

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

HAEMATOLOGICAL PROFILE OF CHRONIC KIDNEY DISEASE IN A MIXED-ANCESTRY SOUTH AFRICAN POPULATION: A CROSS-SECTIONAL STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025694
Article Type:	Research
Date Submitted by the Author:	26-Jul-2018
Complete List of Authors:	George, Cindy; South African Medical Research Council, Non- Communicable Diseases Research Unit Matsha, Tandi; Cape Peninsula University of Technology, Department of Biomedical Sciences Erasmus, Rajiv; University of Stellenbosch, Chemical Pathology Kengne , AP; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town
Keywords:	Africa, HAEMATOLOGY, Chronic Kidney Disease

HAEMATOLOGICAL PROFILE OF CHRONIC KIDNEY DISEASE IN A MIXED-

1 2	
3	1
4 5	2
6 7	3
8	4
9 10	5
11 12	6
13 14	7
15	8
16 17	9
18 19	10
20	11
21 22	12
23 24	13
25 26	14
20	15
28 29	16
30 31	17
32	18
33 34	19
35 36	20
37	21
38 39	22
40 41	22
42	23
43 44	24
45 46	
47 48	
48 49	
50 51	
52 53	
54	
55 56	
57 58	
59	

60

ANCESTRY SOUTH AFRICAN POPULATION: A CROSS-SECTIONAL STUDY 2 3 4 Cindy George¹; Tandi E. Matsha², Rajiv T. Erasmus³, Andre P. Kengne^{1,4} 5 6 7 ¹Non-Communicable Disease Research Unit, South African Medical Research Council, Cape 8 Town, South Africa; ²Department of Biomedical Sciences, Faculty of Health and Wellness 9 Science, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa; 0. 1 ³Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health 2 Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa, ⁴Department of Medicine, University of Cape Town, Cape Town, South Africa. .3 4 .5 Corresponding author: Cindy George; South African Medical Research Council, Non-.6 .7 Communicable Disease Research Unit, Francie van Zijl Drive, Parow Valley, Cape Town, PO Box 19070, South Africa; +27 21 9380482; cindy.george@mrc.ac.za 18 9 20 Word count: 3085 21 Abstract word count: 294 2 3 References: 50 Tables: 3 4

 25 ABSTRACT

Objectives: The objectives were to characterise the haematological profile of screen-detected chronic kidney disease (CKD) participants and to correlate the complete blood count measures with the commonly advocated kidney function estimators. Methods: The current cross-sectional study utilized data, collected between February 2015 and November 2016, of 1564 adults of mixed-ancestry, who participated in the Cape Town Vascular and Metabolic Health study. Kidney function was estimated using the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations. CKD was defined as eGFR <60ml/min/1.73m², and anaemia as haemoglobin level <13.5g/dL (men) and <12g/dL (women). Results: Based on the MDRD and CKD-EPI equations, the crude prevalence of CKD was 6% and 3%. Irrespective of the equation used, median red blood cell (RBC) indices were consistently lower in those with CKD compared to those without CKD (all p<0.0001). Despite not showing any significant difference in total white blood cell (WBC) count between the two groups, the number of lymphocytes were lower (p=0.0001 and p<0.0001 for MDRD and CKD-EPI, respectively) and neutrophil count (both p<0.0297) and the ratio of lymphocytes to neutrophil (both p < 0.0001) higher in the CKD group compared to those without CKD; with the remaining WBC indices similar in the two groups. The platelet count was similar in both groups. Of the screen-detected CKD participants, 45.5% (MDRD) and 57.8% (CKD-EPI) were anaemic, with the prevalence increasing with increasing severity of CKD, from 37.2% (stage 3) to 82.4% (stages 4-5). Furthermore, CKD-EPI-estimated kidney function, but not MDRD, was positively associated with RBC indices. Conclusion: Though it remains unclear whether common kidney function estimators provide accurate estimates of CKD in Africans, the correlation of their estimates with deteriorating RBC profile, suggests that advocated estimators, to some extent approximate kidney function in African populations.

50 Key words: chronic kidney disease; haematology; Africa

 51 Strengths and limitations of the study 52 The first study to characterize the haematological profile of individuals with reduced kidney function in a population-based setting in Africa, even more specific, individuals or mixed-ancestry 55 We studied a community with a high burden of obesity, hypertension and diabetes reflective of the current burden in Africa. 56 reflective of the current burden in Africa. 57 This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. 59 Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	1 2		
 The first study to characterize the haematological profile of individuals with reduced kidney function in a population-based setting in Africa, even more specific, individuals o mixed-ancestry We studied a community with a high burden of obesity, hypertension and diabetes reflective of the current burden in Africa. We study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	3	51	Strengths and limitations of the study
 kidney function in a population-based setting in Africa, even more specific, individuals o mixed-ancestry We studied a community with a high burden of obesity, hypertension and diabetes reflective of the current burden in Africa. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	5	52	• The first study to characterize the haematological profile of individuals with reduced
 mixed-ancestry We studied a community with a high burden of obesity, hypertension and diabetes reflective of the current burden in Africa. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	6 7	53	kidney function in a population-based setting in Africa, even more specific, individuals of
 We studied a community with a high burden of obesity, hypertension and diabetes reflective of the current burden in Africa. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	8 9	54	mixed-ancestry
 reflective of the current burden in Africa. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	10 11	55	• We studied a community with a high burden of obesity, hypertension and diabetes,
 This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	12	56	reflective of the current burden in Africa.
 reflect all the mixed ancestry population groups in Sub-Saharan Africa. Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	13 14	57	• This study was conducted in only one geographical area, which may not adequately
 Our study was based on a single serum creatinine measure to determine CKD and did no include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR 	15 16	58	reflect all the mixed ancestry population groups in Sub-Saharan Africa.
 include estimates of albuminuria. Albuminuria, which are required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR interpretation of the eGFR 	17 18	59	• Our study was based on a single serum creatinine measure to determine CKD and did not
aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m^2 where inaccuracies of the eGFR	19	60	include estimates of albuminuria. Albuminuria, which are required for clinical and
$^{22}_{23}$ 62 interpretation of eGFR greater that 60 ml/min/1.73m ² where inaccuracies of the eGFF	20 21	61	aetiological diagnosis of CKD, as this information is important particularly in the
	22 23	62	interpretation of eGFR greater that 60ml/min/1.73m ² where inaccuracies of the eGFR
63 equations are greatest	24 25	63	equations are greatest
26 64	26 27	64	
27 28 65	27 28	65	
²⁹ ₃₀ 66	29 30	66	
³¹ 67	31 32	67	
33 68	33	68	
³⁴ ₃₅ 69	34 35	69	
36 37 70	36 37	70	
38 71 39	38 39	71	
40 72	40	72	
41 73	41	73	
43 74 44	43 44	74	
45 75 46	45 46	75	
47 76	47	76	
40 49 77	48 49	77	
50 78 51	50 51	78	
52 79 53	52 53	79	
54 80	55 54	80	
55 81 56	55 56	81	
57 58	57 58		3
59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

82 BACKGROUND

Chronic kidney disease (CKD) is a major global public health problem ¹, estimated to affect more than 10% of the general adult population and up to 50% of some high-risk subpopulations, such as the elderly², those with non-communicable diseases (NCD), including type 2 diabetes mellitus (T2D) and hypertension, and communicable diseases (CD), including human immunodeficiency virus (HIV)/ acquired immunodeficiency syndrome (AIDS)^{3 4}. Africa is currently experiencing the double burden of NCDs and CDs, which are all driving the increasing burden of CKD on the continent ⁵. However, the exact burden of CKD in Africa has yet to be fully elucidated ⁶⁻⁹, in part due to the absence of appropriate estimates for predicting reduced kidney function in individuals from African ancestry ⁹¹⁰.

CKD encompasses a wide range of physiological processes altered by the progressive decline in glomerular filtration rate (GFR)¹¹¹². Haematological parameters, particularly red blood cell (RBC) indices, are most commonly affected ¹³, giving rise to anaemia. Anaemia is the most common, consistent and severe of the various haematological abnormalities, and has been shown to be a very common condition in black Africans¹⁴. Although anaemia may be found at any stage of CKD, the severity of anaemia increases with CKD progression ¹⁵, resultantly affecting nearly all patients with end-stage renal disease (CKD stage 5)¹³. The predominant cause of anaemia in CKD is failure of the kidneys to produce enough endogenous erythropoietin, which accompanies the fall in GFR^{16 17}. Untreated, prolonged anaemia is strongly predictive of all-cause and cardiovascular mortality, as well as reduced quality of life and increased morbidity in patients with CKD^{13 18}. Untreated anaemia can also accelerate the decline in renal function by causing renal haemodynamic alterations and tissue hypoxia ¹⁵. Other potentially affected haematological parameters in CKD, of which the association with CKD is not yet fully characterized, include total and differential white blood cell (WBC) counts. Persistent, low-grade inflammation is an essential part of the aetiology of CKD and has been recognized as such since the late 1990s, when it was linked to cardiovascular disease (CVD) and mortality ¹⁹. Recently, the ratio of neutrophil-to-lymphocyte count (N/L) has been proposed as a novel measure of inflammation in distinct populations and has been shown to have prognostic value²⁰; particularly for mortality risk in patients with myocardial infarction and heart failure ^{21 22}. However, studies on the relationship of N/L ratio with reduced eGFR are limited ²³. Thus, despite recent advances

Page 5 of 22

BMJ Open

1	
י ז	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10)
11	
11	>
12	<u>_</u>
13	5
14	1
15	5
16	5
17	7
10	,
12	5
19)
20)
21	
22	,
22	-
2:	5
24	1
25	5
26	5
27	7
21	
28	5
29)
30)
31	
21	>
24	<u> </u>
3:	5
34	ł
35	5
36	5
27	7
2	
36	5
39)
4()
41	
4	,
12	,
43	
44	ł
45	5
46	5
47	7
10	2
40	ر د
49	1
50)
51	
52	,
52	,
53)

113 in the aetiology governing the development and progression of CKD, population-based data on the haematological profile of people with CKD in Africa, are scanty. 114

115

We therefore aimed to characterise the haematological profile of screen-detected CKD 116 participants in a community-based sample, and to correlate the complete blood count measures 117 with two commonly advocated kidney function estimators of CKD in urban South Africans of 118 mixed-ancestry. 119

- 120
- **METHODS** 121

Study setting and population 122

The current study utilized data from the ongoing Cape Town Vascular and Metabolic Health 123 (VMH) study, an extension of the Cape Town Bellville-South study, which has been described in 124 detail previously ²⁴. Bellville-South, with a population of approximately 29,301, is a township 125 formed in the late 1950s, located in the metropolitan city of Cape Town, South Africa. The 126 population consists predominantly of individuals of mixed-ancestry (coloured) (76%), followed 127 by black Africans (18.5%), with only 1.5% of the population being of Caucasian and Asians 128 ancestry. The data collection for the current analysis took place between February 2015 and 129 November 2016 during a community-based survey involving only mixed-ancestry South 130 Africans. The study was approved by the Research Ethics Committees of the Cape Peninsula 131 University of Technology and Stellenbosch University (NHREC: REC-230 408-014 and 132 N14/01/003, respectively). The study was conducted in accordance with the Declaration of 133 Helsinki. All participants voluntary signed written informed consent after all the procedures were 134 fully explained in the language of their choice. 135

136

Participant involvement 137

The participants were not involved in the design or recruitment process of this study. However, 138 permission to conduct the study was obtained from relevant authorities including the city and 139 140 community authorities.

59

60

141

Questionnaires and physical examination 142

All interviews and physical examinations took place at a research clinic on the campus of Cape Peninsula University of Technology, located within the study suburb. All consenting participants received a standardized interview, explained in great detail elsewhere ²⁵. Physical examination involved blood pressure (BP) determination, measured according to the World Health Organisation (WHO) guidelines ²⁶, using a semi-automatic digital blood pressure monitor (Omron M6 comfort-preformed cuff BP Monitor), placed on the right arm in sitting position and at rest for at least 10 min. Three measures were taken of which the average of the lowest two was used in all analyses. Body weight (to the nearest 0.1 kg) was measured with the participant in light clothing and without shoes, using an Omron body fat meter HBF-511 digital bathroom scale, which was calibrated and standardized using a weight of known mass. Height (to the nearest centimetre) was measured with a stadiometer, with subjects standing on a flat surface. Body mass index (BMI) was calculated as weight per square meter (kg/m^2) . Waist circumference (WC) was measured with a non-elastic tape measure at the level of the narrowest part of the torso, as seen from the anterior view. Anthropometric measurements were performed three times and the average used for analysis.

²⁹ 158

159 Biochemical analysis and calculations

All biochemical analyses took place at an ISO 15189 accredited Pathology practice (Path-Care, Reference Laboratory, Cape Town, South Africa). Blood samples were collected from all participants after an overnight fast, and two hours after a 75g oral glucose tolerance test (OGTT) following the WHO recommendations ²⁷. Plasma glucose levels and haemoglobin A1c (HbA1c) were measured by enzymatic hexokinase method (Beckman AU, Beckman Coulter, South Africa) and high performance liquid chromatography (Biorad Variant Turbo, BioRad, South Africa), respectively. Insulin was determined by a paramagnetic particle chemiluminescence assay (Beckman DXI, Beckman Coulter, South Africa). Triglycerides (TG), total cholesterol (TC), and high-density lipoproteins (HDL-C) were analysed using the Roche Modular auto analyser and enzymatic colorimetric assays, and low-density lipoproteins (LDL-C) were calculated using the Friedewald formula ²⁸. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated according to the formula: HOMA-IR = [fasting insulin concentration (mIU/l) \times fasting plasma glucose (mmol/l)/22.5. Serum concentration of high sensitivity C-reactive protein (hsCRP) (Immun Diagnostik AG, Bensheim, Germany) was

Page 7 of 22

BMJ Open

analysed using commercially available ELISA kits according to the manufacturer's protocols. Serum creatinine was measured by the modified Jaffe-Kinetic method (Beckman AU, Beckman Coulter, South Africa). Creatinine assays at our Partner pathology service are standardized to the internationally accepted reference method (isotope dilution mass spectrophotometry [IDMS]) since 2009 and eGFR estimators applicable to standardised creatinine values were used. Kidney function was assessed using serum creatinine-based estimators of glomerular filtration rate (eGFR), namely, the 4-variable Modification of Diet in Renal Disease (MDRD) equation ²⁹ and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation ³⁰. The African-American ethnicity correction factor was omitted from the eGFR calculation, as the South African Renal Society CKD guidelines promotes the exclusion of the correction factor, except in the case of black Africans. Full blood counts, including total RBC, total WBC, lymphocytes count and percentage, monocyte count and percentage, neutrophil count and percentage, basophil count and percentage, eosinophil count and percentage, haemoglobin (Hb), haematocrit, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red cell distribution width, and platelets, were measured on a Coulter LH 750 hematology analyzer (Beckman Coulter, South Africa).

