be non-negative values 

{ %& } that make the left and the right sides of the following approximately the same 

%' PKM2 + %- PKLR + %0 ME1 + %3 SDS

≈ %7 NPL + %9 GPT + %< PC + %> PDHA1 + %@ LDHA  

where [X] represents the gene-expression level of protein X. For given tissue samples with 

available gene expression data, this problem can be formulated and solved as a 

non-negative least square problem. To control for contributions of glycolytic pyruvate to 

non-lactate efflux, we have discretized for each cancer type the LDHA  expression values 

into three levels of equal subpopulations. In our regression model, the discretized LDHA 

expression is considered as a random effect affecting the linear model intercept. 

To examine the contribution of PKM2  and PKLR 	to the quality of this model, we 

built two random-effect linear regression models by holding the LDHA expression as a 

random effect that affects only the intercept: one with PKM2  and PKLR  as linear 

predictors, and the other without. For each cancer type, we compared the two models using 

Chi-Square test to see if adding the terms PKM2  and PKLR  could significantly improve 

the model fitting. We noted that for 7 out of 14 cancer types (p < 0.05) and for 10 out of 14 

cancer types (p < 0.07) (Supplementary Table S1), adding the term significantly improves the 

linear model. Hence we conclude that glycolytic pyruvate makes substantial contributions to 

non-lactic metabolite syntheses in Figure S8.  

To assess the amount of time needed for the protons associated with the glycolytic 

pyruvate to overwhelm the pH buffer, we have estimated the number of net protons needed 

to change the intracellular pH for one pH level, say, from 8.0 to 7.0. We assume that the 
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volume of a cancer cell is 100um3, which is consistent with the published human cell data. For 

the intracellular pH to change from 8.0 to 7.0, the concentration of the H+ needs to change from 

10-8.0 to 10-7.0 mol/L. The following calculates the number of protons needed to make such a 

change for each such cell, assuming that the pH buffering coefficient of the cell is 2.0 x 105 for 

this pH range (Saleh et al., 1991): 

10C<.E − 	10C>.E 	×	100	×	2	×	107	×	10C'7	×	6.02	×	10-0 ≅ 1.1	×	10@. 

where 1L = 1015 um3 and 6.02	×	10-0 is the Avogadro constant. Hence, it takes 1.1	×	10@ 

protons to make the desired pH change. It is known that proliferating human fibroblasts 

consume ~5	×107 glucose/second per cell (Flamholz et al., 2014). Using a conserved estimate, 

we assume that a cancer cell uptake 5×107 glucose/second, 50% of which goes to pyruvate 

but not involved in electron transport chain and at least 20% of these is not used towards 

lactate synthesis (and extracellular secretion). By putting these numbers together, we get: it 

takes ~220 seconds for such a cell to reach the desired pH change. While our estimate here 

might be crude, it highlights that it will not take long for Fenton reaction-infected cytosol to 

overwhelm the pH buffer and start to change the cytosolic pH.  

 

3. Intracellular nucleotide concentration may drive cancer cell division? 

 It is not unthinkable that increased nucleotide concentration can drive DNA synthesis 

and cell division by cancer or cancer-forming cells, knowing that proliferation of prokaryotic 

cells and possibly all unicellular eukaryotic organisms such as yeast is driven by increased 

nucleotide or nucleotide-sugar concentration (Wang and Levin, 2009). For example, once 

ATP synthesis rate is higher than its consumption rate, the intracellular ATP concentration will 

continue to increase in such unicellular cells, resulting in slowdown of their ATP production 

and increase of nucleotide synthesis as the cells continue to consume the available nutrient. 

Cells like E. coli and yeast use intracellular nucleotide or nucleotide-sugar concentration as 

cue to activate DNA synthesis and cell-cycle progression. Hence we speculate that cancer 

cells may have utilized a similar program to activate the cell-division process to rid of their 

nucleotides (manuscript in preparation).   

To probe further this issue, we have conducted a co-expression analysis between 

nucleotide synthesis and a few downstream pathways: DNA repair, DNA replication, RNA 
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POL I synthesis, aminoacyl-tRNA synthesis and cell cycle in the six cytosolic Fenton reaction 

harboring inflammatory diseases discussed and all 14 cancer types. The key information 

gained includes: (i) nucleotide synthesis is not strongly correlated with cell-cycle progression 

in the six inflammatory diseases; (ii) while they are more correlated in cancers, the correlation 

level spans a wide range across different cancers and is not nearly as strong as that with 

DNA repair, strongly suggesting that nucleotide synthesis, DNA synthesis and cell-cycle 

progression are not coordinated through regulation as in normal proliferating cells in human 

tissues; and (iii) nucleotide synthesis strongly correlates with DNA repair in both inflammatory 

diseases and cancers, suggesting that DNA repair may be a key inducer of nucleotide 

synthesis. Hence, we posit that it is DNA repair processes that may induce nucleotide 

synthesis rather than DNA replication, which is clearly different from the typical proliferation 

process where the need for DNA replication drives nucleotide synthesis. The details are 

given in Supplementary Table S3. 

