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Supplementary Methods 78 

1. Univariate analyses reveal outliers and duplicate profiles in breast cancer 79 

We collated 14 mRNA abundance breast cancer datasets (Supplementary 80 

Table 2). Since these datasets originate from different studies and array 81 

platforms, comprehensive univariate analyses were performed to identify outlier 82 

datasets and to find patients duplicated across datasets. First, each dataset was 83 

pre-processed independently (Methods section: mRNA abundance and 84 

survival data pre-processing). Next, genes across all the datasets were 85 

evaluated for their prognostic ability using a univariate Cox proportional hazards 86 

model followed by the Wald-test. All the genes were subsequently ranked by the 87 

Wald-test P value within each study. The top genes across all studies were 88 

compared on multiple criterion as detailed below: 89 

1 - Rank Product 90 

The Rank Product1 of each gene was computed as: 91 

 (1) 

Here k represents the number of studies which had the mRNA abundance 92 

measure available for gene g. ri is the rank of gene g in study i. The overall 93 

ranking table was used as a benchmark to identify datasets in which a given 94 

gene was ranked farthest when its rank product was compared to studywise 95 

ranks. The farthest dataset count was computed for the overall top ranked (100, 96 

200, 300,…, 1000, 2000) genes (Supplementary Figure 3a-e). 97 

2 - Percentile ranks 98 

The P value (Wald-test) based ranking was transformed into percentile ranks 99 

within each study. These ranks were used as a measure of gene’s position with 100 

reference to the benchmark rank derived in the step 1 to evaluate deviation of 101 

genes’ ranks for each study (Supplementary Figure 3f-i). 102 
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3 - Intra- and inter-study correlation 103 

The mRNA abundance profiles of common genes across all studies were 104 

extracted and patient wise Spearman rank correlation coefficient was estimated. 105 

The correlation coefficient was used to further analyze intra- and inter-study 106 

correlation in order to identify any outlier studies (Supplementary Figure 3j-l). 107 

Using the above three assessment mechanisms datasets Li and Loi were 108 

excluded. We also used correlation between individual mRNA abundance 109 

profiles in order to identify potentially redundant patients across studies. This 110 

caters for patients which might have participated in more than one study or 111 

duplicate data used in multiple studies. The survival data of patients with 112 

extremely high correlation coefficient (Spearman’s ρ ≥ 0.98) was matched, and 113 

we found 22 samples2, 3 having identical survival time and status. These 114 

patients were removed from further analyses (Supplementary Figure 3m). 115 

Cohorts of primary colon, lung and ovarian cancer patient mRNA profiles were 116 

assembled in similar ways, however, without outlier detection due to relatively 117 

small number of publicly available datasets and no (data curation based) 118 

evidence of sample sharing between studies (Supplementary Tables 3-5). 119 

2. SIMMS’ comparison with other machine learning algorithms and 120 

genesets/pathway scoring methods 121 

In order to benchmark the prognostic ability of subnetworks by SIMMS' model N; 122 

using genes in each subnetwork, we fitted a Cox proportional hazard model 123 

using forward selection, backward elimination (R package: MASS v7.3-47), 124 

LASSO L1 regularization, and ridge regularization (R package: glmnet v2.0-10), 125 

as well as a random survival forest (R package: randomForestSRC v2.5.0). To 126 

tune the hyperparameter of the regularized Cox models and the random survival 127 

forest we applied a grid search algorithm based on cross-validation in the training 128 

sets. The final models were tested in the validation cohorts and predicted risk 129 

scores of the Cox models (and the average cumulative hazards of the random 130 

survival forest) were tested for association with patient outcome. The resulting 131 
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hazard ratios and respective P values (Wald test) are analog to those presented 132 

in Supplementary Tables 6b,7b,8b,9b obtained by SIMMS. 133 

To compare SIMMS prognostic performance against other genesets/pathway 134 

summary scoring methods, we chose four methods representing three different 135 

classes of scoring (CORGs: t-test based feature selection yielding pathway 136 

activation scores4, Guo: geneset’s summary scores5 and PCA score: geneset’s 137 

principal component scores6). Briefly, CORGs’ pathway activation scores with 138 

embedded t-statistic based feature selection were estimated using training 139 

datasets for each cancer type. Using selected features from training set, pathway 140 

activation scores were estimated for validation datasets. For CORGs, good and 141 

poor outcome samples were determined using survival time cut-off of: breast = 5 142 

years, colon = 5 years, NSCLC = 3 years and ovarian = 3 years removing any 143 

samples censored prior to the cut-off time; consistent with other analyses in this 144 

manuscript. Guo et al. scores were estimated using mean and median 145 

expression levels of genes in a given subnetwork, yielding effectively two 146 

different scores which were treated as two independent methods. PCA scores 147 

were estimated by using the first principal component as representative summary 148 

measure of genes in a subnetwork, which is analogous to estimates used in Bild 149 

et al.6 and gsdScore7. 150 

For each subnetwork scoring method, Cox proportional hazards model was fitted 151 

on training datasets and applied to predict risk scores using validation datasets. 152 