Classification of renal function and co-morbidities

Staging of kidney function was based on the National Kidney Foundation Disease Outcomes Quality Initiative (NKF-KDOQI) classification ³¹. An eGFR<60 ml/min/1.73 m² was used to define CKD (or CKD stage 3-5). Anaemia was defined using the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines (haemoglobin level <13.5g/dL for men and <12g/dL for women)³² and further classified into micro-, normo- and macrocytic based on the MCV. Microcytic anaemia was defined as an MCV of <80fL, normocytic as 100-80 fL, and macrocytic as >100fL³³. Hypertension was based on either a history of diagnosed hypertension (receiving medications for hypertension) or screen-detected hypertension. The latter being classified if they had a SBP>140mmHg and/or DBP>90 mmHg ³⁴. Diabetes status was based on a history of diagnosed diabetes or screen-detected diabetes. OGTT glucose values were used to classify the glucose tolerance status of participants as recommended by WHO ³⁵ as: (1) normal glucose tolerance (fasting plasma glucose (FPG) <6.1 mmol/l and 2-h glucose <7.8 mmol/l); (2) pre-diabetes including impaired fasting glycaemia (IGT, 6.1 ≤ FPG < 7.0 mmol/l),

impaired glucose tolerance (IGT, 7.8<2-h glucose< 11.1 mmol/l) and the combination of both;
and (3) diabetes (FPG≥7.0 mmol/l and/or 2-h glucose≥11.1 mmol/l). A BMI≥25kg/m² and
BMI≥30kg/m² was classified as overweight obese, respectively.

⁰ 209 Statistical analysis

All statistical analyses were performed using STATA version 13 (Statcorp, College Station, TX) and statistical significance was based on a p-value <0.05. General characteristics of the participants are summarized as count and percentage for qualitative variables and median and 25th-75th percentiles for quantitative variables. Group comparisons used chi-squared test for qualitative variables, and Wilcoxon rank-sum test for quantitative variables, respectively. Multiple linear regression models were used to assess the independent association between eGFR and haematological indices, while adjusting for age and gender.

218 RESULTS

219 Participant characteristics

The initial study sample comprised 1,647 participants. Of those, 83 were excluded due to missing data on serum creatinine or any of the variables required to estimate kidney function, including age and gender. The general characteristics and the haematological profile of the study population are summarised in Tables 1 and 2, respectively. The final sample included 1,564 participants, of which 24.9% were male, with a group median age of 50 years. The crude prevalence of CKD was 6% and 3%, based on the MDRD and CKD-EPI equations respectively. Of those participants with MDRD-diagnosed CKD, 80.7%, 14.8% and 4.5% where in stages 3, 4 and 5, respectively. Similarly, of those diagnosed by means of the CKD-EPI equation, 68.9%, 24.4% and 6.7% where in stages 3, 4 and 5, respectively. MDRD-diagnosed CKD participants had higher creatinine levels (111.5 vs. 59 µmol/l; p<0.0001) and lower eGFR (48.2 vs. 104 ml/min/1.73m²; p<0.0001), were on average older (68 vs. 49 years; p<0.0001), with a higher WC (97.7 vs. 91.2 cm; p=0.0001), BMI (30.3 vs. 28.3 kg/m²; p=0.0096), and SBP (142 vs. 125 mmHg; p<0.0001), compared to participants with normal kidney function. Furthermore, MDRD-diagnosed CKD participants had higher fasting and 2-hour blood glucose (5.3 vs. 5.0 mmol/l; p<0.0001 and 7.2 vs. 6.0 mmol/l; p<0.0001, respectively), HbA1c levels (6.2 vs. 5.7%; p<0.0001), fasting and 2-hour insulin levels (8.4 vs. 6.7 IU/l; p=0.0089 and 62.0 vs. 37.5 IU/l;

1 2		
3	236	p=0
4 5	237	μg/
6 7	238	wit
8 9	239	p=0
10	240	diag
11	241	BM
13 14	242	p=0
15 16	243	wit
17	244	ove
18 19	245	sim
20 21	246	
22	247	The
23 24	248	con
25 26	249	p<(
27 28	250	wer
29	251	CK
30 31	252	sign
32 33	253	wer
34 35	254	gro
36	255	ind
37 38	256	bas
39 40	257	par
41	258	of a
42 43	259	at s
44 45	260	
46 47	261	
48	262	
49 50	263	
51 52	264	
53	265	
54 55	266	
56 57		
58 59		

60

p=0.0002, respectively), higher HOMA-IR index (2.1 vs. 1.6; p=0.0004), hsCRP (4.7 vs. 4.0 μ g/ml; p=0.0492), TG (1.6 vs. 1.2 mmol/l; p<0.0001) and TC (5.4 vs. 5.1 mmol/l; p=0.024); with similar LDL-C (3.2 vs. 3.1 mmol/l; p=0.0668) and HDL-C levels (1.3 vs. 1.3 mmol/l; p=0.7106) compared to those without CKD. When sub-dividing the groups based on CKD diagnosed by the CKD-EPI equation, similar differences were observed, with the exception of BMI, hsCRP and TC, which showed no difference between the groups (28.3 vs. 28.4 kg/m²; p=0.384, 4.8 vs. 4.0 μ g/ml; p=0.4268, 5.3 vs. 5.1 mmol/l; p=0.2226, respectively). Participants with reduced kidney function, both MDRD and CKD-EPI-diagnosed, had a similar prevalence of overweight and obesity, however had a higher prevalence of hypertension and T2D, despite similar prevalence of pre-diabetes (IFG and IGT) between the two groups.

The red blood cell indices, including RBC count, haematocrit and haemoglobin levels were consistently lower in CKD participants compared to the group with normal kidney function (all p<0.0001), irrespective of the eGFR equation used. Conversely, the morphology of the RBC's were not different, as similar values for MCV, MCH, MCHC and RDW were observed between CKD participants and the participants with normal kidney function. Despite not showing any significant difference in total WBC count between the two groups, the number of lymphocytes were lower and neutrophil count and the ratio of lymphocytes to neutrophil higher in the CKD group compared to those individuals with normal kidney function; with the remaining WBC indices similar in the two groups. The platelet count was similar in both groups. Furthermore, based on the K/DOQI guidelines, 45.5% (MDRD) and 57.8% (CKD-EPI) of the CKD participants had anaemia, with the majority of cases being normocytic. Moreover, the prevalence of anaemia increased with increasing severity of CKD, from 37.2% at stage 3 to 82.4% at stage 4-5.

Table 1: Clinical characteristics of the study population overall and by CKD (MDRD and CKD-EPI) status

			MDRD		СКД-ЕРІ			
Variables	Total (n=1564)	Without CKD (n=1470)	CKD (n=94)	p-value	Without CKD (n=1517)	CKD (n=47)	p-value	
Age (years)	50 (37-61)	49 (36-59)	68 (62-74)	< 0.0001	50 (36-60)	69 (63-77)	< 0.0001	
Gender (n,% male)	389 (24.9)	372 (25.3)	17 (18.1)	0.215	373 (24.6)	16 (34.0)	0.093	
Anthropometry	04							
Weight (kg)	72.0 (59.2-85.5)	71.9 (59.0-85.5)	74.0 (64.6-85.8)	0.2058	72.0 (59.2-85.5)	73.5 (64.1-85.7)	0.6903	
WC (cm)	91.8 (78.5-103.5)	91.2 (77.8-103.0)	97.7 (89.0-105.8)	0.0001	91.5 (78.1-103.5)	96.0 (87.8-106.5)	0.0225	
HC (cm)	102.8 (92.5-113.5)	102.5 (92.1-113.5)	104.3 (96.5-114.2)	0.1138	102.8 (92.5-113.8)	101.5 (95.8-111.5)	0.9439	
BMI (kg/m^2)	28.4 (22.9-34.2)	28.3 (22.7-34.1)	30.3 (26.1-35.1)	0.0096	28.4 (22.9-34.2)	28.3 (24.7-34.4)	0.3836	
Biochemical analysis			6					
Fasting blood glucose (mmol/l)	5.0 (4.6-5.7)	5.0 (4.6-5.6)	5.3 (5.0-6.9)	< 0.0001	5.0 (4.6-5.6)	5.3 (5.0-7.7)	0.0014	
2-hour glucose (mmol/l)	6.0 (4.9-7.6)	6.0 (4.8-7.5)	7.2 (5.8-9.2)	< 0.0001	6.0 (4.8-7.5)	7.5 (5.7-9.2)	0.0034	
HbA1c (%)	5.8 (5.4-6.3)	5.7 (5.4-6.2)	6.2 (5.9-7.1)	< 0.0001	5.8 (5.4-6.2)	6.4 (5.9-7.3)	< 0.0001	
Fasting insulin (IU/l)	6.7 (4.3-11.1)	6.7 (4.2-10.9)	8.4 (5.3-12.4)	0.0089	6.7 (4.2-10.9)	9.0 (5.3-12.4)	0.0323	
2-hour insulin (IU/l)	38 (20.6-71.8)	37.5 (19.8-69.8)	62.0 (30.3-105.6)	0.0002	37.8 (20.3-70.5)	63.5 (32.6-105.2)	0.0072	
HOMA-IR (MU)	1.6 (0.9-2.9)	1.6 (0.9-2.8)	2.1 (1.2-3.9)	0.0004 1.6 (0.9-2.8)		2.4 (1.3-3.8)	0.0026	
hsCRP (µg/ml)	4.0 (1.6-8.8)	4.0 (1.6-8.8)	4.7 (2.7-9.3)	0.0492	4.0 (1.6-8.8)	4.8 (2.4-7.5)	0.4268	
TG (mmol/l)	1.2 (0.9-1.7)	1.2 (0.9-1.7)	1.6 (1.2-2.3)	< 0.0001	1.2 (0.9-1.7)	1.8 (1.1-2.4)	0.0001	
TC (mmol/l)	5.1 (4.4-5.9)	5.1 (4.3-5.9)	5.4 (4.8-6.4)	0.0024	5.1 (4.4-5.9)	5.3 (4.4-6.0)	0.2226	
LDL-C (mmol/l)	3.1 (2.5-3.8)	3.1 (2.5-3.8)	3.2 (2.7-4.3)	0.0668	3.1 (2.5-3.8)	3.1 (2.5-3.9)	0.9444	
HDL-C (mmol/l)	1.3 (1.1-1.5)	1.3 (1.1-1.5)	1.3 (1.1-1.5)	0.7106	1.3 (1.1-1.5)	1.3 (1.1-1.4)	0.5132	
Creatinine (µmol/l)	60 (52-70)	59 (51-68)	111.5 (89.0-140.5)	< 0.0001	59 (51-69)	140 (124-209)	< 0.0001	
eGFR (ml/min/1.73m ²)	-	104.0 (88.0-121.0)	48.2 (33.7-55.4)	< 0.0001	113.9 (101.4-126.5)	44.7 (26.4-49.6)	< 0.0001	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Mean SBP (mmHg)	125 (111-141)	125 (110-140)	142 (121-162)	< 0.0001	125 (111-140)	150 (128-181)	< 0.0001
Mean DBP (mmHg)	81 (72-90)	81 (72-90)	81 (74-95)	0.2114	81 (72-90)	85 (73-95)	0.2185
Pulse pressure (BPM)	70 (62-79)	70 (62-79)	70 (60-81)	0.9932	70 (62-79)	73 (62-82)	0.3861
Co-morbidities							
Overweight (BMI≥25kg/m ² ; n.%)	361 (23.2)	335 (22.9)	26 (29.5)	0.139	348 (23.1)	13 (28.9)	0.348
Obese (BMI≥30kg/m ² ; n,%)	662 (42.6)	617 (42.1)	45 (51.1)	0.085	642 (42.5)	20 (44.4)	0.771
Pre-diabetes (n, %)	238 (15.2)	226 (15.4)	12 (12.8)	0.671	233 (15.4)	5 (10.6)	0.436
T2D (n, %)	297 (19.0)	259 (17.6)	38 (40.4)	< 0.0001	272 (17.9)	25 (53.2)	< 0.0001
Hypertension (n, %)	567 (36.3)	517 (35.2)	50 (53.2)	< 0.0001	537 (35.4)	30 (63.3)	< 0.0001

Data is presented as median (25th-75th percentiles) and percentages. WC, waist circumference; HC, hip circumference; BMI, body mass index; HbA1c, Glycated haemoglobin; HOMA-IR, Homeostatic model assessment-insulin resistance; MU, mass units; hsCRP, high sensitivity C-reactive protein; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoproteins; HDL-C, high-density lipoproteins; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; IFG/IGT, impaired fasting glucose and impaired glucose tolerance; T2D, type 2 diabetes mellitus; MDRD, Modification of Diet in Renal Disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CKD, chronic kidney disease.