 

4. Observations from data analyses of mitochondrial Fenton reactions 

 The mitochondrial NADH and superoxide contribute strongly to the reduction of Fe3+ 

from mitochondrial Fenton reactions, hence driving the continuous Fenton reactions. In 

parallel, significant Fe3+ accumulation and its correlation with mitochondrial Fenton reactions 

are also observed based on the up-regulated mitochondrial iron importer genes SLC25A28 

and SLC25A37, heme synthesis gene ALAS1 and their significant correlations with protein 

damages in mitochondria, indicating that some OH- produced by mitochondrial Fenton 

reactions are not naturalized by Fenton or associated reactions, hence leading to 

consumption of protons inside mitochondria.  

 The expression levels of Complexes I and III both show strong correlations with our 

predicted levels of the mitochondrial Fenton reactions when Fe3+ being reduced by 

superoxide or unreduced. Interestingly, higher correlations were observed in cancer tissues 

with higher levels of hypoxia, measured using the expression levels of hypoxia marker genes 

EGLN1 and EGLN3, as detailed in Supplementary Methods and Figure S12.  

 The expression levels of ATP-ADP exchanger genes SLC25A4, SLC25A5 and 

SLC25A6 all show strong correlations with the predicted rates of mitochondrial Fenton 
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reactions when Fe3+ being reduced by superoxide or unreduced, strongly suggesting that 

such Fenton reactions contribute to ATP syntheses. Similarly, higher correlations are 

observed in cancer tissues that are more hypoxic, which are particularly so for cancer types 

with significant levels of mitochondrial Fenton reactions, namely BRCA, COAD, KICH, KIRC, 

KIRP, LUAD and PRAD, suggesting that some aerobic respiration may take place in O2 rich 

environment as in normal cells.  

 One evidence for unreduced Fe3+ in mitochondria is the increased synthesis of 

iron-sulfur clusters as reflected by the HSCB gene and the ABCB6 gene, the former of which 

transfers a newly synthesized iron-sulfur to specific proteins and the latter removes iron sulfur 

from the mitochondria, as shown in Figure S14. The rationale is that a damaged iron-sulfur 

cluster indicates that Fenton reaction already takes place, hence Fe2+ is oxidized to Fe3+ and 

then the iron-sulfur cluster is replaced by a new one while the Fe3+ ions along with the 

damaged iron-sulfur cluster will be removed from mitochondria using the ABCB6 transporter 

(Richardson et al., 2010). From the figure, we can see both genes are up-regulated in 

majority of the cancer types, indicating the number of unreduced Fe3+ is increased.  

 

5. Additional evidence for UCP5 being used for ATP production  

Strong positive correlations between UCP5 and mitochondrial iron importer genes 

SLC25A28 and SLC25A37 while negative correlation between UCP5 and the rate-limiting 

gene ALAS1 of heme synthesis are observed in BRCA, HNSC, KIRC, KIRP, LUAD, PRAD 

and THCA but not in normal tissues. These observations suggest that the activation of UCP5 

is associated with the accumulation of Fenton reaction-produced Fe3+, but not Fe2+.  

Furthermore, the malate importer gene SLC25A11 of the malate-aspartate shuttle is 

largely up-regulated and strongly co-expressed with Fe3+ accumulation rather than the 

aspartate anti-porter SLC25A12 in cancer. Noting that previous studies have discovered that 

malate accumulation in cancer cells of multiple cancer types where malate serves as a 

chelator of Fe3+ (Hamada et al., 2005). Hence, we posit that the unreduced Fe3+ produced by 

mitochondrial Fenton reactions are chelated with malate and accumulated in mitochondria, 

which directly contribute to cross-membrane proton gradients and ATP synthesis.   
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B. SUPPLEMENTARY METHODS 

1. Comparative analyses of Fenton reactions in cancer vs. inflammatory disease 

 Comparitive analyses of the differentially expressed genes in 16 types of 

inflammatory diseases and the 14 cancer types are made. Differentially expressed genes are 

identifed in each dataset by using Mann-Whitney test with FDR < 0.05 as the significance 

cutoff. Considering that the cancer transcriptomic data are all measured using RNA-seq while 

only microarray data are avialable for the inflammatory diseases, we have also included 12 of 

the 14 cancer types measured by the same micorarray platform to assure that most of the 

differentially expressed genes discussed in this study are consistantly identified in both data 

types.  