These predicted risk scores were dichotomised on training set median risk score 153 

and resulting groups were tested for association with patient outcome using Cox 154 

model. The results of Cox model were compared across various methods and 155 

SIMMS Model N. 156 

For sensitivity, ‘positive’ subnetworks were defined as those having at least three 157 

genes significantly associated with patient outcome in the training datasets 158 

(Wald-test P < 0.05). Here, mRNA abundance of each gene was dichotomised 159 

into low- and high-risk groups and tested for survival association using a 160 

univariate Cox proportional hazards model. Using validation datasets, the 161 
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proportion of correctly recovered subnetworks (Wald-test P < 0.05) by each 162 

method were regarded as true positive rate.   163 

3. SIMMS’ comparison with breast, colon, NSCLC and ovarian cancer prognostic 164 

biomarkers 165 

In order to compare the performance of SIMMS’ with existing gene expression-166 

based breast8, colon9, 10, NSCLC11-15 and ovarian16-19 cancer prognostic 167 

biomarkers, we limited our search to the studies which shared the validation 168 

datasets with those included in our analysis as validation datasets. This selection 169 

criterion enabled unbiased comparison of hazard ratios and P values between 170 

published markers and those identified by SIMMS for the same cohorts unless 171 

specified otherwise. To maintain parity, strictly gene expression-based predictors 172 

estimating hazard ratios were included for comparison with SIMMS. These 173 

results are presented in Supplementary Table 14. For breast cancer biomarker, 174 

previously published8 assessment of 9 breast cancer risk predictors were 175 

compared against the same set of ER+ breast cancer patients in Metabric 176 

Training cohort (n=801). For consistent comparison, SIMMS classifier was 177 

trained on Metabric Validation cohort, and validated on Metabric Training cohort 178 

predicting exactly the same (5-year) overall survival end-point as used by the 179 

Zhao et al8. To test the colon cancer 34-gene signature10 on TCGA cohort, this 180 

signature was re-implemented following the original protocol. Briefly, VMC and 181 

Moffitt sub-cohorts were treated as training and validation sets respectively. The 182 

validation results on the Moffitt cohort (Smith) and TCGA cohort are recorded in 183 
Supplementary Table 14. NSCLC validation was limited to lung 184 

adenocarcinomas only. Both NSCLC and ovarian cancer comparisons were 185 

performed in the similar way maintaining the validation cohorts for coherent 186 

comparison. TCGA RNA-Seq data was used as colon and ovarian cancers 187 

validation cohorts, however, panel of other markers used microarray-based 188 

profiles for these two cohorts. 189 

SIMMS identified markers of ER+ breast cancer compared favourably to nine 190 

other breast cancer markers of clinical outcome (Supplementary Table 14). 191 
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SIMMS produced the best prognostic marker for colon cancer by a wide margin 192 

compared to two other markers of patient outcome (Supplementary Table 14). 193 

Similar trend of enhanced performance was observed for NSCLC 194 

(adenocarcinomas) markers where SIMMS outperformed seven other markers in 195 
3/4 independent validation studies (Supplementary Table 14). 196 

4. SIMMS-derived PIK3CA signaling residual risk predictor in early breast cancer 197 

4.1 TEAM cohort power calculations 198 

Power calculations were performed on complete TEAM cohort (n = 3,476; events 199 

= 507) and for each of the training (n = 1,734; events = 250) and validation (n = 200 

1,742; events = 257) subsets separately. Power estimates representing the 201 

likelihood of observing a specific HR against the above-mentioned events, 202 

(assuming equal-sized patient groups) were derived using the following formula 203 

(2): 204 

 
(2) 

where E represents the total number of events (DRFS) and α represents the 205 

significance level which was set to 10-3. zpower was calculated for HR ranging from 206 

1 to 3 with steps of 0.01. 207 

4.2 mRNA abundance data processing 208 

Raw mRNA abundance counts data were pre-processed using R package 209 

NanoStringNorm20 (v1.1.16). In total, 252 pre-processing schemes were 210 

evaluated; parameterising normalization with respect to six positive controls, 211 

eight negative controls and six housekeeping genes (GUSB, PUM1, SF3A1, 212 

TBP, TFRC and TMED10) followed by global normalization. To identify the 213 
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optimal pre-processing parameters, two criteria were defined. First, each of the 214 