Table 2: Haematological profile of study population overall and by CKD (MDRD and CKD-EPI) status

		М	IDRD		СК	D-EPI	
Variables	Total (n=1564)	Without CKD (n=1470)	CKD (n=94)	p-value	Without CKD (n=1517)	CKD (n=47)	p-value
RBC (x10 ⁶ /µl)	4.7 (4.3-5.0)	4.7 (4.4-5.0)	4.3 (3.9-4.7)	< 0.0001	4.7 (4.4-5.0)	4.2 (3.8-4.7)	< 0.0001
WBC (x10 ⁶ /µl)	7.5 (6.2-9.1)	7.4 (6.2-9.1)	7.7 (6.5-9.2)	0.5704	7.4 (6.2-9.1)	7.9 (6.3-9.3)	0.5458
N/L (ratio)	2.0 (1.5-2.6)	1.9 (1.5-2.5)	2.5 (1.7-3.5)	< 0.0001	1.9 (1.5-2.5)	2.7 (2.0-3.7)	< 0.0001
Lymphocyte count (x10 ⁹ /l)	2.2 (1.8-2.80)	2.2 (1.8-2.8)	1.9 (1.4-2.5)	0.0001	2.2 (1.8-2.8)	1.8 (1.4-2.4)	< 0.0001
Monocyte count (x10 ⁹ /l)	0.5 (0.4-0.6)	0.5 (0.4-0.6)	0.4 (0.4-0.6)	0.1389	0.5 (0.4-0.6)	0.4 (0.4-0.6)	0.9446
Neutrophil count (x10 ⁹ /l)	4.5 (3.4-5.7)	4.5 (3.3-5.6)	5.0 (3.7-5.9)	0.0255	4.5 (3.4-5.6)	5.1 (4.3-6.1)	0.0297
Basophil count (x10 ⁹ /l)	0.1 (0.1-0.2)	0.0 (0.0-0.0)	0.0 (0.0-0.1)	0.283	0.0 (0.0-0.0)	0.0 (0.0-0.1)	0.1366
Eosinophil count (x10 ⁹ /l)	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.1579	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.1223
Platelet count (x10 ⁹ /l)	271 (227-322)	271 (228-322)	277 (214-324)	0.9417	271 (228-322)	266 (197-313)	0.2211
Haematocrit (volume %)	41 (39-44)	41 (39-44)	38 (35-41)	< 0.0001	41 (39-44)	37 (34-41)	< 0.0001
MCV (fl/cell)	89 (85-93)	89 (85-93)	89 (86-92)	0.8150	89 (85-93)	89 (86-91)	0.4748
MCH (pg/cell)	29 (28-31)	29 (28-31)	29 (28-30)	0.1399	29 (28-31)	29 (28-30)	0.057
MCHC (g/dl)	33 (32-33)	33 (32-33)	33 (32-33)	0.1471	33 (32-33)	32 (32-33)	0.1156
RDW (%)	14.2 (13.5-15.0)	14.1 (13.4-15.0)	14.5 (13.7-15.6)	0.0601	14.1 (13.4-15.0)	14.3 (13.8-15.5)	0.0673
Hb (g/dl)	13.5 (12.6-14.4)	13.5 (12.7-14.5)	12.2 (11.2-13.3)	< 0.0001	13.5 (12.6-14.4)	11.9 (11.1-13.2)	< 0.0001
Anaemia (n, %)	289 (18.48)	249 (16.9)	40 (45.5)	<0.0001	263 (17.3)	26 (57.8)	< 0.0001
Microcytic	83 (28.7)	83 (33.3)	0 (0.0)	-	83 (31.6)	0 (0.0)	-
Normocytic	180 (62.3)	141 (56.6)	39 (97.5)	-	155 (58.9)	25 (96.2)	-
Macrocytic	26 (9.0)	25 (10.0)	1 (2.5)	-	25 (9.5)	1 (3.8)	-

Data are presented as median (25th-75th percentiles) and percentages. RBC, red blood cells; WBC, white blood cells; N/L ratio, lymphocyte to neutrophil ratio; MCV, mean corpuscular volume, MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	287	haemoglobin concentration: RDW, red cell distribution width: Hb, haemoglobin, MDRD, Modification of Diet in Renal Disease:
4 5	288	CKD-EPI Chronic Kidney Disease Epidemiology Collaboration
6	289	
7 8	205	
9 10	290	
11	291	
12	292	
14 15	293	
16 17	294	
18	295	
19 20	290	
21 22	297	
23 24	290	
24	299	
26 27	201	
28 29	202	
30	302	
32	303	
33 34	305	
35 36	305	
37	300	
38 39		
40 41		
42		
43 44		13
45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
47		

Association between the different haematological indices and eGFR The age and gender-adjusted associations between the different haematological indices and eGFR, estimated by means of the MDRD and CKD-EPI equations, are presented in Table 3. Based on the CKD-EPI, however not the MDRD equation, eGFR was positively associated with all the RBC indices, including total RBC count, haemoglobin and haematocrit levels. eGFR was not associated with total WBC count, however a lower lymphocyte count was associated with a lower eGFR and N/L ratio was inversely associated with eGFR. Furthermore, male gender was significantly associated with all haematological measures, except basophil count and eosinophil count, and age was inversely associated with all RBC indices, lymphocytes, neutrophils, platelet count, MCHC and positively associated with RDW. sitive, For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	

Table 3: Linear regression coefficients, adjusted for age, gender (Model 1) and eGFR (MDRD and CKD-EPI-derived) (Models 2) for

336	the prediction of haematological-derived measures
-----	---

7			Μ	ODEL 1				MODEL 2.1					MODEL 2.2			
8 Haematological-derived		Age			Gender			eGFR (MDRD)			D ²	eGFR (CKD-EPI)		EPI)	D ²	
9 measures	β	95% CI	р	β	95% CI	р	ĸ	β	95% CI	р	ĸ	β	95% CI	р	к	
$\frac{10}{10}$ RBC (x10 ³ /µl)	-2.8	-4.5 to -1.2	0.001	327.4	269.6 to 385.3	< 0.0001	0.08	0.3	-0.7 to 1.3	0.541	0.08	3.2	1.5 to 5.0	< 0.0001	0.09	
Haematocrit (%)	-0.2	-0.3 to -0.0	0.018	40.2	35.3 to 45.1	< 0.0001	0.15	0.0	-0.1 to 0.1	0.709	0.15	0.3	0.1 to 0.4	< 0.0001	0.16	
12 13 Hb (g/l)	-0.1	-0.1 to -0.0	0.002	14.2	12.5 to 15.9	< 0.0001	0.16	0.0	-0.0 to 0.0	0.907	0.16	0.1	0.0 to 0.1	< 0.0001	0.16	
14 WBC $(x10^3/\mu l)$	-15.1	-22.3 to -7.8	< 0.0001	-431.9	-690.8 to -173.0	0.001	0.01	-0.5	-4.8 to 3.9	0.834	0.01	-1.7	-9.7 to 6.3	0.678	0.01	
15 N/L (%)	-0.1	-3.8 to 3.5	0.941	136.2	5.6 to 266.7	0.041	0.00	-0.1	-0.4 to 0.1	0.214	0.00	-6.3	-10.3 to -2.3	0.002	0.01	
16 Lymphocyte count $(x10^6/l)$	-2.9	-5.2 to -0.5	0.017	-257.10	-341.0 to -173.2	< 0.0001	0.02	0.7	-0.8 to 2.1	0.364	0.02	3.0	0.4 to 5.6	0.022	0.03	
17 Monocyte count $(x10^6/l)$	-0.8	-1.4 to -0.2	0.005	91.6	71.2 to 112.0	< 0.0001	0.05	0.3	-0.1 to 0.6	0.114	0.05	0.5	-0.1 to 1.1	0.122	0.05	
$\frac{18}{10}$ Neutrophil count (x10 ⁶ /l)	-10.9	-16.8 to -5.1	< 0.0001	-291.8	-500 to -82.8	0.006	0.01	-1.1	-4.6 to 2.4	0.542	0.01	-4.7	-11.1 to 1.7	0.150	0.01	
Basophil count $(x10^6/l)$	1.6	-8.4 to 11.5	0.759	-187.9	-541.9 to 166.1	0.298	0.00	0.7	-5.3 to 6.6	0.822	0.00	-8.3	-19.2 to 2.6	0.136	0.00	
21 Eosinophil count $(x10^6/l)$	-0.5	-1.1 to 0.0	0.067	15.9	-4.9 to 36.7	0.135	0.00	-0.4	-0.7 to 0.0	0.071	0.00	-0.6	-1.2 to 0.1	0.074	0.00	
22 Platelet count $(x10^{9}/l)$	-0.4	-0.6 to -0.1	0.003	-33.0	-42.0 to -24.0	< 0.0001	0.03	0.1	-0.0 to 0.3	0.088	0.04	0.1	-0.0 to 0.3	0.088	0.04	
23 MCV (fL/100cell)	1.4	-1.0 to 3.7	0.255	232.2	148.1 to 316.2	< 0.0001	0.02	-0.2	-1.6 to 1.2	0.761	0.02	0.1	-2.5 to 2.7	0.946	0.02	
24 MCH (pg/100cell)	-0.2	-1.1 to 0.7	0.698	95.3	63.3 to 127.4	< 0.0001	0.02	-0.1	-0.7 to 0.4	0.646	0.02	0.1	-0.9 to 1.1	0.881	0.02	
25 MCHC (g/l)	-0.1	-0.01 to -0.0	< 0.0001	2.3	0.9 to 3.8	0.002	0.02	-0.0	-0.0 to 0.0	0.227	0.02	-0.0	-0.1 to 0.0	0.664	0.01	
26 27 RDW (%)	0.1	0.0 to 0.1	0.004	-1.9	-3.7 to -0.0	0.05	0.01	0.1	0.0 to 0.1	< 0.0001	0.02	0.1	0.0 to 0.1	0.025	0.01	
26 27 RDW (%) 28 337	0.1	0.0 to 0.1	0.004	-1.9	-3.7 to -0.0	0.05	0.01	0.1	0.0 to 0.1	< 0.0001	0.02	0.1	0.0 to 0.1	0.025	_	

Data presented as β -coefficient, 95% confidence interval and adjusted-R². Analysis are adjusted for age and gender. RBC, red blood cells; WBC, white blood cells; MCV, L/N ratio, lymphocyte to neutrophil ratio; mean corpuscular volume, MCH, mean corpuscular

Modification of Diet in Renal Disease. Model 1 = age + gender; Model 2.1 = age + gender + eGFR (MDRD); Model 2.2 = age +

gender

 haemoglobin; MCHC, mean corpuscular haemoglobin concentration; RDW, red cell distribution width; Hb, haemoglobin. MDRD,

+

eGFR

(CKD-EPI)

DISCUSSION

In this community-based sample of mixed-ancestry South Africans, we have shown that the haematological profile of individuals with reduced eGFR (<60ml/min/1.73m²) are substantially impaired compared to those with normal kidney function, giving rise to the high prevalence of anaemia in this screen-detected CKD population. Furthermore, despite eGFR being positively associated with RBC indices, indicative of the severity of kidney function impairment, the disease state had no effect on the morphology of the RBC. Lastly, we confirmed that a chronic pro-inflammatory state exists in participants with CKD.

This study, which is in accordance with other studies in Africa and other developing countries ³⁶⁻ ⁴², has shown that CKD is associated with significant impairment in RBC indices. Indeed, we have shown that total RBC count, haemoglobin concentration and percentage haematocrit were substantially reduced in participants with eGFR below 60ml/min/1.73m², compared to those with normal kidney function, independent of age and gender. Since erythropoietin is produced mainly by the proximal tubule of the nephron, kidney function decline will result in a decline in erythropoietin production and as a consequence result in decreased haemoglobin synthesis, leading to a fall in total RBC count ¹⁷. This significant reduction in RBC, inevitably gives rise to anaemia¹⁴. Indeed, our study and numerous other studies have shown that the severity of anaemia increases with disease progression; with most of these studies showing anaemia at least twice as prevalent in participants with CKD, compared to the general adult population ³⁷. Furthermore, we found that 17% of the sample population with normal kidney function had haemoglobin levels <13.5g/dL and <12g/dL for men and women, respectively. However, this is not uncommon in Africa as previous studies have found that Africa has a high prevalence of anaemia caused by iron deficiency. In South Africa in particular, the South African National Health and Nutrition Examination Survey (SANHANES-1)⁴³ showed that 22% and 12.2% of adult females and males have anaemia.

48 369

The activation of the immune system, caused by inflammation, increases white blood cell counts real counts ²³; emphasising the potential of WBC indices as a surrogate marker of inflammation in CKD ²⁰. Our study showed that despite no correlation between total WBC and reduced kidney function, CKD was associated with higher neutrophil and lower lymphocyte counts; both of which are Page 17 of 22

BMJ Open

independently associated with the promotion of atherosclerosis ^{44 45} and poor cardiovascular outcomes ⁴⁶. N/L ratio, which combines the predictive power of both increased neutrophil count and decreased lymphocyte count ⁴⁷, was associated with reduced eGFR in our study, as also found in other studies ^{23 48 49}. Indeed previous studies, which included CKD patients on haemodialysis ^{23 48} and pre-dialysis ⁴⁹, showed that an increased N/L ratio was associated with known inflammatory markers such as tumor necrosis factor (TNF)- α^{23} , interleukin 6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) levels ⁴⁹. These studies demonstrated that these well-established markers of inflammation were independent factors for predicting N/L ratio, thus presenting N/L ratio as an inflammatory biomarker for CKD patients. Since full blood count analysis are done routinely and a relatively affordable and easy measure to acquire, these findings are especially valuable taking into account the severely resource limited setting found in Africa and other low and middle-income countries.