 

2. Differential gene expression and pathway enrichment  

Differential gene expression is assessed by using the Mann-Whitney test on the 

RSEM (or RPKM) normalized RNA-seq data collected from cancer vs. control samples of 

each cancer type. FDR is applied to control false discoveries and FDR < 0.005 is used as the 

significance cutoff for determining differential gene expression. 

Pathway enrichment analysis is conducted and the statistical significance of each 

enriched pathway is assessed by using a hypergeometric test (statistical significance cutoff = 

0.005) against pathways retrieved from GO and MsigDB as well as ~40 manually curated 

Fenton reaction related gene sets (Subramanian et al., 2005). 

 

3. Genes selected for estimation of Fenton reactions in mitochdondria and ECM 

Mitochondrial Fenton reaction: The gene-expression levels of up-regulated 

protein-degradation enzymes in mitochondria, specifically CLPP, LONP1, THOP1, HTRA2, 

PMPCA, PMPCB, SPG7, CLPX, and AFG3L2 are used to estimate the mitochondrial [∙ OH]. 

All mitochondrial iron-sulfur proteins are used as the source of Fe
2 accessible to mitochondrial 

Fenton reactions; and hence [Fe2+] is estimated by using a linear model of expressions of the 

synthesis genes of iron-sulfur clusters, namely CIAO1, BRIP1, HSPA9 and ACO2. 

Mitochondrial [H2O2] is estimated using a linear model over the expressions of mitochondrial 

anti-oxidation reductases such as GPX4 and TXN. The level of reducing agents, [RA], is 
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estimated by using the expression data of mitochondrial dehydrogenases. The level of 

superoxide, O-∙C , is estimated using the gene-expressions of mitochondrial superoxide 

dismutase SOD2. Fe3+ accumulation is estimated using mitochondrial iron transporter genes 

SLC25A28 and SLC25A37, the rate-limiting enzyme of iron-sulfur cluster synthesis ISCU and 

the rate-limiting enzyme of heme synthesis ALAS1. 

Extracellular matrix Fenton reaction: [∙ OH] is estimated using ECM degradation genes 

MMPs (Supplementary Table S1) via a regression model over [H-O-] and [Cu
1+] since Cu 

instead of Fe is involved in such Fenton reactions. [H-O-] is estimated using the expressions 

of NOX2, NOX3 and GPX7 while [Cu
1+] is estimated by using the expressions of two 

extracellular copper-dependent enzymes: lysyl oxidase (LOX) and lysyl oxidase like 2 

(LOXL2). It has been reported that the copper(I) ions in lysyl oxidase are involved in Fenton 

reaction and the produced copper(II) ions can be further reduced by superoxide: Cu+ + H2O2 -> 

Cu2+ + ∙ OH + OH-; Cu2+ + O-∙C -> Cu+ + O2; and Cu+ + O-∙C+ 2H+ -> Cu2+ + H2O2 (Brown Jr, 

1997). It is noteworthy that all the genes used to assess extracellular Fenton reactions are 

genes expressed in stromal and local immune cells rather than cancer cells. 

 

4. Inference of subcellular location of selected proteins 

The subcellular location of a protein is first predicted based on the annotation in 

Genecards, which uses a number between 0 and 5 to represent the reliability of a prediction, 

with 5 being the most confident and 0 being the least. We have used 4 as the cutoff in 

assessing the subcellular localization for a protein (Safran et al., 2010). 

 

5. Hypoxia level prediction 

We have previously developed a computational method to estimate the oxidative 

stress level of a tissue sample based on expression levels of ~40 genes whose proteins 

either contribute to the generation of oxidative stress or respond to it (Cao et al., 2015). Here, 

a similar approach is applied to train a predictor for the hypoxic level in the given tissue based 

on its gene expression data. Specifically, we have collected 10 gene-expression datasets of 

24 samples with known hypoxia levels and 30 control samples as the training data (see 

Supplementary Table S4) to train a predictor for the microarray data (Affymetrix UA133 plus 
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2.0 array). 180 genes are selected as hypoxia responsive genes, including known hypoxia 

induce factor I and II (HIF1 and HIF2) and genes directly regulated by them, retrieved from 

the Transfec database (Wingender et al., 1996) and genes annotated by GO to be hypoxia 

responsive. The predictor is trained by using a logistic regression model with variable 

selection by using L1 regularization(Park and Hastie, 2007). “glmnet” in the R package is 

applied to train the predictor and the model parameters are selected that achieve the highest 

prediction accuracy with 10-fold cross-validation. Five genes, namely EGLN1, EGLN3, 

MAT2A, PFKFB3 and PFKFB4, are selected and used in the final predictor, which achieves 

96.1% prediction accuracy in 10-fold cross validation. 