252 pre-processing schemes was ranked based on their ability to maximize 215 

Euclidean distance of ERBB2 mRNA abundance between HER2-positive and 216 

HER2-negative samples. The process was repeated for 1000 random subsets of 217 

HER2-positive and HER2-negative samples for each of the pre-processing 218 

schemes. Second, using 37 replicates of an RNA pool extracted from 5 randomly 219 

selected anonymized FFPE breast tumour samples, pre-processing schemes 220 

were ranked based on inter-batch variation. To this end, mixed effects linear 221 

models were used and residual estimates were used as a measure of inter-batch 222 

variation (R package: nlme v3.1-113). Cumulative ranks based on these two 223 

criteria were estimated using RankProduct1 resulting in selection of an optimal 224 

pre-processing scheme of normalisation to the geometric mean derived from all 225 

genes followed by rank normalisation. Samples with RNA content |z-score| > 6 226 

were discarded as being potential outliers. Only one sample was removed from 227 

the top pre-processing scheme. Six samples were run in duplicates, and their 228 

raw counts were averaged and subsequently treated as a single sample. Training 229 

and validation cohorts were created by randomly splitting 297 NanoString 230 

nCounter cartridges into two groups (Supplementary Table 20), which ensures 231 

that there are no batch-effects shared between the two cohorts. 232 

4.3 Survival modelling 233 

Univariate survival analysis of mRNA abundance profiles was performed by 234 

median-dichotomizing every gene’s mRNA abundance into high- and low-235 

abundance groups (Supplementary Table 16), except for ERBB2 where risk 236 
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groups were determined via expectation-maximization clustering (k=2) because 237 

of the presence of a well-established sub-population of ERBB2 expressing 238 

cancers (<15%) which are regarded as HER2/ERBB2 positive tumours. Survival 239 

analysis of clinical variables modelled age as a binary variable (dichotomized at 240 

age ≥55 as a surrogate for menopausal status), while grade, nodal status and 241 

tumour size were modelled as ordinal variables (Supplementary Table 17). For 242 

mRNA and IHC4 models, tumour size was treated as a continuous variable. 243 

Univariate survival analysis of mutational profiles (AKT1, PIK3CA and RAS;21) 244 

was performed by dichotomizing patients into mutant and wild-type groups. 245 

Risk score profiles (Methods) of patients in the Training cohort were used to fit a 246 

multivariate Cox proportional hazards model alongside clinical variables. Given 247 

the small number of variables to select from (continuous = 9, factors = 3) and a 248 

mix of continuous and ordinal variables, we chose backwards step-wise 249 

refinement algorithm (AIC penalty term: k = 1 degrees of freedom) and created a 250 

module-based risk model (Supplementary Table 19). The parameters estimated 251 

by the multivariate model (Training cohort) were applied to the patients in the 252 

Validation cohort generating per-patient risk score. These risk scores 253 

(continuous) were grouped into quartiles using the thresholds derived from the 254 

Training cohort, and resulting groups were subsequently evaluated through 255 

Kaplan-Meier analysis. All models were trained and validated using DRFS 256 

truncated to 10 years as an end-point. All survival modelling was performed in 257 

the R statistical environment (R package: survival v2.37-4). 258 
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4.4 IHC4 model 259 

IHC4-protein risk scores were calculated as described by Cuzick et al.22, and 260 

then adjusted for clinical covariates (age, nodal status, grade and tumour size). 261 

Model predictions (continuous risk scores) were separated into quartiles (Figure 262 

5c) and analysed using Kaplan-Meier analysis and multivariate Cox proportional 263 

hazards model adjusted for clinical variables.  264 

4.5 Recurrence probabilities 265 

Recurrence probabilities at 5 years were estimated by binning the predicted risk 266 

scores in 25 equal groups. For each group, recurrence probability R(t) was 267 

estimated as 1-S(t), where S(t) is the Kaplan-Meier survival estimate at year 5. 268 

The R(t) estimates of 25 groups were smoothed using local polynomial regression 269 

fit. The predicted estimates were plotted against the median risk score of each 270 

group except the first and last group, where the lowest risk score and 99th 271 

percentile were used, respectively.  272 

4.6 Performance Assessment 273 

Performance of survival models was compared through area under the receiver 274 

operating characteristic (ROC) curve. Significance of difference between the 275 

ROC curves was assessed through permutation analysis (10,000 permutations 276 

by shuffling the risk scores while maintaining the order of survival objects). 277 

Patients censored before 5 years (Training cohort: n = 192, Validation cohort: n = 278 