4 386

Our study has a few limitations. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Furthermore, this was a community-based sample with high female to male participation, however the latter being a common trend in South African population studies. Our study also used a single serum creatinine measure to determine the grade of kidney function and did not include estimates of albuminuria. Albuminuria, in particular, is required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR equations are greatest. It is however a common practice in community-based studies to diagnose CKD using a single measurement of serum creatinine. Furthermore, we did not investigate other haematinic deficiencies, such as vitamin B12 and iron deficiencies, which if present however, are less likely to affect haematological profile in a differential way in people with and without CKD. However, despite these limitations, we are not aware of other studies that have assessed the haematological profile of individuals with reduced kidney function in a population-based setting in Africa, even more specific, individuals of mixed-ancestry. Furthermore, we studied a community with a high burden of obesity, hypertension and diabetes, reflective of the current burden in Africa. This study provides much needed evidence for the association between the haematological profile and

404 CKD as population-based data on the haematological profile of people with CKD in Africa, are405 very limited.

In conclusion, the findings from our study are valuable as full blood count analyses are done routinely and are relatively affordable, taking into account the severely resource limited setting found in Africa and other low and middle-income countries. Furthermore, though it still remains unclear whether the advocated kidney function estimators provide accurate estimates of CKD burden in African populations ⁵⁰, the correlation of these estimates, with deteriorating profile of blood cell counts, suggests that these advocated GFR estimates, particularly the CKD-EPI equation, to some extent, measure kidney function in African populations.

²² 415 **DECLARATIONS**

24 416 Ethics approval and consent to participate

The study was approved by the Research Ethics Committees of the Cape Peninsula University of Technology and Stellenbosch University (NHREC: REC-230 408-014 and N14/01/003, respectively). The study was conducted in accordance with the Declaration of Helsinki. All participants voluntary signed written informed consent after all the procedures were fully explained in the language of their choice. Permission to conduct the study was also obtained from relevant authorities including the city and community authorities.

36 423

 Consent for publication

425 Not applicable

42 427 Availability of data and material

- 428 The datasets used and/or analyzed during the current study are available from the corresponding429 author on reasonable request.
- 50 431 **Competing interest**
- $_{52}^{51}$ 432 The authors declare that they have no competing interests
- 55 434 Funding

Page 19 of 22

BMJ Open

1 2		
3	435	The South African Medical Research Council (SAMRC) funded this research project with funds
4 5	436	from National Treasury under its Economic Competitiveness and Support Package (MRC-RFA-
6 7	437	UFSP-01-2013/VMH Study).
8	438	
9 10	439	Authors' contribution
11 12	440	Study conception and funding acquisition (TEM_APK_RTE) operationalization and supervision
13	110	of the data collection (TEM) data analysis and interpretation (CG APK) drafting the
14 15	441	of the data concertoir (TEW), data analysis and interpretation (CO, ATK), dratting the
16	442	manuscript (CG, APK), critical revision of the manuscript and approval of the final version (all
17 18	443	co-authors).
19	444	
20 21	445	Acknowledgements
22 23	446	We are grateful to the Cape Town VMH study investigation team and population of Bellville-
24	447	South for their participation.
25 26	448	
27 28	449	REFERENCES
28 29	450	1. Bolton K, Culleton B, Harvey K. K/DOQI clinical practice guidelines for chronic kidney disease:
30 21	451	evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am
32	452 452	JKidney Dis 2002;39(2 Suppl 1):S1-246.
33	455 454	<i>research</i> 2013:38(1):109-20. doi: 10.1159/000355760 [published Online First: 2014/03/20]
34	455	3. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20
35 36	456	age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
37	457	Lancet 2012;380(9859):2095-128. doi: 10.1016/S0140-6736(12)61728-0
38	458	4. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to
39	459	global nearm burden. Lancel 2013;382(9887):138-09. doi: 10.1010/s0140-0730(13)00439-0
40	461	<i>Chronic Kidney Dis</i> 2010:17(3):215-24 doi: 10.1053/j.ackd.2010.02.001
41	462	6. Naicker S. End-stage renal disease in sub-Saharan Africa. <i>Ethn Dis</i> 2009;19(1 Suppl 1):S1-13-5.
43	463	[published Online First: 2009/06/02]
44	464	7. Peralta CA, Risch N, Lin F, et al. The Association of African Ancestry and elevated creatinine in the
45	465	Coronary Artery Risk Development in Young Adults (CARDIA) Study. American journal of
46	466	<i>nephrology</i> 2010;31(3):202-8. doi: 10.1159/000268955 [published Online First: 2009/12/24]
47 78	467	8. Kiberd BA, Clase CM. Cumulative risk for developing end-stage renal disease in the US population.
49	400 /69	First: 2002/06/01]
50	470	9 Stanifer JW Jing B Tolan S et al. The epidemiology of chronic kidney disease in sub-Saharan Africa.
51	471	a systematic review and meta-analysis. <i>Lancet Glob Health</i> 2014;2(3):e174-81. doi:
52	472	10.1016/S2214-109X(14)70002-6
53	473	10. Stanifer JW, Muiru A, Jafar TH, et al. Chronic kidney disease in low- and middle-income countries.
54 55	474	Nephrol Dial Transplant 2016;31(6):868-74. doi: 10.1093/ndt/gfv466
56		
57		
58		19
59 60		For peer review only - http://bmiopen.bmi.com/site/about/auidelines.xhtml
00		

- 11. Hamer RA, El Nahas AM. The burden of chronic kidney disease. *BMJ* 2006;332(7541):563-4. doi: 10.1136/bmj.332.7541.563 12. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382(9888):260-72. doi: 10.1016/S0140-6736(13)60687-X 13. Babitt JL, Lin HY. Mechanisms of anemia in CKD. Journal of the American Society of Nephrology : JASN 2012;23(10):1631-4. doi: 10.1681/asn.2011111078 [published Online First: 2012/09/01] 14. Astor BC, Muntner P, Levin A, et al. Association of kidney function with anemia: The third national health and nutrition examination survey (1988-1994). Archives of Internal Medicine 2002;162(12):1401-08. doi: 10.1001/archinte.162.12.1401 15. Webster AC, Nagler EV, Morton RL, et al. Chronic Kidney Disease. Lancet 2017;389(10075):1238-52. doi: 10.1016/s0140-6736(16)32064-5 [published Online First: 2016/11/27] 16. Kazmi WH, Kausz AT, Khan S, et al. Anemia: An early complication of chronic renal insufficiency. American Journal of Kidney Diseases 2001;38(4):803-12. doi: 10.1053/ajkd.2001.27699 17. Kutuby F, Wang S, Desai C, et al. Anemia of chronic kidney disease. Disease-a-month : DM 2015;61(10);421-4. doi: 10.1016/j.disamonth.2015.08.002 [published Online First: 2015/09/15] 18. Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379(9811):165-80. doi: 10.1016/S0140-6736(11)60178-5 19. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 1999;55(5):1899-911. doi: 10.1046/j.1523-1755.1999.00422.x [published Online First: 1999/05/07] 20. Okyay GU, İnal S, Öneç K, et al. Neutrophil to Lymphocyte Ratio in Evaluation of Inflammation in with Kidney Disease. Renal 2013;35(1):29-36. Patients Chronic Fail doi: 10.3109/0886022X.2012.734429 21. Azab B, Zaher M, Weiserbs KF, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol 2010;106(4):470-6. doi: 10.1016/j.amjcard.2010.03.062 [published Online First: 2010/08/10] 22. Uthamalingam S, Patvardhan EA, Subramanian S, et al. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am J Cardiol 2011;107(3):433-8. doi: 10.1016/j.amjcard.2010.09.039 [published Online First: 2011/01/25] 23. Turkmen K, Guney I, Yerlikaya FH, et al. The relationship between neutrophil-to-lymphocyte ratio and inflammation in end-stage renal disease patients. Ren Fail 2012;34(2):155-9. doi: 10.3109/0886022x.2011.641514 [published Online First: 2011/12/17] 24. Masconi K, Matsha TE, Erasmus RT, et al. Independent external validation and comparison of prevalent diabetes risk prediction models in a mixed-ancestry population of South Africa. Diabetol Metab Syndr 2015;7:42. doi: 10.1186/s13098-015-0039-y [published Online First: 2015/05/20] 25. Kengne AP, Erasmus RT, Levitt NS, et al. Alternative indices of glucose homeostasis as biochemical diagnostic tests for abnormal glucose tolerance in an African setting. Prim Care Diabetes 2017;11(2):119-31. doi: 10.1016/j.pcd.2017.01.004 [published Online First: 2017/01/31] 26. Chalmers J, MacMahon S, Mancia G, et al. 1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committee of the World Health Organization. Clinical and experimental hypertension (New York, NY: 1993) 1999;21(5-6):1009-60. doi: 10.3109/10641969909061028 [published Online First: 1999/07/28] 27. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a consultation. Diabet Med 1998;15(7):539-53. doi: 10.1002/(sici)1096-WHO 9136(199807)15:7<539::aid-dia668>3.0.co;2-s [published Online First: 1998/08/01] 28. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18(6):499-502.
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
4	525	29. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate
5	526	Group Ann Intern Mod 1000:120(6):461-70
6	527	30 Levey AS Stevens I.A. Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann
7	520	Joseph Jo
8	530	31 Levey AS Coresh I Balk E et al National Kidney Foundation practice guidelines for chronic kidney
9	531	disease: evaluation, classification, and stratification, Ann Intern Med 2003:139(2):137-47.
10	532	[published Online First: 2003/07/16]
11	533	32. National Kidney Foundation. KDOQI Clinical Practice Guidelines and Clinical Practice
13	534	Recommendations for Anemia in Chronic Kidney Disease. Am J Kidney Dis 2006;47(5 Suppl
14	535	3):S11-145. doi: 10.1053/j.ajkd.2006.03.010 [published Online First: 2006/05/09]
15	536	33. Bessman JD, Johnson RK. Erythrocyte volume distribution in normal and abnormal subjects. Blood
16	537	1975;46(3):369-79. [published Online First: 1975/09/01]
17	538	34. World Health Organization. A global brief on Hypertension: Silent killer, global public health crisis,
18	539	2013.
19	540	35. World Health Organisation, International Diabetes Federation. Definition and diagnosis of diabetes
20	541	and intermediate hyperglycemia. In: consultation WI, ed. Geneva, 2006.
21	542	36. Afshar R, Sanavi S, Salimi J, et al. Hematological profile of chronic kidney disease (CKD) patients in
22	543	Iran, in pre-dialysis stages and after initiation of hemodialysis. Saudi Journal of Kidney Diseases
23	544	and Transplantation 2010;21(2):368-71.
25	545	57. Akinsola A, Durosinmi MO, Akinola NO. The naematological profile of Nigerians with chronic renal failure. <i>Afr. L.M. et al.</i> 2000/20(1):12. (<i>Explicit ad Online First: 2001/05/211</i>)
26	546	Tailure. Afr J Med Med Sci 2000;29(1):13-6. [published Online First: 2001/05/31]
27	547 E10	38. Asil N, Hasan S, Hassan K. Hematological Changes in Patients of Chronic Renal Disease and Their Desponse to Treatment with Erythronoiotin. Int. I. Pathol 2015;12(1):14-10
28	540	30 Bhattachariae K. Das D. Babha P. et al. A study on hematological profile in patients of chronic renal.
29	550	failure with special reference to serum iron profile. <i>Journal of Evidence based Medicine and</i>
30	551	Healthcare 2015:2(A6):8212-19
31	552	40 Dabrowska MM Mikula T Wiercinska-Dranalo A The anemia prevalence and the association
32	553	between complete blood count analysis and renal function parameters in HIV-1-infected patients
27 27	554	<i>Current HIV research</i> 2012:10(3):247-51 [published Online First: 2012/03/06]
35	555	41. Islam MN, Ferdous A, Zahid AZ, et al. Haematological Profile of Patients with Chronic Kidney
36	556	Disease in Northern Bangladesh. <i>Dinajpur Med Col J</i> 2015;8(1):21-27.
37	557	42. Latiweshob OB, Elwerfaly HH, Sheriff DS, et al. Haematological Changes in Predialyzed and
38	558	Hemodialyzed Chronic Kidney Disease patients in Libya. IOSR Journal of Dental and Medical
39	559	Sciences 2017;16(2):106-12.
40	560	43. Shisana O, Labadarios D, Rehle T, et al. The South African National Health and Nutrition
41	561	Examination Survey (SANHANES-1), 2013.
42	562	44. Drechsler M, Doring Y, Megens RT, et al. Neutrophilic granulocytes - promiscuous accelerators of
43	563	atherosclerosis. Thrombosis and haemostasis 2011;106(5):839-48. doi: 10.1160/th11-07-0501
44 45	564	[published Online First: 2011/10/21]
46	565	45. Nunez J, Minana G, Bodi V, et al. Low lymphocyte count and cardiovascular diseases. <i>Curr Med</i>
47	566	<i>Chem</i> 2011;18(21):3226-33. [published Online First: 2011/06/16]
48	567	46. Reddan DN, Klassen PS, Szczech LA, et al. White blood cells as a novel mortality predictor in
49	568	haemodialysis patients. Nephrol Dial Transplant 2003;18(6):1167-73. [published Online First:
50	569	2003/05/16] 47. Solal: V. Vilmaz MI. Sanmaz A. et al. Neutronhil to lumnhoauto ratio independently predicto.
51	570	47. Solak Y, Yiimaz Mi, Sonmez A, et al. Neutrophil to Tymphocyte ratio independently predicts
52	571	An doi: 10.1007/s10157.012.0728 x [published Online First: 2012/11/28]
53	572	40. doi: 10.100//S1015/-012-0/20-x [published Ohime First. 2012/11/20] As An X Mao HP Wei X et al. Elevated neutrophil to lymphocyte ratio predicts overall and
54	574	cardiovascular mortality in maintenance neritoneal dialysis patients Int Urol Nonhrol
56	575	2012:44(5):1521-8. doi: 10.1007/s11255-012-0130-3 [published Online First: 2012/02/01]
57		, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
58		21
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8 9	576 577 578 579 580 581	 49. Okyay GU, Inal S, Onec K, et al. Neutrophil to lymphocyte ratio in evaluation of inflammation in patients with chronic kidney disease. <i>Ren Fail</i> 2013;35(1):29-36. doi: 10.3109/0886022x.2012.734429 [published Online First: 2012/11/02] 50. Agoons DD, Balti EV, Kaze FF, et al. Performance of three glomerular filtration rate estimation equations in a population of sub-Saharan Africans with Type 2 diabetes. <i>Diabet Med</i> 2016;33(9):1291-8. doi: 10.1111/dme.12996 [published Online First: 2015/10/21]
9 10	582	
11 12	502	
13		
14 15		
16 17		
18		
20		
21 22		
23 24		
24		
26 27		
28 29		
30		
31 32		
33 34		
35		
30 37		
38 39		
40 41		
42		
43 44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