To predict the hypoxia level of a tissue sample based on the RNA-seq data, we have 

selected gene EGLN3 (Egl-9 Family Hypoxia Inducible Factor 3) with the highest F score 

among the five selected genes in the logistic regression-based prediction model. A higher 

expression level of EGLN3 implies a more hypoxic condition. We have used the expression 

level of EGLN3 to classify the samples of each cancer type into hypoxic (top 30% EGLN3 

expressed samples), aerobic (bottom 30% EGLN3 expressed samples) and intermediate 

groups.  

The non-linear model for Fenton reaction in each subcellular location is fitted with 

gene-expression data in each hypoxia group, respectively. The predicted mitochondrial 

Fenton reaction levels in each group strongly correlate with the ETC Complex I and III genes 

for each cancer type. Consistently higher correlations (p < 1e-5 by Mann-Whitney test) 

between the predicted Fenton reaction level and ETC Complex I and III genes in samples 

with higher hypoxia levels are observed in all cancer types with significant mitochondrial 

Fenton reactions, namely BLCA, BRCA, COAD, KICH, KIRC, KIRP, LUAD, LUSC, PRAD, 

and STAD. Detailed correlations between predicted Fenton reaction level and ETC Complex I 

and III genes in different hypoxia groups and cancer types are shown in Supplementary 

Figure S12. 

 

6. Prediction of tumor purity 

 To assure that the analyzed extracellular genes are truly expressed by stromal or 

immune cells rather than cancer cells, we have selected genes with expression levels 
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negatively correlated with the cancer purity predicted by ESTIMATE, ABSOLUTE, LUMP, 

IHC and CPE methods in each of the 14 cancer types (Aran et al., 2015). Detailed 

correlations between the gene expression and predicted cancer purity are given in 

Supplementary Figure S3. 

 

7. Validation of saturated malate-aspartate (M-A) shuttle 

The net result of M-A shuttle is to regenerate NAD+ in cytosol and produce NADH in 

mitochondria. In this process, SLC25A11 transports malate into mitochondria and 

SLC25A12/SLC25A13 transport aspartate out of mitochondria. In normal conditions with 

balanced NADH and NAD+, there should be a strong correlation between the expressions of 

SLC25A11 and SLC25A12/SLC25A13. Interestingly, the correlation is insignificant in cancer 

tissues in general across 14 cancer types. Furthermore, we noted that SLC25A11 strongly 

correlates with ETC Complex I, which is the first step to utilize NADH to transport electron, 

but the correlation between SLC25A12/SLC25A13 and Complex I is insignificant. This 

strongly suggests that the transportation rates of SLC25A12/SLC25A13 reach their maximum, 

i.e., they become saturated while SLC25A11 remains at a high rate. Previous studies have 

shown that the efflux of aspartate is irreversible and the rate-limiting step of the M-A shuttle, 

while the exchange between malate and α-ketoglutarate is driven by the concentration 

gradients of its substrates. By integrating all these, we predict that malate is being used to 

chelate Fe3+ (Lu et al., 2008; Adam et al., 2015). 

 

8. Variable selection and statistical significance test 

“glmnet” in R package is applied to compute each regression model with variable 

selection by using a L1-penalty (Friedman et al., 2010). Cross-validation is applied to achieve 

the best λ value for each fitting. To assess the statistical significance of each regression 

model, we conducted a permutation-based testing by using the following criteria: (i) R- value, 

(ii) the number of selected variables, (iii) biological explanation of the positive or negative sign 

of each model parameter, and (iv) biological meaning of each gene used. A p-value < 0.005 

is used as the cutoff for the statistical significance. 
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9. Assessment of statistical significance of Fenton reaction prediction 

For each regression model of each Fenton reaction related quantity, statistical 

significance from three aspects is assessed to demonstrate the occurrence of a Fenton 

reaction: (i) over expression of each Fenton reaction associated gene; (ii) significance in 

fitting the reaction equation, Eq. 13 in the main text, calculated using a permutation test on 

the R2 value by randomly choosing the same number of genes with similar expression 

patterns to those used for estimating [Fe2+], [H2O2], [�OH], [O-C]	and RA , respectively, for 

variable selection; and (iii) the sign of each regression parameter, which is assessed using a 

permutation test on a predefined Sign-Score, and 0.005 was used as the cutoff for the 

significance values. For (i) and (ii), we have applied a test by permuting the independent 

variables in the regression model and another test to permute the dependent variables by 

fitting the regression model against genes with similar over-expression levels but 

independent of those of the selected marker genes for ∙ OH  production. 