181) were eliminated from sampling. For percentage concordance analysis, 279 

patients with a relapse (after removing the afore-mentioned patients) were 280 

considered as high risk and the rest of the patients were classed as low risk 281 
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patients. Median dichotomised risk groups determined by PIK3CA predictor and 282 

IHC4 predictor were compared against the high and low risk patients. The 283 

percentage of predictions matching the high and low risk groups were regarded 284 

as concordant. ROC analysis was implemented using R packages pROC 285 

(v1.6.0.1) and survivalROC (v1.0.3). Using the same median dichotomised risk 286 

groups and actual high and low risk groups, Net reclassification improvement for 287 

PIK3CA predictor over IHC4 predictor was estimated using the R package 288 

PredictABEL (v1.2-1). 289 

4.7 Prognostic assessment of SIMMS PI3K modules signature in CT+/- groups 290 

SIMMS-derived PI3K modules signature was evaluated in chemotherapy-291 

stratified groups without the prior knowledge of nodal status. Patients in the 292 

highest risk quartile (Q4) showed significantly decreased survival rate compared 293 

to low risk patients, independent of whether they received chemotherapy (Q4 vs. 294 

Q1 HR=11.07, 95%CI: 3.47-35.26; P=5.29x10-11) (Supplementary Figure 24e) 295 

or did not (Q4 vs. Q1 HR=9.74 95%CI: 5.58-17.02; P=1.66x10-29) 296 

(Supplementary Figure 24f). 297 

5. Modelling multi-modal datatypes using SIMMS  298 

Recent studies conducted by TCGA have generated datasets on matched 299 

genomic and transcriptomic profiles including mutations, copy-number aberration 300 

(CNA), DNA methylation and mRNA abundance17, 23. These datasets can 301 

potentially lead to the discovery of new biomarkers bridging the gap between 302 

multi-modal molecular features and clinical covariates. To test this, we curated 303 

previously published pathway modules (MEMo24) from TCGA studies harbouring 304 

multiple aberrations (e.g. somatic mutations, somatic copy-number aberrations, 305 

dysreulated mRNA abundance levels, and DNA methylation levels)17, 25-27. The 306 
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combined database was composed of 23 breast, 1 colorectal, 8 kidney renal 307 

clear cell and 3 ovarian cancer modules (Supplementary Table 21). Using these 308 

modules, SIMMS’ (Model N) breast cancer risk predictors were created using 309 

1000 randomly generated subsets (50% samples) of Metabric cohort and 310 

validated on the held-out Metabric subsets as well as TCGA breast cancer 311 

cohort. Similarly, 1000 randomly generated subsets (50% samples) of TCGA 312 

colorectal, kidney renal clear cell carcinoma and ovarian cancers were used to 313 

train and validate (50% held-out samples) the prognostic ability of each of the 314 

subnetwork modules. The results of 1000 models per cancer type were 315 

summarised using Fisher’s method (Fisher's combined probability test) resulting 316 

in a chi-square estimate and a P value. We used molecular features based on 317 

mRNA and CNA as gene-level properties. Copy number levels -2 (homozygous 318 

deletion) and -1 (heterozygous deletion) were collapsed into one group, whilst 319 

gene copy-number levels 1 (gain) and 2 (amplification) were collapsed into a 320 

single group. Copy-number levels were modelled using Cox proportional hazards 321 

model and compared against the baseline copy number of 0 (diploid). Additional 322 

filter of minimum 3% copy-number aberration frequency in the cohort in at least 323 

one group (gain/amplification and deletion) was applied prior to estimating 324 

parameters for each gene, failing which would mean gene’s copy-number 325 

changes would not contribute to SIMMS’ risk scores. Overall survival was used 326 

as survival end-point for all cancer types analysed in the multi-modal modelling. 327 

6. SIMMS R package 328 

SIMMS is implemented in R and is available under the GNU General Public 329 

License (GPL) version 2 through CRAN: https://cran.r-330 

project.org/web/packages/SIMMS. SIMMS is generic and can work with any 331 

combination of molecular features and interaction networks. It provides an 332 

extendible framework to support user-defined parameter estimation and 333 

classification algorithms. The R package of SIMMS offers three key features: (i) 334 

support for multiple datatypes (mRNA, methylation, CNA etc), (ii) support for 335 

user-defined networks, and (iii) support for user-defined methods for quantifying 336 

dysregulation of a subnetwork. For (i), users can supply the location and names 337 
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of the files they would like to analyze with SIMMS. For (ii), a text file describing 338 

networks in a tab-delimited format can be supplied as an input to SIMMS, see 339 

pathway_based_networks*.txt files that comes as a part of R package. For (iii), 340 

the package offers an interface function ‘derive.network.features’ that accepts a 341 