HAEMATOLOGICAL PROFILE OF CHRONIC KIDNEY DISEASE IN A MIXED-ANCESTRY SOUTH AFRICAN POPULATION: A CROSS-SECTIONAL STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025694.R1
Article Type:	Research
Date Submitted by the Author:	10-Sep-2018
Complete List of Authors:	George, Cindy; South African Medical Research Council, Non- Communicable Diseases Research Unit Matsha, Tandi; Cape Peninsula University of Technology, Department of Biomedical Sciences Erasmus, Rajiv; University of Stellenbosch, Chemical Pathology Kengne , AP; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town
Primary Subject Heading :	Haematology (incl blood transfusion)
Secondary Subject Heading:	Renal medicine
Keywords:	Africa, HAEMATOLOGY, Chronic Kidney Disease

1								
3	1	HAEMATOLOGICAL PROFILE OF CHRONIC KIDNEY DISEASE IN A MIXED-						
4 5	2	ANCESTRY SOUTH AFRICAN POPULATION: A CROSS-SECTIONAL STUDY						
6 7	3							
8	4							
9 10	5	Cindy George ¹ ; Tandi E. Matsha ² , Rajiv T. Erasmus ³ , Andre P. Kengne ^{1,4}						
11 12	6							
13 14	7							
15	8	¹ Non-Communicable Disease Research Unit, South African Medical Research Council, Cape						
16 17	9	Town, South Africa; ² Department of Biomedical Sciences, Faculty of Health and Wellness						
18 19	10	Science, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa; ³ Division						
20 21	11	of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory						
21	12	Service (NHLS) and University of Stellenbosch, Cape Town, South Africa, ⁴ Department of						
23 24	13	Medicine, University of Cape Town, Cape Town, South Africa.						
25 26	14							
27	15							
28 29	16	Corresponding author: Cindy George; South African Medical Research Council, Non-						
30 31	17	Communicable Disease Research Unit, Francie van Zijl Drive, Parow Valley, Cape Town, PO Box						
32 33	18	19070, South Africa; +27 21 9380482; <u>cindy.george@mrc.ac.za</u>						
34 35	19							
35 36	20							
37 38	21	Word count: 3085						
39 40	22	Abstract word count: 294						
40	23	References: 50						
42 43	24	Tables: 3						
44 45								
46								
47 48								
49 50								
51								
52 53								
54								
55 56								
57								
58		1						
59								

> ABSTRACT

Objectives: The objectives were to characterise the haematological profile of screen-detected chronic kidney disease (CKD) participants and to correlate the complete blood count measures with the commonly advocated kidney function estimators. Methods: The current cross-sectional study utilized data, collected between February 2015 and November 2016, of 1564 adults of mixed-ancestry, who participated in the Cape Town Vascular and Metabolic Health study. Kidney function was estimated using the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations. CKD was defined as eGFR <60ml/min/1.73m², and anaemia as haemoglobin level <13.5g/dL (men) and <12g/dL (women). **Results:** Based on the MDRD and CKD-EPI equations, the crude prevalence of CKD was 6% and 3%. Irrespective of the equation used, median red blood cell (RBC) indices were consistently lower in those with CKD compared to those without CKD (all p<0.0001). Despite not showing any significant difference in total white blood cell (WBC) count between the two groups, the number of lymphocytes were lower (p=0.0001 and p<0.0001 for MDRD and CKD-EPI, respectively) and neutrophil count (both p<0.0297) and the ratio of lymphocytes to neutrophil (both p<0.0001) higher in the CKD group compared to those without CKD; with the remaining WBC indices similar in the two groups. The platelet count was similar in both groups. Of the screen-detected CKD participants, 45.5% (MDRD) and 57.8% (CKD-EPI) were anaemic, with the prevalence increasing with increasing severity of CKD, from 37.2% (stage 3) to 82.4% (stages 4-5). Furthermore, CKD-EPI-estimated kidney function, but not MDRD, was positively associated with RBC indices. Conclusion: Though it remains unclear whether common kidney function estimators provide accurate estimates of CKD in Africans, the correlation of their estimates with deteriorating RBC profile, suggests that advocated estimators, to some extent approximate kidney function in African populations.

Key words: chronic kidney disease; haematology; Africa

1 2		
3	51	Strengths and limitations of the study
5	52	• The first study to characterize the haematological profile of individuals with reduced
6 7	53	kidney function in a population-based setting in Africa, even more specific, individuals of
8 9	54	mixed-ancestry
10	55	• We studied a community with a high burden of obesity, hypertension and diabetes,
12	56	reflective of the current burden in Africa.
13 14	57	• This study was conducted in only one geographical area, which may not adequately reflect
15 16	58	all the mixed ancestry population groups in Sub-Saharan Africa.
17	59	• Our study was based on a single serum creatinine measure to determine CKD and did not
18 19	60	include estimates of albuminuria. Albuminuria, which are required for clinical and
20 21	61	aetiological diagnosis of CKD, as this information is important particularly in the
22 23	62	interpretation of eGFR greater that 60ml/min/1.73m ² where inaccuracies of the eGFR
24	63	equations are greatest
25 26	64	
27 28	65	
29	66	
31	67	
32 33	68	
34 35	69	
36 27	70	
38	71	
39 40	72	
41 42	73	
43	74	
44 45	75	
46 47	76	
48 49	77	
50	78	
51 52	79	
53 54	80	
55 56	81	
57		
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BACKGROUND

Chronic kidney disease (CKD) is a major global public health problem¹, estimated to affect more than 10% of the general adult population and up to 50% of some high-risk subpopulations, such as the elderly², those with non-communicable diseases (NCD), including type 2 diabetes mellitus (T2D) and hypertension, and communicable diseases (CD), including human immunodeficiency virus (HIV)/ acquired immunodeficiency syndrome (AIDS) ^{3 4}. Africa is currently experiencing the double burden of NCDs and CDs, which are all driving the increasing burden of CKD on the continent ⁵. However, the exact burden of CKD in Africa has yet to be fully elucidated ⁶⁻⁹, in part due to the absence of appropriate estimates for predicting reduced kidney function in individuals from African ancestry ⁹¹⁰.

CKD encompasses a wide range of physiological processes altered by the progressive decline in glomerular filtration rate (GFR)¹¹¹². Haematological parameters, particularly red blood cell (RBC) indices, are most commonly affected ¹³, giving rise to anaemia. Anaemia is the most common, consistent and severe of the various haematological abnormalities, and has been shown to be a very common condition in black Africans¹⁴. Although anaemia may be found at any stage of CKD, the severity of anaemia increases with CKD progression ¹⁵, resultantly affecting nearly all patients with end-stage renal disease (CKD stage 5)¹³. The predominant cause of anaemia in CKD is failure of the kidneys to produce enough endogenous erythropoietin, which accompanies the fall in GFR¹⁶¹⁷. Untreated, prolonged anaemia is strongly predictive of all-cause and cardiovascular mortality, as well as reduced quality of life and increased morbidity in patients with CKD¹³¹⁸. Untreated anaemia can also accelerate the decline in renal function by causing renal haemodynamic alterations and tissue hypoxia¹⁵. Other potentially affected haematological parameters in CKD, of which the association with CKD is not yet fully characterized, include total and differential white blood cell (WBC) counts. Persistent, low-grade inflammation is an essential part of the aetiology of CKD and has been recognized as such since the late 1990s, when it was linked to cardiovascular disease (CVD) and mortality ¹⁹. Recently, the ratio of neutrophil-to-lymphocyte count (N/L) has been proposed as a novel measure of inflammation in distinct populations and has been shown to have prognostic value ²⁰; particularly for mortality risk in patients with myocardial infarction and heart failure ^{21 22}. However, studies on the relationship of N/L ratio with reduced eGFR are limited ²³. Thus, despite recent advances in the aetiology

Page 5 of 22

1

BMJ Open

י ר
2
3
4
5
6
7
/
8
9
10
11
12
12
13
14
15
16
17
18
10
17
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
41
40
42
43
44
45
46
47
48
49
50
51
52
53

governing the development and progression of CKD, population-based data on the haematological 113 profile of people with CKD in Africa, are scanty. 114

- We therefore aimed to characterise the haematological profile of screen-detected CKD participants 116 in a community-based sample, and to correlate the complete blood count measures with two 117 commonly advocated kidney function estimators of CKD in urban South Africans of mixed-118
- 120

119

115

METHODS 121

ancestry.

Study setting and population 122

The current study utilized data from the ongoing Cape Town Vascular and Metabolic Health 123 (VMH) study, an extension of the Cape Town Bellville-South study, which has been described in 124 detail previously ²⁴. Bellville-South, with a population of approximately 29,301, is a township 125 formed in the late 1950s, located in the metropolitan city of Cape Town, South Africa. The 126 population consists predominantly of individuals of mixed-ancestry (coloured) (76%), followed 127 by black Africans (18.5%), with only 1.5% of the population being of Caucasian and Asians 128 ancestry. The data collection for the current analysis took place between February 2015 and 129 130 November 2016 during a community-based survey involving only mixed-ancestry South Africans. The study was approved by the Research Ethics Committees of the Cape Peninsula University of 131 Technology and Stellenbosch University (NHREC: REC-230 408-014 and N14/01/003, 132 respectively). The study was conducted in accordance with the Declaration of Helsinki. All 133 participants voluntary signed written informed consent after all the procedures were fully 134 explained in the language of their choice. 135

- 136
- 137 Participant involvement

The participants were not involved in the design or recruitment process of this study. However, 138 permission to conduct the study was obtained from relevant authorities including the city and 139 community authorities. 140

59

60

141

Questionnaires and physical examination 142

All interviews and physical examinations took place at a research clinic on the campus of Cape Peninsula University of Technology, located within the study suburb. All consenting participants received a standardized interview, explained in great detail elsewhere ²⁵. Physical examination involved blood pressure (BP) determination, measured according to the World Health Organisation (WHO) guidelines ²⁶, using a semi-automatic digital blood pressure monitor (Omron M6 comfort-preformed cuff BP Monitor), placed on the right arm in sitting position and at rest for at least 10 min. Three measures were taken of which the average of the lowest two was used in all analyses. Body weight (to the nearest 0.1 kg) was measured with the participant in light clothing and without shoes, using an Omron body fat meter HBF-511 digital bathroom scale, which was calibrated and standardized using a weight of known mass. Height (to the nearest centimetre) was measured with a stadiometer, with subjects standing on a flat surface. Body mass index (BMI) was calculated as weight per square meter (kg/m²). Waist circumference (WC) was measured with a non-elastic tape measure at the level of the narrowest part of the torso, as seen from the anterior view. Anthropometric measurements were performed three times and the average used for analysis.

²⁹ 158

1 159 Biochemical analysis and calculations

All biochemical analyses took place at an ISO 15189 accredited Pathology practice (Path-Care, Reference Laboratory, Cape Town, South Africa). Blood samples were collected from all participants after an overnight fast, and two hours after a 75g oral glucose tolerance test (OGTT) following the WHO recommendations ²⁷. Plasma glucose levels and haemoglobin A1c (HbA1c) were measured by enzymatic hexokinase method (Beckman AU, Beckman Coulter, South Africa) and high performance liquid chromatography (Biorad Variant Turbo, BioRad, South Africa), respectively. Insulin was determined by a paramagnetic particle chemiluminescence assay (Beckman DXI, Beckman Coulter, South Africa). Triglycerides (TG), total cholesterol (TC), and high-density lipoproteins (HDL-C) were analysed using the Roche Modular auto analyser and enzymatic colorimetric assays, and low-density lipoproteins (LDL-C) were calculated using the Friedewald formula ²⁸. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated according to the formula: HOMA-IR = [fasting insulin concentration (mIU/l) \times fasting plasma glucose (mmol/l)/22.5. Serum concentration of high sensitivity C-reactive protein (hsCRP) (Immun Diagnostik AG, Bensheim, Germany) was analysed using commercially available ELISA

Page 7 of 22

BMJ Open

kits according to the manufacturer's protocols. Serum creatinine was measured by the modified Jaffe-Kinetic method (Beckman AU, Beckman Coulter, South Africa). Creatinine assays at our Partner pathology service are standardized to the internationally accepted reference method (isotope dilution mass spectrophotometry [IDMS]) since 2009 and eGFR estimators applicable to standardised creatinine values were used. Kidney function was assessed using serum creatinine-based estimators of glomerular filtration rate (eGFR), namely, the 4-variable Modification of Diet in Renal Disease (MDRD) equation ²⁹ and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation ³⁰. The African-American ethnicity correction factor was omitted from the eGFR calculation, as the South African Renal Society CKD guidelines promotes the exclusion of the correction factor, except in the case of black Africans. Full blood counts, including total RBC, total WBC, lymphocytes count and percentage, monocyte count and percentage, neutrophil count and percentage, basophil count and percentage, eosinophil count and percentage, haemoglobin (Hb), haematocrit, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red cell distribution width, and platelets, were measured on a Coulter LH 750 hematology analyzer (Beckman Coulter, South Africa).

31 190

191 Classification of renal function and co-morbidities

Staging of kidney function was based on the National Kidney Foundation Disease Outcomes Quality Initiative (NKF-KDOQI) classification ³¹. An eGFR<60 ml/min/1.73 m² was used to define CKD (or CKD stage 3–5). Anaemia was defined using the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines (haemoglobin level <13.5g/dL for men and <12g/dL for women) ³² and further classified into micro-, normo- and macrocytic based on the MCV. Microcytic anaemia was defined as an MCV of <80fL, normocytic as 100-80 fL, and macrocytic as >100fL³³. Hypertension was based on either a history of diagnosed hypertension (receiving medications for hypertension) or screen-detected hypertension. The latter being classified if they had a SBP>140mmHg and/or DBP>90 mmHg³⁴. Diabetes status was based on a history of diagnosed diabetes or screen-detected diabetes. OGTT glucose values were used to classify the glucose tolerance status of participants as recommended by WHO ³⁵ as: (1) normal glucose tolerance (fasting plasma glucose (FPG) $\leq 6.1 \text{ mmol/l}$ and 2-h glucose $\leq 7.8 \text{ mmol/l}$); (2) pre-diabetes including impaired fasting glycaemia (IGT, 6.1 ≤ FPG < 7.0 mmol/l), impaired glucose

tolerance (IGT, 7.8<2-h glucose< 11.1 mmol/l) and the combination of both; and (3) diabetes (FPG≥7.0 mmol/l and/or 2-h glucose≥11.1 mmol/l). A BMI≥25kg/m² and BMI≥30kg/m² was classified as overweight obese, respectively.