Our analysis indicates that Eq. 13 is non-linear. Hence a polynomial model based on 

Tayler expansion of the function is used to capture the non-linear relationship. The non-linear 

function is first approximated using a linear regression over a set of expanded variables 

based on the Taylor expansion. Genes deemed to make significant contributions are selected 

using a linear regression with an L1-penalty. Then a non-linear regression of the selected 

genes is then conducted. 

The sign of the regression parameters is defined by the following function to assess 

the significance for the occurrence of Fenton reaction in a specific subcellular location: 

Sign	Score =
	(K'WX + K-WX +	K0WX + 	KYZ[WX + K7

\]^ + K9
\]^ + K<

\]^ + KYZ[
\]^)WX

	(|K'WX + K-WX +	 |K0WX + 	 |KYZ[WX| + |K7
\]^| + |K9

\]^| + |K<
\]^| + |KYZ[

\]^ |)WX
 

The significance of the Sign Score is assessed using a permutation test. P-value = 0.005 is 

used as the significance cutoff.  

 

10. Pathway-pathway correlation significance calculation  

For two pathways P1 and P2 with p1 and p2 genes, respectively, we have calculated 

their Pearson correlation and constructed a correlation p1 x p2 matrix. We then counted all 

the gene pairs which satisfy: (a) p-value < 0.01 and (b) correlation value is above 0.1. We 
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have then conducted 10,000 permutations of the two pathways. Let N be the number of such 

pairs and M the number of times out of these permutation tests with significant gene pairs at 

least being N. The following is used as the significance value:  

Permutation	pvalue =
M

10000 

 

11. Validation of up-regulated gene expressions against protein expression data 

 All the up-regulated genes in cancer tissues used in this study are validated using 

protein expression data in the relevant cancer type. The staining data for 16,236 proteins in 

14 types of human cancers are retrieved from The Human Protein Atlas. For most proteins, 

they have four staining level: high, middle, low and not detectable, which are scored as 5, 3, 1 

and 0, respectively. Since the database also contains the following information: the number of 

patients for each of these four levels for each protein and the total number of patients 

included for each cancer type, we can calculate the proportion of this protein in different 

levels and derive its staining score as defined above.  

 8 of the 14 cancer types used in our study are included in this database:  BRCA, 

HNSC, LUSC, STAD, COAD, LIHC, PRAD and THCA. For each cancer type, we compared 

average staining scores for each protein in each cancer type, and consider up-, 

down-regulation or change for protein in each cancer type, when assessing the consistencies 

between differential gene expressions and protein abundance data.   
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C. SUPPLEMENTARY FIGURES AND CAPTIONS 

Figure S1: Elevated iron level in cancer vs. control across 14 cancer types (the x-axis). The 

y-axis is the axis of genes involved in iron uptake, usage and storage. Each entry is the 

log2-transformed fold-change averaged over all samples of cancer vs. control, where blue is 

for up and red for down-regulation with the detailed color scheme given in the top panel. Eight 

genes are used with TFR2 for transferrin receptor 2; TFRC for transferrin receptor; STEAP3 

for STEAP family member 3; SLC25A37 for solute carrier family 25, member 37; FTH1 for 

ferritin, heavy polypeptide 1; HAMP for hepcidin antimicrobial peptide, and SLC40A1 for 

solute carrier family 40 (iron-regulated transporter), member 1, an iron exporter. 
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Figure S2: Elevated H2O2 level in cancer vs. control across 14 cancer types (the x-axis). The 

y-axis is the axis of genes reflecting the H2O2 level. Each entry is the log2-transformed 

fold-change averaged over all samples of cancer vs. control, where the color scheme is the 

same as in Figure S1. Thirteen genes are used with GCLC for glutamate-cysteine ligase, 

catalytic subunit; GPX1 for glutathione peroxidase 1; GCLM for glutamate-cysteine ligase, 

modifier subunit; GPX5 for glutamate-cysteine ligase, modifier subunit 5; GPX7 for 

glutamate-cysteine ligase, modifier subunit 7; TXN for thioredoxin; GPX8 for 

glutamate-cysteine ligase, modifier subunit 8; GPX4 for for glutamate-cysteine ligase, 

modifier subunit 4; GPX2 for glutamate-cysteine ligase, modifier subunit 2; and TXNRD1 for 

thioredoxin reductase 1.  
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Figure S3: Correlation between the expression levels of extracellular genes and the 

predicted cancer tissue purities. Cancer sample purities predicted by five methods in the 

public domain are used. Consistent negative correlations between the predicted purity and 

the expressions of certain extracellular genes are observed. “-” means not available. 
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Figure S4: Correlations between the endogenous superoxide genes and the predicted level 

of cytosolic Fenton reaction as well as between the mitochondrial superoxide genes and the 

level of cytosolic Fenton reaction across the 14 cancer types. The expressions of NOX1 and 