parameter ‘feature.selection.fun’ for user-defined function name (see code 342 

snippet below). By default, the function ‘calculate.network.coefficients’ is called to 343 

estimate MDS and risk scores for Mode N, Model E and Mode N+E as described 344 

in this paper. However, users can easily write their own algorithms and simply 345 

use them with SIMMS as a plug and play component. For details, see package 346 

manual and vignettes. 347 

 348 
derive.network.features <- function( 349 

data.directory = ".",  350 
output.directory = ".",  351 
data.types = c("mRNA"),  352 
feature.selection.fun = "calculate.network.coefficients",  353 
feature.selection.datasets = NULL,  354 
feature.selection.p.thresholds = c(0.05),  355 

subset = NULL, ...  356 

); 357 

358 
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Supplementary Figure Legends 359 

 360 

Supplementary Figure 1  361 

Schematic overview of SIMMS. Subnetwork modules were extracted from NCI-362 

Nature/Biocarta/Reactome curated pathways by isolating protein-protein 363 

interaction networks within a pathway. Molecular profiles were systemised and 364 

split into independent training and validation sets. Each extracted subnetwork 365 

was scored (module-dysregulation score) using 3 different models and ranked. 366 

High-ranking subnetworks were used to compute a patient-wise risk score. Most 367 

optimal combination of predictive subnetworks was selected using a machine 368 
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learning algorithm with built-in options of generalized linear models with elastic-369 

nets parameter alpha (α) supporting ridge to LASSO L1-regularization (α ∈ [0,1]), 370 

Backward elimination and Forward selection algorithms, resulting in a 371 

multivariate subnetwork-based classifier. The classifier is then tested on 372 

independent validation sets. 373 

 374 

 375 

Supplementary Figure 2 376 

Summary of pathways database. Distribution of nodes (a) and edges (b) 377 

across all subnetwork modules extracted from NCI-Nature curated pathways 378 

(Reactome and Biocarta inclusive). 379 
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Supplementary Figure 3 381 

Quality assessment and identification of repeated patient profiles. (a,b,c) A 382 

univariate Cox model was fit to each gene in each study in the breast cancer 383 

cohort. Genes were ranked according to their P value (Wald-test), and a 384 

cumulative rank for all the genes was estimated using the rank product for each 385 

gene. The top ranked 100 (a), 500 (b) and 1,000 (c) genes were used to identify 386 

the study in which each gene was farthest away from the cumulative rank. The 387 

frequency of a study being farthest was recorded for each of the top ranked 100, 388 

500 and 1,000 genes. Li and Loi datasets seem to be notable outliers. As the 389 

threshold is relaxed, Sabatier dataset also begins to show deviation compared to 390 

other datasets. 391 

 392 

(d) Heatmap showing a summary of barplots (a-c) of the top ranked (rank 393 

product) 100 to 2000 genes with the percentage measure as the frequency of 394 

each dataset being the farthest from the rank product of top n genes. The 395 

covariates represent different microarray platforms: HG-U95AV2=purple, HTHG-396 

U133A=green, HG-U133A=red, HG-U133-PLUS2=yellow. 397 

 398 

(e) 4-way Venn diagram representing overlap of genes across the four Affymetrix 399 

array platforms used in the 14 breast cancer datasets included in this study. Note 400 

that the Bild dataset (array platform: HG-U95AV2) has the least number of genes 401 

(8,260) with 8,052 genes that exist across all array platforms. The analysis in a-d 402 

was done on this common gene set only. 403 

 404 

(f,g,h) Gene ranks transformed into percentile ranks within all studies. The rank 405 

product based top 100 (f), 500 (g), and 1,000 (h) genes shown in terms of their 406 

percentile rank within each study. Li, Loi and Chin datasets clustered together 407 

and had lower percentile ranks compared to other datasets. However, Sabatier’s 408 

percentile ranks were similar to other datasets thereby deemed suitable for 409 

inclusion in this study. 410 

 411 
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(i) Summary heatmap of percentile ranks across all studies, ordered by groups of 412 

genes common across studies, thereby maintaining coherent comparison of 413 

ranks. 414 

 415 
(j) Heatmap of Spearman correlation between patients’ mRNA abundance 416 

profiles. Loi dataset quite clearly shows weak correlation with the other datasets, 417 

again reflecting unusual expression patterns compared to other datasets. 418 

 419 

(k,l) Box-whisker plots of intra- (k) and inter-study (l) correlation between 420 

patients’ mRNA abundance profiles. The results show distinctively strong 421 

correlation within Loi dataset (k) and weak correlation between Loi and other 422 

datasets (l). Boxplot lines show lower quartile, median and upper quartile. 423 

Whiskers extend to the point closest to the upper/lower quartile ± (1.5 x IQR). 424 