Statistical analysis

All statistical analyses were performed using STATA version 13 (Statcorp, College Station, TX) and statistical significance was based on a p-value <0.05. General characteristics of the participants are summarized as count and percentage for qualitative variables and median and 25th-75th percentiles for quantitative variables. Group comparisons used chi-squared test for qualitative variables, and Wilcoxon rank-sum test for quantitative variables, respectively. Multiple linear regression models were used to assess the independent association between eGFR and haematological indices, while adjusting for age and gender.

RESULTS

Participant characteristics

The initial study sample comprised 1,647 participants. Of those, 83 were excluded due to missing data on serum creatinine or any of the variables required to estimate kidney function, including age and gender. The general characteristics and the haematological profile of the study population are summarised in Tables 1 and 2, respectively. The final sample included 1,564 participants, of which 24.9% were male, with a group median age of 50 years. The crude prevalence of CKD was 6% and 3%, based on the MDRD and CKD-EPI equations respectively. Of those participants with MDRD-diagnosed CKD, 80.7%, 14.8% and 4.5% where in stages 3, 4 and 5, respectively. Similarly, of those diagnosed by means of the CKD-EPI equation, 68.9%, 24.4% and 6.7% where in stages 3, 4 and 5, respectively. MDRD-diagnosed CKD participants had higher creatinine levels (111.5 vs. 59 µmol/l; p<0.0001) and lower eGFR (48.2 vs. 104 ml/min/1.73m²; p<0.0001), were on average older (68 vs. 49 years; p < 0.0001), with a higher WC (97.7 vs. 91.2 cm; p = 0.0001), BMI (30.3 vs. 28.3 kg/m²; p=0.0096), and SBP (142 vs. 125 mmHg; p<0.0001), compared to participants with normal kidney function. Furthermore, MDRD-diagnosed CKD participants had higher fasting and 2-hour blood glucose (5.3 vs. 5.0 mmol/l; p<0.0001 and 7.2 vs. 6.0 mmol/l; p<0.0001, respectively), HbA1c levels (6.2 vs. 5.7%; p<0.0001), fasting and 2-hour insulin levels (8.4 vs. 6.7 IU/l; p=0.0089 and 62.0 vs. 37.5 IU/l; p=0.0002, respectively), higher HOMA-IR index

Page 9 of 22

BMJ Open

3 4	236	(2.1 vs. 1.6; p=0.0004), hsCRP (4.7 vs. 4.0 µg/ml; p=0.0492), TG (1.6 vs. 1.2 mmol/l; p<0.0001)
5	237	and TC (5.4 vs. 5.1 mmol/l; p=0.024); with similar LDL-C (3.2 vs. 3.1 mmol/l; p=0.0668) and
6 7	238	HDL-C levels (1.3 vs. 1.3 mmol/l; p=0.7106) compared to those without CKD. When sub-dividing
8 9	239	the groups based on CKD diagnosed by the CKD-EPI equation, similar differences were observed,
10	240	with the exception of BMI, hsCRP and TC, which showed no difference between the groups (28.3
11 12	241	vs. 28.4 kg/m ² ; p=0.384, 4.8 vs. 4.0 µg/ml; p=0.4268, 5.3 vs. 5.1 mmol/l; p=0.2226, respectively).
13 14	242	Participants with reduced kidney function, both MDRD and CKD-EPI-diagnosed, had a similar
15 16	243	prevalence of overweight and obesity, however had a higher prevalence of hypertension and T2D,
17	244	despite similar prevalence of pre-diabetes (IFG and IGT) between the two groups.
18 19	245	

The red blood cell indices, including RBC count, haematocrit and haemoglobin levels were consistently lower in CKD participants compared to the group with normal kidney function (all p < 0.0001), irrespective of the eGFR equation used. Conversely, the morphology of the RBC's were not different, as similar values for MCV, MCH, MCHC and RDW were observed between CKD participants and the participants with normal kidney function. Despite not showing any significant difference in total WBC count between the two groups, the number of lymphocytes were lower and neutrophil count and the ratio of lymphocytes to neutrophil higher in the CKD group compared to those individuals with normal kidney function; with the remaining WBC indices similar in the two groups. The platelet count was similar in both groups. Furthermore, based on the K/DOQI guidelines, 45.5% (MDRD) and 57.8% (CKD-EPI) of the CKD participants had anaemia, with the majority of cases being normocytic. Moreover, the prevalence of anaemia increased with increasing severity of CKD, from 37.2% at stage 3 to 82.4% at stage 4-

5.

Table 1: Clinical characteristics of the study population overall and by CKD (MDRD and CKD-EPI) status

		MDRD			СКД-ЕРІ		
Variables	Total (n=1564)	Without CKD (n=1470)	CKD (n=94)	p-value	Without CKD (n=1517)	CKD (n=47)	p-value
Age (years)	50 (37-61)	49 (36-59)	68 (62-74)	< 0.0001	50 (36-60)	69 (63-77)	< 0.0001
Gender (n,% male)	389 (24.9)	372 (25.3)	17 (18.1)	0.215	373 (24.6)	16 (34.0)	0.093
Anthropometry	04						
Weight (kg)	72.0 (59.2-85.5)	71.9 (59.0-85.5)	74.0 (64.6-85.8)	0.2058	72.0 (59.2-85.5)	73.5 (64.1-85.7)	0.6903
WC (cm)	91.8 (78.5-103.5)	91.2 (77.8-103.0)	97.7 (89.0-105.8)	0.0001	91.5 (78.1-103.5)	96.0 (87.8-106.5)	0.0225
HC (cm)	102.8 (92.5-113.5)	102.5 (92.1-113.5)	104.3 (96.5-114.2)	0.1138	102.8 (92.5-113.8)	101.5 (95.8-111.5)	0.9439
BMI (kg/m ²)	28.4 (22.9-34.2)	28.3 (22.7-34.1)	30.3 (26.1-35.1)	0.0096	28.4 (22.9-34.2)	28.3 (24.7-34.4)	0.3836
Biochemical analysis			6				
Fasting blood glucose (mmol/l)	5.0 (4.6-5.7)	5.0 (4.6-5.6)	5.3 (5.0-6.9)	< 0.0001	5.0 (4.6-5.6)	5.3 (5.0-7.7)	0.0014
2-hour glucose (mmol/l)	6.0 (4.9-7.6)	6.0 (4.8-7.5)	7.2 (5.8-9.2)	< 0.0001	6.0 (4.8-7.5)	7.5 (5.7-9.2)	0.0034
HbA1c (%)	5.8 (5.4-6.3)	5.7 (5.4-6.2)	6.2 (5.9-7.1)	< 0.0001	5.8 (5.4-6.2)	6.4 (5.9-7.3)	< 0.0001
Fasting insulin (IU/l)	6.7 (4.3-11.1)	6.7 (4.2-10.9)	8.4 (5.3-12.4)	0.0089	6.7 (4.2-10.9)	9.0 (5.3-12.4)	0.0323
2-hour insulin (IU/l)	38 (20.6-71.8)	37.5 (19.8-69.8)	62.0 (30.3-105.6)	0.0002	37.8 (20.3-70.5)	63.5 (32.6-105.2)	0.0072
HOMA-IR (MU)	1.6 (0.9-2.9)	1.6 (0.9-2.8)	2.1 (1.2-3.9)	0.0004	1.6 (0.9-2.8)	2.4 (1.3-3.8)	0.0026
hsCRP (µg/ml)	4.0 (1.6-8.8)	4.0 (1.6-8.8)	4.7 (2.7-9.3)	0.0492	4.0 (1.6-8.8)	4.8 (2.4-7.5)	0.4268
TG (mmol/l)	1.2 (0.9-1.7)	1.2 (0.9-1.7)	1.6 (1.2-2.3)	< 0.0001	1.2 (0.9-1.7)	1.8 (1.1-2.4)	0.0001
TC (mmol/l)	5.1 (4.4-5.9)	5.1 (4.3-5.9)	5.4 (4.8-6.4)	0.0024	5.1 (4.4-5.9)	5.3 (4.4-6.0)	0.2226
LDL-C (mmol/l)	3.1 (2.5-3.8)	3.1 (2.5-3.8)	3.2 (2.7-4.3)	0.0668	3.1 (2.5-3.8)	3.1 (2.5-3.9)	0.9444
HDL-C (mmol/l)	1.3 (1.1-1.5)	1.3 (1.1-1.5)	1.3 (1.1-1.5)	0.7106	1.3 (1.1-1.5)	1.3 (1.1-1.4)	0.5132
Creatinine (µmol/l)	60 (52-70)	59 (51-68)	111.5 (89.0-140.5)	< 0.0001	59 (51-69)	140 (124-209)	< 0.0001
eGFR (ml/min/1.73m ²)	-	104.0 (88.0-121.0)	48.2 (33.7-55.4)	< 0.0001	113.9 (101.4-126.5)	44.7 (26.4-49.6)	< 0.0001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Blood pressure measures							
Mean SBP (mmHg)	125 (111-141)	125 (110-140)	142 (121-162)	< 0.0001	125 (111-140)	150 (128-181)	< 0.0001
Mean DBP (mmHg)	81 (72-90)	81 (72-90)	81 (74-95)	0.2114	81 (72-90)	85 (73-95)	0.2185
Pulse pressure (BPM)	70 (62-79)	70 (62-79)	70 (60-81)	0.9932	70 (62-79)	73 (62-82)	0.3861
Co-morbidities		I					
Overweight (BMI 25kg/m ² ; n.%)	361 (23.2)	335 (22.9)	26 (29.5)	0.139	348 (23.1)	13 (28.9)	0.348
Obese (BMI≥30kg/m ² ; n,%)	662 (42.6)	617 (42.1)	45 (51.1)	0.085	642 (42.5)	20 (44.4)	0.771
Pre-diabetes (n, %)	238 (15.2)	226 (15.4)	12 (12.8)	0.671	233 (15.4)	5 (10.6)	0.436
T2D (n, %)	297 (19.0)	259 (17.6)	38 (40.4)	< 0.0001	272 (17.9)	25 (53.2)	< 0.0001
Hypertension (n, %)	567 (36.3)	517 (35.2)	50 (53.2)	< 0.0001	537 (35.4)	30 (63.3)	< 0.0001
57		90					
58 Data is presented as media	n (25th-75th perce	ntiles) and percenta	ges. WC, waist ci	rcumferenc	e; HC, hip circumfe	rence; BMI, body	mass
index; HbA1c, Glycated	index; HbA1c, Glycated haemoglobin; HOMA-IR, Homeostatic model assessment-insulin resistance; MU, mass units; hsCRP, high						
'0 sensitivity C-reactive pro	otein; TG, triglyc	erides; TC, total	cholesterol; LDL	C, low-de	ensity lipoproteins;	HDL-C, high-de	ensity
1 lipoproteins; eGFR, estima	lipoproteins; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; IFG/IGT, impaired						
² fasting glucose and impai	fasting glucose and impaired glucose tolerance; T2D, type 2 diabetes mellitus; MDRD, Modification of Diet in Renal Disease; CKD-						
EPI, Chronic Kidney Disease Epidemiology Collaboration; CKD, chronic kidney disease.							
/4							

Table 2: Haematological profile of study population overall and by CKD (MDRD and CKD-EPI) status

		M	DRD	CKD-EPI			
Variables	Total (n=1564)	Without CKD (n=1470)	CKD (n=94)	p-value	Without CKD (n=1517)	CKD (n=47)	p-va
RBC (x10 ⁶ /µl)	4.7 (4.3-5.0)	4.7 (4.4-5.0)	4.3 (3.9-4.7)	< 0.0001	4.7 (4.4-5.0)	4.2 (3.8-4.7)	< 0.0
WBC (x10 ⁶ /µl)	7.5 (6.2-9.1)	7.4 (6.2-9.1)	7.7 (6.5-9.2)	0.5704	7.4 (6.2-9.1)	7.9 (6.3-9.3)	0.54
N/L (ratio)	2.0 (1.5-2.6)	1.9 (1.5-2.5)	2.5 (1.7-3.5)	< 0.0001	1.9 (1.5-2.5)	2.7 (2.0-3.7)	<0.0
Lymphocyte count (x10 ⁹ /l)	2.2 (1.8-2.80)	2.2 (1.8-2.8)	1.9 (1.4-2.5)	0.0001	2.2 (1.8-2.8)	1.8 (1.4-2.4)	<0.0
Monocyte count (x10 ⁹ /l)	0.5 (0.4-0.6)	0.5 (0.4-0.6)	0.4 (0.4-0.6)	0.1389	0.5 (0.4-0.6)	0.4 (0.4-0.6)	0.94
Neutrophil count (x10 ⁹ /l)	4.5 (3.4-5.7)	4.5 (3.3-5.6)	5.0 (3.7-5.9)	0.0255	4.5 (3.4-5.6)	5.1 (4.3-6.1)	0.02
Basophil count (x109/l)	0.1 (0.1-0.2)	0.0 (0.0-0.0)	0.0 (0.0-0.1)	0.283	0.0 (0.0-0.0)	0.0 (0.0-0.1)	0.13
Eosinophil count (x109/l)	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.1579	0.2 (0.1-0.3)	0.2 (0.1-0.3)	0.12
Platelet count (x10 ⁹ /l)	271 (227-322)	271 (228-322)	277 (214-324)	0.9417	271 (228-322)	266 (197-313)	0.22
Haematocrit (volume %)	41 (39-44)	41 (39-44)	38 (35-41)	< 0.0001	41 (39-44)	37 (34-41)	<0.0
MCV (fl/cell)	89 (85-93)	89 (85-93)	89 (86-92)	0.8150	89 (85-93)	89 (86-91)	0.47
MCH (pg/cell)	29 (28-31)	29 (28-31)	29 (28-30)	0.1399	29 (28-31)	29 (28-30)	0.0
MCHC (g/dl)	33 (32-33)	33 (32-33)	33 (32-33)	0.1471	33 (32-33)	32 (32-33)	0.11
RDW (%)	14.2 (13.5-15.0)	14.1 (13.4-15.0)	14.5 (13.7-15.6)	0.0601	14.1 (13.4-15.0)	14.3 (13.8-15.5)	0.06
Hb (g/dl)	13.5 (12.6-14.4)	13.5 (12.7-14.5)	12.2 (11.2-13.3)	< 0.0001	13.5 (12.6-14.4)	11.9 (11.1-13.2)	<0.0
Anaemia (n, %)	289 (18.48)	249 (16.9)	40 (45.5)	< 0.0001	263 (17.3)	26 (57.8)	< 0.0
Microcytic	83 (28.7)	83 (33.3)	0 (0.0)	-	83 (31.6)	0 (0.0)	-
Normocytic	180 (62.3)	141 (56.6)	39 (97.5)	-	155 (58.9)	25 (96.2)	-
Macrocytic	26 (9.0)	25 (10.0)	1 (2.5)	-	25 (9.5)	1 (3.8)	-