NOX4 are used to reflect the level of superoxide from the endogenous source; the expression 

of SOD2 is used to reflect the level of mitochondrial superoxide; and expressions of 

proteasome genes PSMA7 and PSMB4 are used to reflect the level of cytosolic Fenton 

reactions. The first CC represents the correlation coefficient between a gene and PSMA7 and 

the second CC represents the correlation coefficient between a gene and PSMB4. CC in bold 

represents that Fenton reactions rely more on the corresponding source of superoxide.  
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Figure S5: Increased accumulation of cytosolic Fe3+ in 14 cancer types. Here we use the 

expressions of FTL in control tissues vs cancer tissues from stage 1 through stage 4 to reflect 

the increase in the cytosolic Fe3+ accumulation. Rows highlighted in red represent cancer 

types with reduced Fe3+ accumulation as reflected by FTL. 

 

Cancer	 Gene	 Normal	 Stage	1	 Stage	2	 Stage	3	 Stage	4	

	       BLCA	 FTL	 2665.772811	 1796.45979	 2565.189782	 3521.479845	 3479.735276	

	       BRCA	 FTL	 2596.076577	 1924.098137	 2058.495214	 2269.136435	 2360.502725	

	       COAD	 FTL	 2447.157783	 2838.531429	 3074.708221	 3026.259628	 2904.17878	

	       ESCA	 FTL	 1388.955785	 2060.922253	 3503.258922	 2432.133226	
	

       HNSC	 FTL	 954.8875571	 1421.954244	 1980.993255	 2002.137894	 2168.805584	

	       KICH	 FTL	 3170.52011	 2258.704081	 2177.821507	 2967.037043	 3616.675187	

	       KIRC	 FTL	 3333.129485	 3423.591223	 3487.658951	 3980.241959	 4033.165465	

	       KIRP	 FTL	 4576.165659	 5624.951794	 8886.72965	 6620.562354	 5921.977015	

	       LICH	 FTL	 6020.631537	 12355.49985	 14109.94635	 10092.13708	 19946.81214	

	       LUAD	 FTL	 7583.141208	 5413.562625	 5232.977912	 4742.051967	 4973.764998	

	       LUSC	 FTL	 7591.464488	 5227.002192	 4590.880108	 5820.370444	 5070.442008	

	       PFRAD	 FTL	 5152.808273	 2538.156425	 3301.714459	 3518.67506	 3951.575325	

	       STAD	 FTL	 2107.785591	 2866.972766	 3077.818732	 3054.121857	 2821.790252	

	       THCA	 FTL	 1971.517442	 1915.949388	 1755.770734	 2049.366082	 1824.36838	
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Figure S6: Negative correlation between estimated Fe3+ accumulation and H+ exporter genes 

across the 14 cancer types. (PSMA7, PSMB4), and (FTH1, FTL) are used to represent the 

level of Fenton reactions and the accumulation of Fe3+. And all the SLC genes used here are 

acid-extruding transporters.  
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Figure S7: Correlations between the expressions of acid-loading and acid-extruding 

transporter genes and the predicted level of cytosolic Fenton reactions as well as with 

OHC -producing cytosolic Fenton reactions. 65 protein damage-responsive genes are 

selected to be regressed with the Fenton reaction related genes linked via the 

Michaelis-Menten equation for predicting the occurrence of Fenton reactions. In each panel, 

the bar on the left shows the correlations between the expressions of selected acid-loading 

and acid-extruding transporter genes and the level of OHC -producing cytosolic Fenton 

reactions predicted by the 65 genes while the bar on the right shows the correlation between 

these transporter genes and the predicted cytosolic Fenton reaction level. The names of the 

acid-loading and acid-extruding transporter genes, the cancer type and the p-value of the 

difference between the correlations tested by Mann-Whitney test are listed above each 

box-plot. 
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Figure S8: The pyruvate metabolism with the name in each box represents a metabolite and 

the name next to each edge is the name of the enzyme catalyzing the corresponding 

reaction. 
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Figure S9: Correlation between the estimated rate of OH- production and the rate of 

glycolytic ATP synthesis across 14 cancer types. We used a simpler way to estimate the rate 

of OH- production, specifically using the expressions of ferritin gene FTH1 to represent the 

accumulation rate of unreduced Fe3+; proteasome gene PSMA7 to represent the level of 

cytosolic Fenton reaction; and PKM to represent the level of glycolytic ATP synthesis.  For 

each cancer type, the three values are: the coefficients a1 and a2 of FTH1 and PSMA7, plus 

the correlation coefficient (CC) between PMK and (a1* FTH1 + a2 * PSMA7). 