 425 

(m) Histogram of Spearman correlation of patients’ mRNA abundance profiles. 426 

From left to right, the first peak represents correlation between Loi and other 427 

datasets. The second peak represents correlation between Bild and other 428 

datasets, while the third peak constitutes the correlation between the remaining 429 

datasets. The survival data of highly correlated profiles (zoomed in panel, 0.98 ≤ 430 

ρ ≤ 1.00) was further inspected, resulting in 22 patients that were found in both 431 

Sotiriou and Symmans (JBI) datasets having identical survival data. These were 432 

removed from Symmans (JBI) dataset for further analysis. 433 
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 434 

 435 

Supplementary Figure 4  436 

Distribution of prognostic ability versus the size of subnetworks. (a-c) For 437 

each of the three scoring schemes i.e. Model N+E, Model N and Model E (see 438 

Methods), distribution of subnetwork size for prognostic (P) (Wald test P < 0.05; 439 

validation cohorts) and not prognostic (NP) subnetwork modules. Size of a 440 

subnetwork was defined in terms of number of nodes and number of edges. 441 

Pairwise comparisons were performed using Wilcox rank sum test (* P<0.05, ** 442 

P<0.01, *** P<0.001, N.S P>0.1). Boxplot lines show lower quartile, median and 443 

upper quartile. Whiskers extend to the point closest to the upper/lower quartile ± 444 

(1.5 x IQR). 445 
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 446 

 447 

Supplementary Figure 5 448 

Prognostic ability of SIMMS’ models (a) Distribution of prognostic ability (-449 

log10P) of subnetwork modules which were significant (Wald test P < 0.05) in at 450 

least one scoring scheme (Model N+E, Model N and Model E), in respective 451 

cancer type. -log10P values were compared using one-way ANOVA (P < 0.05) 452 

followed by Tukey HSD test. Tukey HSD test’s adjusted P values for only Model 453 

N vs Model N+E and Model E are displayed (* P<0.05, ** P<0.01, *** P<0.001). 454 

Boxplot lines show lower quartile, median and upper quartile. Whiskers extend to 455 

the point closest to the upper/lower quartile ± (1.5 x IQR). 456 
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 457 

 458 

Supplementary Figure 6 459 

Comparison of subnetwork scoring methods. Sensitivity assessment of 460 

correctly recovered ‘positive’ subnetwork modules (those likely to be associated 461 

with patient outcome) by various subnetwork/pathway scoring methods. Height of 462 

each bar represents total number of ‘positive’ subnetworks, while the blue colour 463 

shows proportion of correctly recovered ‘positive’ subnetworks. Numbers above 464 

the bars represent % true positive rate. 465 



Haider et al. 

Page 23 of 45 

 466 



Haider et al. 

Page 24 of 45 

Supplementary Figure 7 467 

Prognostic assessment of SIMMS’ predicted risk scores. Dot plot of hazard 468 

ratios and P values of subnetwork modules significant in at least 2/4 cancer 469 

types. A Cox proportional hazards model was fitted to dichotomous risk scores 470 

(threshold derived from the training cohort) across the entire validation cohort. 471 

Crosses represent absence of subnetwork module from a particular cancer type. 472 

 473 

 474 

Supplementary Figure 8 475 

Prognostic assessment of mutation burden. Dot plot of hazard ratios and P 476 

values of subnetwork modules in Figure 1i. Using TCGA datasets for breast, 477 

colorectal, lung adenocarcinoma and ovarian cancers; for each of these 478 

subnetwork modules (using mutations in genes involved), patients were assigned 479 

to mutant group if any gene in the subnetwork was mutated, otherwise to non-480 

mutant group. A Cox proportional hazards model was fitted to test association of 481 

these groups with patient outcome. 482 
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 483 

Supplementary Figure 9 484 

Overlap of genes in subnetworks with both prognostic and predictive 485 

ability. Upset plot showing overlap of genes between subnetworks which 486 

showed significant prognostic as well as predictive (platinum response) 487 

association in TCGA ovarian cancer cohort. 488 
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 490 

Supplementary Figure 10 491 

Overlap of genes in cell cycle subnetwork modules, and prognostic 492 

assessment of immune and stromal scores. (a) Venn diagram showing 493 

overlapping genes between proliferation subnetwork modules derived from the 494 

pathways of Aurora A signaling (module 1), Aurora B signaling (module 1), PLK1 495 

signaling events (module 1) and Mitotic Telophase/Cytokinesis (module 1). The 496 

maximal overlap was of a single gene (AURKA) common across three modules 497 

(Aurora A, Aurora B and PLK1 modules). Module number in parenthesis refers to 498 

unique module number within a pathway in SIMMS’ network database (SIMMS R 499 

package). (b, c) Prognostic assessment of Immuno and Stromal scores 500 

estimated using ESTIMATE in Affymetrix based breast cancer validation cohorts 501 