> Data are presented as median (25th-75th percentiles) and percentages. RBC, red blood cells; WBC, white blood cells; N/L ratio, lymphocyte to neutrophil ratio; MCV, mean corpuscular volume, MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular

BMJ Open

2 3	200	hasmaglahin concentration, PDW, red call distribution width. Uh. hasmaglahin MDPD, Madification of Dist in Panel Disease, CKD
4	280	EDL CL · Kithe Dimensioner in the Colline of the co
5 6	287	EPI, Chronic Kidney Disease Epidemiology Collaboration.
7 8	288	
9	289	
10 11	290	
12 13	291	
14	292	
15 16	293	
17 18	294	
19	295	
20 21	296	
22 23	297	
24	298	
25 26	299	
27 28	300	
29	301	
30 31	302	
32 33	303	
34 25	304	
36	305	
37 38		
39 40		
41		
42 43		13
44 45		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
45 46		
47		

306	Association	between t	he c	different	haemato	logical	indices	and	eGFR
------------	-------------	-----------	------	-----------	---------	---------	---------	-----	------

The age and gender-adjusted associations between the different haematological indices and eGFR. estimated by means of the MDRD and CKD-EPI equations, are presented in Table 3. Based on the CKD-EPI, however not the MDRD equation, eGFR was positively associated with all the RBC indices, including total RBC count, haemoglobin and haematocrit levels. eGFR was not associated with total WBC count, however a lower lymphocyte count was associated with a lower eGFR and N/L ratio was inversely associated with eGFR. Furthermore, male gender was significantly associated with all haematological measures, except basophil count and eosinophil count, and age was inversely associated with all RBC indices, lymphocytes, neutrophils, platelet count, MCHC and positively associated with RDW.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	

Table 3: Linear regression coefficients, adjusted for age, gender (Model 1) and eGFR (MDRD and CKD-EPI-derived) (Models 2) for

335	the prediction of haematological-derived measures	
555	the prediction of internationogical derived incusates	

6																
7				Μ	ODEL 1					MODEL 2.	1			MODEL 2.	2	
8	Haematological-derived	Age				Gender				eGFR (MDRD)			eGFR (CKD-EPI)			D 2
9	measures	measures β 95% CI p β 95% CI p		- K-	β	95% CI	р	- K-	β	95% CI	р	- K-				
10	RBC (x10 ³ /µl)	-2.8	-4.5 to -1.2	0.001	327.4	269.6 to 385.3	< 0.0001	0.08	0.3	-0.7 to 1.3	0.541	0.08	3.2	1.5 to 5.0	< 0.0001	0.09
11	Haematocrit (%)	-0.2	-0.3 to -0.0	0.018	40.2	35.3 to 45.1	< 0.0001	0.15	0.0	-0.1 to 0.1	0.709	0.15	0.3	0.1 to 0.4	< 0.0001	0.16
13	Hb (g/l)	-0.1	-0.1 to -0.0	0.002	14.2	12.5 to 15.9	< 0.0001	0.16	0.0	-0.0 to 0.0	0.907	0.16	0.1	0.0 to 0.1	< 0.0001	0.16
14	WBC (x10 ³ /µl)	-15.1	-22.3 to -7.8	< 0.0001	-431.9	-690.8 to -173.0	0.001	0.01	-0.5	-4.8 to 3.9	0.834	0.01	-1.7	-9.7 to 6.3	0.678	0.01
15	N/L (%)	-0.1	-3.8 to 3.5	0.941	136.2	5.6 to 266.7	0.041	0.00	-0.1	-0.4 to 0.1	0.214	0.00	-6.3	-10.3 to -2.3	0.002	0.01
16	Lymphocyte count (x10 ⁶ /l)	-2.9	-5.2 to -0.5	0.017	-257.10	-341.0 to -173.2	< 0.0001	0.02	0.7	-0.8 to 2.1	0.364	0.02	3.0	0.4 to 5.6	0.022	0.03
17	Monocyte count (x106/l)	-0.8	-1.4 to -0.2	0.005	91.6	71.2 to 112.0	< 0.0001	0.05	0.3	-0.1 to 0.6	0.114	0.05	0.5	-0.1 to 1.1	0.122	0.05
18	Neutrophil count (x106/l)	-10.9	-16.8 to -5.1	< 0.0001	-291.8	-500 to -82.8	0.006	0.01	-1.1	-4.6 to 2.4	0.542	0.01	-4.7	-11.1 to 1.7	0.150	0.01
20	Basophil count (x10 ⁶ /l)	1.6	-8.4 to 11.5	0.759	-187.9	-541.9 to 166.1	0.298	0.00	0.7	-5.3 to 6.6	0.822	0.00	-8.3	-19.2 to 2.6	0.136	0.00
21	Eosinophil count (x106/l)	-0.5	-1.1 to 0.0	0.067	15.9	-4.9 to 36.7	0.135	0.00	-0.4	-0.7 to 0.0	0.071	0.00	-0.6	-1.2 to 0.1	0.074	0.00
22	Platelet count (x10 ⁹ /l)	-0.4	-0.6 to -0.1	0.003	-33.0	-42.0 to -24.0	<0.0001	0.03	0.1	-0.0 to 0.3	0.088	0.04	0.1	-0.0 to 0.3	0.088	0.04
23	MCV (fL/100cell)	1.4	-1.0 to 3.7	0.255	232.2	148.1 to 316.2	< 0.0001	0.02	-0.2	-1.6 to 1.2	0.761	0.02	0.1	-2.5 to 2.7	0.946	0.02
24	MCH (pg/100cell)	-0.2	-1.1 to 0.7	0.698	95.3	63.3 to 127.4	< 0.0001	0.02	-0.1	-0.7 to 0.4	0.646	0.02	0.1	-0.9 to 1.1	0.881	0.02
25	MCHC (g/l)	-0.1	-0.01 to -0.0	< 0.0001	2.3	0.9 to 3.8	0.002	0.02	-0.0	-0.0 to 0.0	0.227	0.02	-0.0	-0.1 to 0.0	0.664	0.01
20	RDW (%)	0.1	0.0 to 0.1	0.004	-1.9	-3.7 to -0.0	0.05	0.01	0.1	0.0 to 0.1	< 0.0001	0.02	0.1	0.0 to 0.1	0.025	0.01
∠/ 28	336															

Data presented as β-coefficient, 95% confidence interval and adjusted-R². Analysis are adjusted for age and gender. RBC, red blood cells; WBC, white blood cells; MCV, L/N ratio, lymphocyte to neutrophil ratio; mean corpuscular volume, MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin concentration; RDW, red cell distribution width; Hb, haemoglobin. MDRD, Modification of Diet in Renal Disease. Model 1 = age + gender; Model 2.1 = age + gender + eGFR (MDRD); Model 2.2 = age + gender + eGFR (CKD-EPI)

DISCUSSION

In this community-based sample of mixed-ancestry South Africans, we have shown that the haematological profile of individuals with reduced eGFR (<60ml/min/1.73m²) are substantially impaired compared to those with normal kidney function, giving rise to the high prevalence of anaemia in this screen-detected CKD population. Furthermore, despite eGFR being positively associated with RBC indices, indicative of the severity of kidney function impairment, the disease state had no effect on the morphology of the RBC. Lastly, we confirmed that a chronic pro-inflammatory state exists in participants with CKD.

This study, which is in accordance with other studies in Africa and other developing countries ³⁶⁻ ⁴², has shown that CKD is associated with significant impairment in RBC indices. Indeed, we have shown that total RBC count, haemoglobin concentration and percentage haematocrit were substantially reduced in participants with eGFR below 60ml/min/1.73m², compared to those with normal kidney function, independent of age and gender. Since erythropoietin is produced mainly by the proximal tubule of the nephron, kidney function decline will result in a decline in erythropoietin production and as a consequence result in decreased haemoglobin synthesis, leading to a fall in total RBC count ¹⁷. This significant reduction in RBC, inevitably gives rise to anaemia ¹⁴. Indeed, our study and numerous other studies have shown that the severity of anaemia increases with disease progression; with most of these studies showing anaemia at least twice as prevalent in participants with CKD, compared to the general adult population ³⁷. Furthermore, we found that 17% of the sample population with normal kidney function had haemoglobin levels <13.5g/dL and <12g/dL for men and women, respectively. However, this is not uncommon in Africa as previous studies have found that Africa has a high prevalence of anaemia caused by iron deficiency. In South Africa in particular, the South African National Health and Nutrition Examination Survey (SANHANES-1)⁴³ showed that 22% and 12.2% of adult females and males have anaemia.

The activation of the immune system, caused by inflammation, increases white blood cell counts ²³; emphasising the potential of WBC indices as a surrogate marker of inflammation in CKD ²⁰. Our study showed that despite no correlation between total WBC and reduced kidney function, CKD was associated with higher neutrophil and lower lymphocyte counts; both of which are independently associated with the promotion of atherosclerosis ⁴⁴ ⁴⁵ and poor cardiovascular

Page 17 of 22

BMJ Open

outcomes ⁴⁶. N/L ratio, which combines the predictive power of both increased neutrophil count and decreased lymphocyte count 47, was associated with reduced eGFR in our study, as also found in other studies ^{23 48 49}. Indeed previous studies, which included CKD patients on haemodialysis ²³ ⁴⁸ and pre-dialysis ⁴⁹, showed that an increased N/L ratio was associated with known inflammatory markers such as tumor necrosis factor (TNF)- α^{23} , interleukin 6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) levels ⁴⁹. These studies demonstrated that these well-established markers of inflammation were independent factors for predicting N/L ratio, thus presenting N/L ratio as an inflammatory biomarker for CKD patients. Since full blood count analysis are done routinely and a relatively affordable and easy measure to acquire, these findings are especially valuable taking into account the severely resource limited setting found in Africa and other low and middle-income countries.

Our study has a few limitations. This study was conducted in only one geographical area, which may not adequately reflect all the mixed ancestry population groups in Sub-Saharan Africa. Furthermore, this was a community-based sample with high female to male participation, however the latter being a common trend in South African population studies. Our study also used a single serum creatinine measure to determine the grade of kidney function and did not include estimates of albuminuria. Albuminuria, in particular, is required for clinical and aetiological diagnosis of CKD, as this information is important particularly in the interpretation of eGFR greater that 60ml/min/1.73m² where inaccuracies of the eGFR equations are greatest. It is however a common practice in community-based studies to diagnose CKD using a single measurement of serum creatinine. Furthermore, we did not investigate other haematinic deficiencies, such as vitamin B12 and iron deficiencies, which if present however, are less likely to affect haematological profile in a differential way in people with and without CKD. However, despite these limitations, we are not aware of other studies that have assessed the haematological profile of individuals with reduced kidney function in a population-based setting in Africa, even more specific, individuals of mixed-ancestry. Furthermore, we studied a community with a high burden of obesity, hypertension and diabetes, reflective of the current burden in Africa. This study provides much needed evidence for the association between the haematological profile and CKD as population-based data on the haematological profile of people with CKD in Africa, are very limited.

In conclusion, the findings from our study are valuable as full blood count analyses are done
routinely and are relatively affordable, taking into account the severely resource limited setting
found in Africa and other low and middle-income countries. Furthermore, though it still remains
unclear whether the advocated kidney function estimators provide accurate estimates of CKD
burden in African populations ⁵⁰, the correlation of these estimates, with deteriorating profile of
blood cell counts, suggests that these advocated GFR estimates, particularly the CKD-EPI
equation, to some extent, measure kidney function in African populations.

DECLARATIONS

19 413 Ethics approval and consent to participate

The study was approved by the Research Ethics Committees of the Cape Peninsula University of Technology and Stellenbosch University (NHREC: REC-230 408-014 and N14/01/003, respectively). The study was conducted in accordance with the Declaration of Helsinki. All participants voluntary signed written informed consent after all the procedures were fully explained in the language of their choice. Permission to conduct the study was also obtained from relevant authorities including the city and community authorities.

31 420

³²33 421 Consent for publication

422 Not applicable

36 423

424 Data sharing statement

425 The datasets used and/or analyzed during the current study are available from the corresponding

426 author on reasonable request.

43 427

45 428 **Competing interest**

- 429 The authors declare that they have no competing interests
- 48 430
- 50 431 Funding

⁵¹₅₂ 432 The South African Medical Research Council (SAMRC) funded this research project with funds

⁵³ 433 from National Treasury under its Economic Competitiveness and Support Package (MRC-RFA-

55 434 UFSP-01-2013/VMH Study).