 

Cancer type a1 a2 CC 

BLCA 6.21 12.71 0.3335565 

BRCA 10.31 16.41 0.3726417 

COAD 1 0 0.102479 

ESCA 13.81 19.31 0.273338 

HNSC 2.01 10.41 0.2401589 

KICH 16.61 19.91 0.4488197 

KIRC 11.81 11.71 0.3422485 

KIRP 8.91 5.51 0.2605148 

LICH 15.31 17.21 0.391865 

LUAD 13.81 13.71 0.3588394 

LUSC 14.11 10.91 0.319393 

PRAD 18.21 10.81 0.5821504 

STAD 10.91 10.71 0.3038045 

THCA 4.61 5.91 0.4735309 

 

 

 

  



	 47	

Figure S10: Correlation between glycolysis and aminoacyl-tRNA synthesis, purine synthesis, 

base excision repair and the glyoxylate and dicarboxylate metabolism, respectively, across 

six chronical inflammatory diseases. In this plot, PKM is used to reflect the level of glycolytic 

ATP production, and genes in the four sections along with y-axis, separated by blank lines, 

are for aminoacyl-tRNA synthesis, purine synthesis, base excision repair and the glyoxylate 

and dicarboxylate metabolism, respectively. The six disease names to the left of the vertical 

blank line are six diseases mentioned.  
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Figure S11: Contribution to mitochondrial Fenton reaction by mitochondrial NADH and 

superoxide across the 14 cancer types. We use anti-oxidation genes GPX4 and TXN to 

represent the level of mitochondrial superoxide, MDH1 and MDH2 to reflect the level of 

mitochondrial NADH level; and CLPP and CLPX to represent the level of mitochondrial 

Fenton reactions. CC1 represents the correlation coefficient between CLPP and the 

corresponding gene (on the same row); and CC2 represents the correlation coefficient 

between CLPX and the corresponding gene. CC values in bold represent strongly correlated 

mitochondrial Fenton reactions and the relevant NDAH and/or mitochondrial superoxide. 
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Figure S12: (A) Correlations between the predicted level of mitochondrial Fenton reactions 

and the expressions of ETC Complex I genes in the more hypoxic and less hypoxic samples, 

respectively; (B) Correlations between the predicted level of mitochondrial Fenton reaction 

and ETC Complex III genes in the more hypoxic and less hypoxic samples, respectively. 

Each box-plot shows the correlations between the level of mitochondrial Fenton reaction 

predicted by the regression model (tilted in each figure) and the expression levels of Complex 

I (or III) genes in the more hypoxic samples (left bar, H) and less hypoxic samples (right bar, 

N). 
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Figure S13: Correlation between predicted level of mitochondrial Fenton reactions 

(represented by CLPP) and Complex I (NDUF) and Complex III (COX) genes depends on the 

level of exogenous superoxide (reflected by NOX1 and NOX4) and the unreduced Fe3+ 

(reflected by FTL). CC represents the correlation coefficient between the expression of CLPP 

and that of each of the COX and NDUF genes, all averaged over samples of a specific stage.  
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Figure S14:  Unreduced Fe3+ in mitochondria as reflected by the HSCB and the ABCB6 
genes across 14 cancer types. The ones highlighted in red represent those not up-regulated 
in cancer compared to the controls.  
 

Cancer type Gene Control Stage 1 Stage 2 Stage 3 Stage 4 

BLCA HSCB 6.88151922 7.310628495 8.993340048 8.481314482 7.548306992 

 
ABCB6 1.59990777 1.233107232 1.417232986 1.4569098 1.332567181 

BRCA HSCB 7.390967902 7.441224387 7.537135362 7.552662764 7.780806437 

 
ABCB6 1.039059748 1.100508881 1.191606265 1.250196908 1.52382711 

COAD HSCB 5.980135117 6.393129161 6.518328854 5.996200995 5.51669913 

 
ABCB6 0.443637709 1.004842716 1.039029129 1.076627101 1.071552624 

ESCA HSCB 3.390608364 4.404148628 4.939685898 4.688559931 

 
 

ABCB6 0.225776623 1.511963068 2.547655094 1.46365758 

 HNSC HSCB 5.573766519 5.700525211 5.699113601 7.152921464 6.671429631 

 
ABCB6 1.076750721 1.530173529 1.667070613 1.728425996 1.825877634 

KICH HSCB 7.771310094 5.859905424 6.372265277 6.09203463 8.740121458 

 
ABCB6 0.586380364 0.206931162 0.191544164 0.149209045 0.456614249 

KIRC HSCB 6.038629697 8.267559324 8.440878453 8.239120885 9.067288653 

 
ABCB6 0.641922862 2.162305238 2.064931643 2.26210016 2.493865033 

KIRP HSCB 6.684949025 7.51316929 7.534889408 6.552381118 8.555873934 

 
ABCB6 0.809280397 1.441540516 1.754945461 2.192579424 2.938284679 

LICH HSCB 7.367050184 10.19233653 9.187640167 10.38056538 11.24318158 

 
ABCB6 1.151797331 2.120299986 2.410861794 2.700993509 3.67082284 

LUAD HSCB 5.556556233 8.365701812 8.490273927 8.459511829 7.424806429 

 
ABCB6 0.458242475 2.025467779 2.018634183 1.882411236 2.807316677 

LUSC HSCB 5.3864707 9.580620274 9.372425413 9.567280994 8.150435159 

 
ABCB6 0.480757783 3.240348245 2.763514941 3.285640255 2.227407803 

PRAD HSCB 6.012267639 6.593592328 6.115267576 6.19098412 6.13873376 

 
ABCB6 0.672609053 1.051751337 0.94135658 0.803105134 0.71489075 

STAD HSCB 5.12460935 5.534552887 5.269292256 4.998124005 4.651254497 

 
ABCB6 0.564738332 1.017207449 0.970908023 0.949561899 0.934737417 

THCA HSCB 8.252546862 8.717546762 8.542094272 8.772438043 7.941691876 

 

ABCB6 1.406559737 1.0529645 1.094546024 0.940086591 0.862476859 
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Figure S15: mitochondrial Fenton reactions contribute to ATP syntheses. We have used 

CLPP and CLPX reflect the level of mitochondrial Fenton reactions, and ATB5B for ATP 

synthase, plus UCP5 (SLC25A14) and UCP2 genes.  The coloring scheme is the same as in 

earlier figures, e.g., Figure S10. 

 

  



	 62	

Figure S16: Gene-expression levels of SOD3, and extracellular hydrogen peroxide and 

superoxide producing genes in 16 inflammatory diseases and 14 cancer types. The coloring 

scheme is the same as in earlier figures, e.g., Figure S10. 
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Figure S17:  Staining score comparison between up-regulated genes and the background 

genes in eight cancer types. Bar on the left (B_G) is the staining score for background genes 

and bar on the right (M_G) is the score for the up-regulated model genes. 
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D. SUPPLEMENTARY TABLES AND CAPTIONS 

TABLE S1: All genes used to demonstrate the occurrence of Fenton reactions in cytosol and mitochondria along with the related analysis results. 

CY model genes: genes initially used to establish Fenton reactions in cytosol. CY selected genes: genes selected from the model genes that 

give the optimal R2 values. CY permutation 1 and 2 are the statistical significance of the derived R2 values against sets of genes with comparable 

expression profiles with those in CY selected genes. Similarly defined are for the mitochondrial genes. ECM MMPs, component and 

glycosaminoglycan are the MMP, glycosaminoglycan and collagen genes used to establish Fenton reactions in extracellular matrix. ECM 

correlation: correlation between MMP and ECM copper containing genes.  

 

[Table S1 should be here.]  
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TABLE S2: The first column is cancer type and the second column is the statistical significance of the contribution by glycolytic pyruvate towards 

non-lactate production in Figure S7.  

 
Cancer type p-value 
BLCA 6.54E-02 
BRCA 6.33E-02 
COAD 1.13E-09 
ESCA 4.33E-01 
HNSC 1.30E-03 
KICH 6.55E-02 
KIRC 5.40E-85 
KIRP 5.49E-52 
LIHC 2.59E-07 
LUAD 5.93E-01 
LUSC 1.12E-02 
PRAD 7.07E-01 
STAD 3.08E-02 
THCA 1.60E-01 
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TABLE S3: Gene-expression analysis data in support of Fenton reaction reactions in cytosol, mitochondria and ECM.  

 
[Table S3 should be here.]  
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TABLE S4: Differential expression analyses of Fenton reaction-related genes, where a differentially expressed gene is determined by 

Mann-Whitney Test with FDR < 0.05. In the table, duplicated genes in microarray data refer to different probes of the same gene.  

 

[Table S4 should be here] 
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