(Supplementary Table 2). (d, e) Prognostic assessment of Immuno and Stromal 502 

scores estimated using ESTIMATE in Illumina based Metabric breast cancer 503 
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cohort. For b-e, patient groups (Q1-Q4) were created using quantiles of 504 

Immuno/Stromal scores. 505 

 506 
 507 

Supplementary Figure 11 508 

Resampling of subnetworks database assessing sensitivity to initialisation 509 

size of SIMMS’ multivariate models. Performance (SIMMS Model N) of breast, 510 

colon, NSCLC and ovarian cancer candidate biomarkers represented as a 511 

function of marker size. Jackknifing was performed over the subnetwork marker 512 

space for various tumour types. Ten million unique markers (200,000 for each 513 

marker size n=5,10,15,…,250) were randomly sampled using all 500 514 

subnetworks regardless of their size. All biomarkers were generated using two 515 

independent machine learning paradigms; backward elimination and forward 516 

selection. The prognostic performance of each candidate biomarker was 517 

measured by taking the absolute value of the log2-transformed hazard ratio 518 
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estimated with a multivariate Cox proportional hazards model based on SIMMS 519 

Model N scores. These randomization results depict a range of prognostic 520 

performance between 75th and 95th percentiles at each marker size and were 521 

used as a guide to estimate the optimal top n number of subnetwork modules 522 

required to establish a multivariate classifier for a given tumour type. 523 

 524 

 525 

Supplementary Figure 12 526 

Co-expression of subnetwork risk scores in breast cancer. Heatmap of 527 

correlation and cluster analysis of patient’s risk score of top ranked 50 528 

subnetwork modules of breast cancer (validation datasets only). The plot 529 

displays activity of subnetworks as well as clusters of highly co-expressed 530 

modules as indicated in dark red clusters. 531 
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 533 

Supplementary Figure 13 534 

Co-expression of subnetwork risk scores in colon cancer. Heatmap of 535 

correlation and cluster analysis of patients’ risk score of top ranked 75 536 

subnetwork modules of colon cancer (validation datasets only). The plot displays 537 

biological activity of subnetworks as well as clusters of highly co-expressed 538 

modules as indicated in dark red clusters.  539 
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 540 

 541 

Supplementary Figure 14 542 

Co-expression of subnetwork risk scores in NSCLC. Heatmap of correlation 543 

and cluster analysis of patients’ risk score of top ranked 25 subnetwork modules 544 

of NSCLC (validation datasets only). The plot displays biological activity of 545 

subnetworks as well as clusters of highly co-expressed modules as indicated in 546 

dark red clusters.  547 
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 549 

Supplementary Figure 15 550 

Co-expression of subnetwork risk scores in ovarian cancer. Heatmap of 551 

correlation and cluster analysis of patients’ risk score of top ranked 50 552 

subnetwork modules of ovarian cancer (validation datasets only). The plot 553 

displays biological activity of subnetworks as well as clusters of highly co-554 

expressed modules as indicated in dark red clusters. 555 
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 557 

Supplementary Figure 16 558 

Independent validation in breast cancer cohorts. Kaplan-Meier survival plots 559 

using SIMMS’ Model N on 6 breast cancer validation sets (Supplementary 560 

Table 2) (10-year survival truncation) with subnetwork module selection 561 

performed through generalized linear models with L1-regularization (10-fold 562 

cross validation on training set). Model was initialised with the top ranked 50 563 

subnetwork modules. 564 
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 566 

Supplementary Figure 17 567 

Independent validation in colon cancer cohorts. Kaplan-Meier survival plots 568 

using SIMMS’ Model N on 2 colon cancer validation sets (Supplementary Table 569 

3) (6-year survival truncation) with subnetwork module selection performed 570 

through generalized linear models with L1-regularization (10-fold cross validation 571 

on training set). Model was initialised with the top ranked 75 subnetwork 572 

modules. 573 
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 574 

Supplementary Figure 18 575 

Independent validation in NSCLC cohorts. Kaplan-Meier survival plots using 576 

SIMMS’ Model N on 6 NSCLC validation sets (Supplementary Table 4) (5-year 577 

survival truncation) with subnetwork module selection performed through 578 

generalized linear models with L1-regularization (10-fold cross validation on 579 

training set). Model was initialised with the top ranked 25 subnetwork modules. 580 

 581 

 582 
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 583 

 584 

Supplementary Figure 19 585 

Independent validation in ovarian cancer cohorts. Kaplan-Meier survival plots 586 

using SIMMS’ Model N on 3 ovarian cancer validation sets (Supplementary 587 

Table 5) (5-year survival truncation) with subnetwork module selection performed 588 

through generalized linear models with L1-regularization (10-fold cross validation 589 

on training set). Model was initialised with the top ranked 50 subnetwork 590 

modules. 591 

 592 

 593 

 594 
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 596 

Supplementary Figure 20 597 

Assessment of alternative machine learning algorithms. Kaplan-Meier 598 

survival plots of SIMMS’ Model N in validation cohorts of various tumour types 599 

using alternative training algorithms; backwards elimination (a-d) and forward 600 

selection (e-h). 601 
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 603 

Supplementary Figure 21 604 

Prognostic assessment of naïve and SIMMS model with all the genes in the 605 

subnetwork database. Kaplan-Meier survival plots of validation sets in each 606 

tumour type (a-d) for a Cox proportional hazard model using LASSO (L1-607 

regularization) with all genes contained in any subnetwork as model variables. 608 

(e-h) Kaplan-Meier survival plots of validation sets in each tumour type for a Cox 609 

proportional hazard model fitted using risk scores estimated by SIMMS on a 610 

single module containing all the genes across all subnetworks. 611 

 612 
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 614 

Supplementary Figure 22 615 

Reproducibility of SIMMS’ models across mRNA quantification platforms. 616 

Kaplan-Meier survival plots of SIMMS’ Model N based predictions on the 617 

Metabric validation cohort. Separate classifiers were created using the Affymetrix 618 

based breast cancer training cohorts (Supplementary Table 2) and Illumina 619 

based breast cancer cohort (Metabric training set). These two classifiers were 620 
validated on Illumina based breast cancer cohort (Metabric validation set) (a,b) 621 

and Affymetrix based breast cancer validation cohorts, respectively (c). All 622 

models were trained in 10-fold cross validation setting. 623 
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 624 
 625 

Supplementary Figure 23 626 

Schematic overview of the PI3K signalling pathway. Figure illustrating key 627 

relationships between modules assessed in the current study. Modules 1-7 are 628 

highlighted with key signalling inter-relationships between the member genes. 629 
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 631 

Supplementary Figure 24 632 

Validation of SIMMS’ PI3K risk predictor. (a) Prognostic assessment of 633 

SIMMS’ PI3K risk predictor by median-dichotomizing predicted risk scores into 634 

low- and high-risk groups. (b) Prognostic assessment of model in (a) stratified by 635 

PIK3CA mutations. Patients were classified into low- and high-risk groups, and 636 
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each was further divided by PIK3CA mutant (+) and wild-type (-) status. (c-d) 637 

Prognostic assessment of PI3K predictor on patients which were not treated with 638 

chemotherapy and were further stratified into node –ve and node +ve groups. (e, 639 

f) Prognostic performance assessment in patients with- and without 640 

chemotherapy arms of the validation cohort. Within each subgroup, risk score 641 

quartiles Q2-Q4 were compared against Q1 using Cox proportional hazards 642 

modelling and the log-rank test. (g) Validation of SIMMS’ PI3K risk predictor 643 

(FFPE samples trained model) on ER+ subset of Metabric cohort (fresh frozen 644 

samples). Risk scores of Metabric samples were dichotomised using median risk 645 

score derived from TEAM cohort. 646 
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 647 

 648 

Supplementary Figure 25 649 

Multi-modal assessment of SIMMS. Multi-modal prognostic biomarkers for 650 

breast, colon, kidney and ovarian cancers. (a) Dot plot of summarised (Fisher’s 651 

combined probability test) chi-square estimates and P values for each of the 652 

MEMo derived cancer-type specific subnetwork modules (Mx) (Supplementary 653 

Methods section 5, Supplementary Table 21). Covariates represent colours of 654 

each cancer type. Size of the dot represents log(chi-square) estimate resulting 655 

from the meta-analysis of Cox P values (1000 random subsets for each profile in 656 

each cancer type). A Cox proportional hazards model was fitted to dichotomous 657 

risk scores across the entire validation cohort to assess survival association of 658 

predicted risk groups. Crosses represent absence of a module from a particular 659 

cancer type. (b, c) Performance comparison of multi-modal prognostic models 660 
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(Merged mRNA+CNA) against CNA models (b) and mRNA models (c) in each 661 

cancer type using MEMo modules of that particular cancer. Within each cancer 662 

type, modules are sorted by the largest fold-change in chi-squared values; with 663 

positive values indicating improved prognostication by the multi-modal model 664 

over CNA or mRNA models. 665 

 666 

667 
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