1		
2 3	435	
4 5	436	Authors' contribution
6	/37	Study conception and funding acquisition (TEM_APK_RTE) operationalization and supervision
7 8	100	of the data collection (TEM) data analysis and interpretation (CG ΔPK) drafting the manuscript
9 10	450	(CC_APK), that a manysis and interpretation (CO, APK), that ing the manuscript
11	439	(CG, APK), critical revision of the manuscript and approval of the final version (all co-authors).
12 13	440	
14	441	Acknowledgements
15 16	442	Poster presented at the 28th European Meeting on Hypertension and Cardiovascular Protection,
17	443	held in Barcelona, June 8-11, 2018. As such, results have been published as an abstract. We are
18 19	444	also grateful to the Cape Town VMH study investigation team and population of Bellville-South
20 21	445	for their participation.
22	446	
23 24	447	REFERENCES
25 26	448	1. Bolton K. Culleton B. Harvey K. K/DOOI clinical practice guidelines for chronic kidney disease:
20	449	evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am
28	450	<i>JKidney Dis</i> 2002;39(2 Suppl 1):S1-246.
29	451	2. Nitta K, Okada K, Yanai M, et al. Aging and chronic kidney disease. <i>Kidney & blood pressure research</i>
30 31	452 453	3 Lozano R. Naghavi M. Foreman K. et al. Global and regional mortality from 235 causes of death for 20.
32	454	age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
33	455	Lancet 2012;380(9859):2095-128. doi: 10.1016/S0140-6736(12)61728-0
34 25	456	4. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to
35 36	457 150	global health burden. Lancet 2013;382(9887):158-69. doi: 10.1016/s0140-6736(13)60439-0
37	450 459	<i>Kidnev Dis</i> 2010:17(3):215-24 doi: 10.1053/j.ackd.2010.02.001
38	460	6. Naicker S. End-stage renal disease in sub-Saharan Africa. <i>Ethn Dis</i> 2009;19(1 Suppl 1):S1-13-5.
39 40	461	[published Online First: 2009/06/02]
40 41	462	7. Peralta CA, Risch N, Lin F, et al. The Association of African Ancestry and elevated creatinine in the
42	463	Coronary Artery Risk Development in Young Adults (CARDIA) Study. American journal of
43	464 465	8 Kiberd BA Clase CM Cumulative risk for developing end-stage renal disease in the US population
44 45	466	Journal of the American Society of Nephrology : JASN 2002;13(6):1635-44. [published Online
46	467	First: 2002/06/01]
47	468	9. Stanifer JW, Jing B, Tolan S, et al. The epidemiology of chronic kidney disease in sub-Saharan Africa:
48	469	a systematic review and meta-analysis. <i>Lancet Glob Health</i> 2014;2(3):e174-81. doi: 10.1016/S2214.100X(14)70002.6
49 50	470 471	10.1010/S2214-109A(14)/0002-0 10. Stanifer IW Muiru A Jafar TH et al. Chronic kidney disease in low- and middle-income countries
51	472	Nephrol Dial Transplant 2016;31(6):868-74. doi: 10.1093/ndt/gfv466
52	473	11. Hamer RA, El Nahas AM. The burden of chronic kidney disease. BMJ 2006;332(7541):563-4. doi:
53	474	10.1136/bmj.332.7541.563
54 55	475	12. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives.
56	470	Luncer 2013, 302 (7000). 200-72. UUI. 10. 1010/30140-0730 (13)00087-A
57		
58 59		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2

3	477	13. Babitt JL, Lin HY. Mechanisms of anemia in CKD. Journal of the American Society of Nephrology :
4	478	JASN 2012;23(10):1631-4. doi: 10.1681/asn.2011111078 [published Online First: 2012/09/01]
5	479	14. Astor BC, Muntner P, Levin A, et al. Association of kidney function with anemia: The third national
7	480	health and nutrition examination survey (1988-1994). Archives of Internal Medicine
, 8	481	2002;162(12):1401-08. doi: 10.1001/archinte.162.12.1401
9	482	15. Webster AC, Nagler EV, Morton RL, et al. Chronic Kidney Disease. Lancet 2017;389(10075):1238-
10	483	52. doi: 10.1016/s0140-6736(16)32064-5 [published Online First: 2016/11/27]
11	484	16. Kazmi WH, Kausz AT, Khan S, et al. Anemia: An early complication of chronic renal insufficiency.
12	485	American Journal of Kidney Diseases 2001;38(4):803-12. doi: 10.1053/ajkd.2001.27699
13	486	17. Kutuby F, Wang S, Desai C, et al. Anemia of chronic kidney disease. Disease-a-month : DM
14	487	2015;61(10):421-4. doi: 10.1016/j.disamonth.2015.08.002 [published Online First: 2015/09/15]
15	488	18. Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379(9811):165-80. doi: 10.1016/S0140-
16	489	6736(11)60178-5
17	490	19. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation,
18	491	and atherosclerosis in chronic renal failure. Kidney Int 1999;55(5):1899-911. doi: 10.1046/j.1523-
19	492	1755.1999.00422.x [published Online First: 1999/05/07]
20	493	20. Okyay GU, Inal S, Önec K, et al. Neutrophil to Lymphocyte Ratio in Evaluation of Inflammation in
21	494	Patients with Chronic Kidney Disease. Renal Fail 2013;35(1):29-36. doi:
22	495	10.3109/0886022X.2012.734429
23	496	21. Azab B, Zaher M, Weiserbs KF, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short-
24	497	and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol
25	498	2010:106(4):470-6. doi: 10.1016/i.amicard.2010.03.062 [published Online First: 2010/08/10]
26	499	22. Uthamalingam S. Patvardhan EA. Subramanian S. et al. Utility of the neutrophil to lymphocyte ratio in
27	500	predicting long-term outcomes in acute decompensated heart failure. Am J Cardiol
28	501	2011:107(3):433-8 doi: 10.1016/i amicard 2010.09.039 [published Online First: 2011/01/25]
29	502	23 Turkmen K Guney I Yerlikaya FH et al. The relationship between neutrophil-to-lymphocyte ratio and
30	503	inflammation in end-stage renal disease patients <i>Ren Fail</i> 2012:34(2):155-9 doi:
31 22	504	10 3109/0886022x 2011 641514 [published Online First: 2011/12/17]
2∠ 22	505	24 Masconi K Matsha TE Erasmus RT et al. Independent external validation and comparison of prevalent
37	506	diabetes risk prediction models in a mixed-ancestry population of South Africa <i>Diabetol Metab</i>
35	507	Syndr 2015.7.42, doi: 10.1186/s13098-015-0039-v [published Online First: 2015/05/20]
36	508	25 Kengne AP Erasmus RT Levitt NS et al. Alternative indices of glucose homeostasis as biochemical
37	509	diagnostic tests for abnormal glucose tolerance in an African setting <i>Prim Care Diabetes</i>
38	510	2017:11(2):119-31 doi: 10.1016/i.pcd.2017.01.004 [published Online First: 2017/01/31]
39	511	26 Chalmers I MacMahon S Mancia G et al 1999 World Health Organization-International Society of
40	512	Hypertension Guidelines for the management of hypertension Guidelines sub-committee of the
41	513	World Health Organization <i>Clinical and experimental hypertension (New York NY · 1993)</i>
42	514	1999·21(5-6):1009-60 doi: 10.3109/10641969909061028 [published Online First: 1999/07/28]
43	515	27 Alberti KG Zimmet PZ Definition diagnosis and classification of diabetes mellitus and its
44	516	complications Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO
45	517	consultation <i>Diabet Med</i> 1998:15(7):539-53 doi: 10.1002/(sici)1096-
46	518	9136(199807)15 ^{.7} <539 [.] aid-dia668>3 0 co [.] 2-s [published Online First [.] 1998/08/01]
47	519	28 Friedewald WT Levy RI Fredrickson DS Estimation of the concentration of low-density lipoprotein
48	520	cholesterol in plasma without use of the preparative ultracentrifuge. <i>Clin Chem</i> 1972:18(6):499-
49	521	502
50	522	29 Levey AS Bosch IP Lewis IB et al. A more accurate method to estimate glomerular filtration rate
51 52	523	from serum creatinine: a new prediction equation Modification of Diet in Renal Disease Study
52	524	Group Ann Intern Med 1999:130(6):461-70
55 54	525	30. Levey AS. Stevens LA. Schmid CH et al. A new equation to estimate glomerular filtration rate Ann
55	526	Intern Med 2009:150(9):604-12
56		
57		
58		20
59		20

1		
2		
2 2	527	31. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney
5	528	disease: evaluation, classification, and stratification. Ann Intern Med 2003;139(2):137-47.
6	529	[published Online First: 2003/07/16] 22 National Kidnay Foundation KDOOL Clinical Practice Cuidelines and Clinical Practice
7	53U E21	52. National Kidney Foundation. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anomia in Chronic Kidney Disease Am L Kidney Dis 2006:47(5 Suppl
8	537	3):S11-145 doi: 10.1053/j. aikd 2006.03.010 [published Online First: 2006/05/09]
9	532	33 Bessman ID Johnson RK Erythrocyte volume distribution in normal and abnormal subjects <i>Blood</i>
10	534	1975:46(3):369-79 [nublished Online First: 1975/09/01]
11	535	34. World Health Organization. A global brief on Hypertension: Silent killer, global public health crisis.
12	536	2013.
14	537	35. World Health Organisation, International Diabetes Federation, Definition and diagnosis of diabetes and
15	538	intermediate hyperglycemia. In: consultation WI, ed. Geneva, 2006.
16	539	36. Afshar R, Sanavi S, Salimi J, et al. Hematological profile of chronic kidney disease (CKD) patients in
17	540	Iran, in pre-dialysis stages and after initiation of hemodialysis. Saudi Journal of Kidney Diseases
18	541	and Transplantation 2010;21(2):368-71.
19	542	37. Akinsola A, Durosinmi MO, Akinola NO. The haematological profile of Nigerians with chronic renal
20	543	failure. <i>Afr J Med Med Sci</i> 2000;29(1):13-6. [published Online First: 2001/05/31]
21	544	38. Asif N, Hasan S, Hassan K. Hematological Changes in Patients of Chronic Renal Disease and Their
22	545	Response to Treatment with Erythropoietin. <i>Int J Pathol</i> 2015;13(1):14-19.
23	546	39. Bhattacharjee K, Das D, Rabha P, et al. A study on hematological profile in patients of chronic renal
25	547	failure with special reference to serum iron profile. Journal of Evidence based Medicine and
26	548	Healthcare 2015;2(46):8212-19.
27	549	40. Dabrowska MM, Mikula I, wiercinska-Drapalo A. The anemia prevalence and the association between
28	550	<i>LIU</i> reasonab 2012:10(2):247 51 [mubliched Online First: 2012/02/06]
29	551	HIV research 2012,10(3):247-31. [published Online First: 2012/05/06]
30	552	41. Islam MN, Feldous A, Zamu AZ, et al. Haematological Piome of Patients with Chiome Kidney Disease in Northern Bangladesh. Dinginur Mad Col 12015;8(1):21-27
31	557	12 Latiweshoh OB Elwerfaly HH Sheriff DS et al Haematological Changes in Predialyzed and
32	555	Hemodialyzed Chronic Kidney Disease nations in Libya IOSR Journal of Dental and Medical
33 24	556	Sciences 2017:16(2):106-12
34	557	43 Shisana O Labadarios D Rehle T et al The South African National Health and Nutrition Examination
36	558	Survey (SANHANES-1), 2013.
37	559	44. Drechsler M, Doring Y, Megens RT, et al. Neutrophilic granulocytes - promiscuous accelerators of
38	560	atherosclerosis. Thrombosis and haemostasis 2011;106(5):839-48. doi: 10.1160/th11-07-0501
39	561	[published Online First: 2011/10/21]
40	562	45. Nunez J, Minana G, Bodi V, et al. Low lymphocyte count and cardiovascular diseases. Curr Med Chem
41	563	2011;18(21):3226-33. [published Online First: 2011/06/16]
42	564	46. Reddan DN, Klassen PS, Szczech LA, et al. White blood cells as a novel mortality predictor in
43	565	haemodialysis patients. Nephrol Dial Transplant 2003;18(6):1167-73. [published Online First:
44 45	566	2003/05/16]
46	567	47. Solak Y, Yilmaz MI, Sonmez A, et al. Neutrophil to lymphocyte ratio independently predicts
47	568	cardiovascular events in patients with chronic kidney disease. <i>Clin Exp Nephrol</i> 2013;17(4):532-
48	569	40. doi: 10.100//s10157-012-0/28-x [published Online First: 2012/11/28]
49	570	48. An X, Mao HP, Wei X, et al. Elevated neutrophil to lymphocyte ratio predicts overall and cardiovascular
50	5/1	mortality in maintenance peritoneal dialysis patients. Int Urol Nephrol 2012;44(5):1521-8. doi: 10.1007/s11255.012.0120.2 [sublished Online First: 2012/02/01]
51	572	10.100//\$11255-012-0150-5 [published Online First: 2012/02/01]
52	575	49. Okyay OO, mai S, Onec K, et al. Neutrophil to lymphocyte faito in evaluation of inflammation in potients with chronic kidney disease <i>Pan Eail</i> 2013:25(1):20.26 doi:
53	575	10.3109/0886022x 2012.734429 [nublished Online First: $2012/11/02$]
55	575	10.5107/0000022A.2012.751127 [published Online 1 list. 2012/11/02]
56		
57		
58		21
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5 6	576 577 578	50. Agoons DD, Balti EV, Kaze FF, et al. Performance of three glomerular filtration rate estimation equations in a population of sub-Saharan Africans with Type 2 diabetes. <i>Diabet Med</i> 2016;33(9):1291-8. doi: 10.1111/dme.12996 [published Online First: 2015/10/21]
7	579	
8		
9		
10		
12		
13		
14		
15		
16 17		
18		
19		
20		
21		
22		
24		
25		
26		
27		
20		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40		
41 42		
43		
44		
45		
46 47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57 58		
59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml