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Supplementary Methods

1. Univariate analyses reveal outliers and duplicate profiles in breast cancer

We collated 14 mRNA abundance breast cancer datasets (Supplementary
Table 2). Since these datasets originate from different studies and array
platforms, comprehensive univariate analyses were performed to identify outlier
datasets and to find patients duplicated across datasets. First, each dataset was
pre-processed independently (Methods section: mRNA abundance and
survival data pre-processing). Next, genes across all the datasets were
evaluated for their prognostic ability using a univariate Cox proportional hazards
model followed by the Wald-test. All the genes were subsequently ranked by the
Wald-test P value within each study. The top genes across all studies were

compared on multiple criterion as detailed below:
1 - Rank Product

The Rank Product' of each gene was computed as:

k 1
RP, =) log(r, ¥ (1)
=l
Here k represents the number of studies which had the mRNA abundance
measure available for gene g. r; is the rank of gene g in study i. The overall
ranking table was used as a benchmark to identify datasets in which a given
gene was ranked farthest when its rank product was compared to studywise
ranks. The farthest dataset count was computed for the overall top ranked (100,
200, 300,..., 1000, 2000) genes (Supplementary Figure 3a-e).

2 - Percentile ranks

The P value (Wald-test) based ranking was transformed into percentile ranks
within each study. These ranks were used as a measure of gene’s position with
reference to the benchmark rank derived in the step 1 to evaluate deviation of
genes’ ranks for each study (Supplementary Figure 3f-i).

Page 4 of 45



103

104
105
106
107

108
109
110
111
112
113

114
115

116
117
118
119

120
121

122
123
124
125
126
127
128
129
130
131

Haider et al.

3 - Intra- and inter-study correlation

The mRNA abundance profiles of common genes across all studies were
extracted and patient wise Spearman rank correlation coefficient was estimated.
The correlation coefficient was used to further analyze intra- and inter-study
correlation in order to identify any outlier studies (Supplementary Figure 3j-I).

Using the above three assessment mechanisms datasets Li and Loi were
excluded. We also used correlation between individual mRNA abundance
profiles in order to identify potentially redundant patients across studies. This
caters for patients which might have participated in more than one study or
duplicate data used in multiple studies. The survival data of patients with
extremely high correlation coefficient (Spearman’s p > 0.98) was matched, and
we found 22 samples® ® having identical survival time and status. These

patients were removed from further analyses (Supplementary Figure 3m).

Cohorts of primary colon, lung and ovarian cancer patient mRNA profiles were
assembled in similar ways, however, without outlier detection due to relatively
small number of publicly available datasets and no (data curation based)

evidence of sample sharing between studies (Supplementary Tables 3-5).

2. SIMMS’ comparison with other machine learning algorithms and
genesets/pathway scoring methods

In order to benchmark the prognostic ability of subnetworks by SIMMS' model N;
using genes in each subnetwork, we fitted a Cox proportional hazard model
using forward selection, backward elimination (R package: MASS v7.3-47),
LASSO L1 regularization, and ridge regularization (R package: gimnet v2.0-10),
as well as a random survival forest (R package: randomForestSRC v2.5.0). To
tune the hyperparameter of the regularized Cox models and the random survival
forest we applied a grid search algorithm based on cross-validation in the training
sets. The final models were tested in the validation cohorts and predicted risk
scores of the Cox models (and the average cumulative hazards of the random

survival forest) were tested for association with patient outcome. The resulting
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hazard ratios and respective P values (Wald test) are analog to those presented
in Supplementary Tables 6b,7b,8b,9b obtained by SIMMS.

To compare SIMMS prognostic performance against other genesets/pathway
summary scoring methods, we chose four methods representing three different
classes of scoring (CORGs: t-test based feature selection yielding pathway
activation scores*, Guo: geneset's summary scores® and PCA score: geneset’s
principal component scorese). Briefly, CORGs’ pathway activation scores with
embedded t-statistic based feature selection were estimated using training
datasets for each cancer type. Using selected features from training set, pathway
activation scores were estimated for validation datasets. For CORGs, good and
poor outcome samples were determined using survival time cut-off of: breast = 5
years, colon = 5 years, NSCLC = 3 years and ovarian = 3 years removing any
samples censored prior to the cut-off time; consistent with other analyses in this
manuscript. Guo et al. scores were estimated using mean and median
expression levels of genes in a given subnetwork, yielding effectively two
different scores which were treated as two independent methods. PCA scores
were estimated by using the first principal component as representative summary
measure of genes in a subnetwork, which is analogous to estimates used in Bild
et al.® and gsdScore’.

For each subnetwork scoring method, Cox proportional hazards model was fitted
on training datasets and applied to predict risk scores using validation datasets.
These predicted risk scores were dichotomised on training set median risk score
and resulting groups were tested for association with patient outcome using Cox
model. The results of Cox model were compared across various methods and
SIMMS Model N.

For sensitivity, ‘positive’ subnetworks were defined as those having at least three
genes significantly associated with patient outcome in the training datasets
(Wald-test P < 0.05). Here, mRNA abundance of each gene was dichotomised
into low- and high-risk groups and tested for survival association using a

univariate Cox proportional hazards model. Using validation datasets, the
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proportion of correctly recovered subnetworks (Wald-test P < 0.05) by each

method were regarded as true positive rate.

3. SIMMS’ comparison with breast, colon, NSCLC and ovarian cancer prognostic
biomarkers
In order to compare the performance of SIMMS’ with existing gene expression-

19 NsScLC'® and ovarian'®'® cancer prognostic

based breast®, colon®
biomarkers, we limited our search to the studies which shared the validation
datasets with those included in our analysis as validation datasets. This selection
criterion enabled unbiased comparison of hazard ratios and P values between
published markers and those identified by SIMMS for the same cohorts unless
specified otherwise. To maintain parity, strictly gene expression-based predictors
estimating hazard ratios were included for comparison with SIMMS. These
results are presented in Supplementary Table 14. For breast cancer biomarker,
previously published® assessment of 9 breast cancer risk predictors were
compared against the same set of ER+ breast cancer patients in Metabric
Training cohort (n=801). For consistent comparison, SIMMS classifier was
trained on Metabric Validation cohort, and validated on Metabric Training cohort
predicting exactly the same (5-year) overall survival end-point as used by the
Zhao et al®. To test the colon cancer 34-gene signature'® on TCGA cohort, this
signature was re-implemented following the original protocol. Briefly, VMC and
Moffitt sub-cohorts were treated as training and validation sets respectively. The
validation results on the Moffitt cohort (Smith) and TCGA cohort are recorded in
Supplementary Table 14. NSCLC \validaton was Ilimited to lung
adenocarcinomas only. Both NSCLC and ovarian cancer comparisons were
performed in the similar way maintaining the validation cohorts for coherent
comparison. TCGA RNA-Seq data was used as colon and ovarian cancers
validation cohorts, however, panel of other markers used microarray-based
profiles for these two cohorts.

SIMMS identified markers of ER+ breast cancer compared favourably to nine
other breast cancer markers of clinical outcome (Supplementary Table 14).
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SIMMS produced the best prognostic marker for colon cancer by a wide margin

compared to two other markers of patient outcome (Supplementary Table 14).
Similar trend of enhanced performance was observed for NSCLC

(adenocarcinomas) markers where SIMMS outperformed seven other markers in
3/4 independent validation studies (Supplementary Table 14).

4. SIMMS-derived PIK3CA signaling residual risk predictor in early breast cancer

4.1 TEAM cohort power calculations

Power calculations were performed on complete TEAM cohort (n = 3,476; events
= 507) and for each of the training (n = 1,734; events = 250) and validation (n =
1,742; events = 257) subsets separately. Power estimates representing the
likelihood of observing a specific HR against the above-mentioned events,
(assuming equal-sized patient groups) were derived using the following formula
(2):

2
= BTy ()

where E represents the total number of events (DRFS) and a represents the

significance level which was set to 107, Zyower Was calculated for HR ranging from

1 to 3 with steps of 0.01.

4.2 mRNA abundance data processing

Raw mRNA abundance counts data were pre-processed using R package
NanoStringNorm?®  (v1.1.16). In total, 252 pre-processing schemes were
evaluated; parameterising normalization with respect to six positive controls,
eight negative controls and six housekeeping genes (GUSB, PUM1, SF3Af,

TBP, TFRC and TMED10) followed by global normalization. To identify the
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optimal pre-processing parameters, two criteria were defined. First, each of the
252 pre-processing schemes was ranked based on their ability to maximize
Euclidean distance of ERBB2 mRNA abundance between HER2-positive and
HER2-negative samples. The process was repeated for 1000 random subsets of
HER2-positive and HERZ2-negative samples for each of the pre-processing
schemes. Second, using 37 replicates of an RNA pool extracted from 5 randomly
selected anonymized FFPE breast tumour samples, pre-processing schemes
were ranked based on inter-batch variation. To this end, mixed effects linear
models were used and residual estimates were used as a measure of inter-batch
variation (R package: nlme v3.1-113). Cumulative ranks based on these two
criteria were estimated using RankProduct’ resulting in selection of an optimal
pre-processing scheme of normalisation to the geometric mean derived from all
genes followed by rank normalisation. Samples with RNA content |z-score| > 6
were discarded as being potential outliers. Only one sample was removed from
the top pre-processing scheme. Six samples were run in duplicates, and their
raw counts were averaged and subsequently treated as a single sample. Training
and validation cohorts were created by randomly splitting 297 NanoString
nCounter cartridges into two groups (Supplementary Table 20), which ensures

that there are no batch-effects shared between the two cohorts.

4.3 Survival modelling
Univariate survival analysis of mRNA abundance profiles was performed by
median-dichotomizing every gene’s mRNA abundance into high- and low-

abundance groups (Supplementary Table 16), except for ERBB2 where risk

Page 9 of 45



237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

Haider et al.

groups were determined via expectation-maximization clustering (k=2) because
of the presence of a well-established sub-population of ERBBZ2 expressing
cancers (<15%) which are regarded as HER2/ERBB2 positive tumours. Survival
analysis of clinical variables modelled age as a binary variable (dichotomized at
age =55 as a surrogate for menopausal status), while grade, nodal status and
tumour size were modelled as ordinal variables (Supplementary Table 17). For
MRNA and IHC4 models, tumour size was treated as a continuous variable.
Univariate survival analysis of mutational profiles (AKT7, PIK3CA and RAS;21)
was performed by dichotomizing patients into mutant and wild-type groups.

Risk score profiles (Methods) of patients in the Training cohort were used to fit a
multivariate Cox proportional hazards model alongside clinical variables. Given
the small number of variables to select from (continuous = 9, factors = 3) and a
mix of continuous and ordinal variables, we chose backwards step-wise
refinement algorithm (AIC penalty term: k = 1 degrees of freedom) and created a
module-based risk model (Supplementary Table 19). The parameters estimated
by the multivariate model (Training cohort) were applied to the patients in the
Validation cohort generating per-patient risk score. These risk scores
(continuous) were grouped into quartiles using the thresholds derived from the
Training cohort, and resulting groups were subsequently evaluated through
Kaplan-Meier analysis. All models were trained and validated using DRFS
truncated to 10 years as an end-point. All survival modelling was performed in

the R statistical environment (R package: survival v2.37-4).
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4.4 [HC4 model

IHC4-protein risk scores were calculated as described by Cuzick et al.??, and
then adjusted for clinical covariates (age, nodal status, grade and tumour size).
Model predictions (continuous risk scores) were separated into quartiles (Figure
5¢) and analysed using Kaplan-Meier analysis and multivariate Cox proportional

hazards model adjusted for clinical variables.

4.5 Recurrence probabilities

Recurrence probabilities at 5 years were estimated by binning the predicted risk
scores in 25 equal groups. For each group, recurrence probability Ry was
estimated as 1-Sy, where Sy is the Kaplan-Meier survival estimate at year 5.
The Ry estimates of 25 groups were smoothed using local polynomial regression
fit. The predicted estimates were plotted against the median risk score of each
group except the first and last group, where the lowest risk score and 99th

percentile were used, respectively.

4.6 Performance Assessment

Performance of survival models was compared through area under the receiver
operating characteristic (ROC) curve. Significance of difference between the
ROC curves was assessed through permutation analysis (10,000 permutations
by shuffling the risk scores while maintaining the order of survival objects).
Patients censored before 5 years (Training cohort: n = 192, Validation cohort: n =
181) were eliminated from sampling. For percentage concordance analysis,
patients with a relapse (after removing the afore-mentioned patients) were

considered as high risk and the rest of the patients were classed as low risk
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patients. Median dichotomised risk groups determined by PIK3CA predictor and
IHC4 predictor were compared against the high and low risk patients. The
percentage of predictions matching the high and low risk groups were regarded
as concordant. ROC analysis was implemented using R packages pROC
(v1.6.0.1) and survivalROC (v1.0.3). Using the same median dichotomised risk
groups and actual high and low risk groups, Net reclassification improvement for
PIK3CA predictor over IHC4 predictor was estimated using the R package

PredictABEL (v1.2-1).

4.7 Prognostic assessment of SIMMS PI3K modules signature in CT+/- groups

SIMMS-derived PI3K modules signature was evaluated in chemotherapy-
stratified groups without the prior knowledge of nodal status. Patients in the
highest risk quartile (Q4) showed significantly decreased survival rate compared

to low risk patients, independent of whether they received chemotherapy (Q4 vs.

Q1 HR=11.07, 95%Cl: 3.47-35.26; P=5.29x10""") (Supplementary Figure 24e)

or did not (Q4 vs. Q1 HR=9.74 95%Cl: 5.58-17.02; P=1.66x107%°)

(Supplementary Figure 24f).

5. Modelling multi-modal datatypes using SIMMS

Recent studies conducted by TCGA have generated datasets on matched
genomic and transcriptomic profiles including mutations, copy-number aberration
(CNA), DNA methylaton and mRNA abundance'”” ?°. These datasets can
potentially lead to the discovery of new biomarkers bridging the gap between
multi-modal molecular features and clinical covariates. To test this, we curated
previously published pathway modules (MEMo?*) from TCGA studies harbouring
multiple aberrations (e.g. somatic mutations, somatic copy-number aberrations,

dysreulated mRNA abundance levels, and DNA methylation levels)'” 2°?7_ The
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combined database was composed of 23 breast, 1 colorectal, 8 kidney renal
clear cell and 3 ovarian cancer modules (Supplementary Table 21). Using these
modules, SIMMS’ (Model N) breast cancer risk predictors were created using
1000 randomly generated subsets (50% samples) of Metabric cohort and
validated on the held-out Metabric subsets as well as TCGA breast cancer
cohort. Similarly, 1000 randomly generated subsets (50% samples) of TCGA
colorectal, kidney renal clear cell carcinoma and ovarian cancers were used to
train and validate (50% held-out samples) the prognostic ability of each of the
subnetwork modules. The results of 1000 models per cancer type were
summarised using Fisher's method (Fisher's combined probability test) resulting
in a chi-square estimate and a P value. We used molecular features based on
MRNA and CNA as gene-level properties. Copy number levels -2 (homozygous
deletion) and -1 (heterozygous deletion) were collapsed into one group, whilst
gene copy-number levels 1 (gain) and 2 (amplification) were collapsed into a
single group. Copy-number levels were modelled using Cox proportional hazards
model and compared against the baseline copy number of 0 (diploid). Additional
filter of minimum 3% copy-number aberration frequency in the cohort in at least
one group (gain/amplification and deletion) was applied prior to estimating
parameters for each gene, failing which would mean gene’s copy-number
changes would not contribute to SIMMS’ risk scores. Overall survival was used

as survival end-point for all cancer types analysed in the multi-modal modelling.

6. SIMMS R package

SIMMS is implemented in R and is available under the GNU General Public
License (GPL) version 2 through CRAN: https://cran.r-
project.org/web/packages/SIMMS. SIMMS is generic and can work with any
combination of molecular features and interaction networks. It provides an
extendible framework to support user-defined parameter estimation and
classification algorithms. The R package of SIMMS offers three key features: (i)
support for multiple datatypes (mRNA, methylation, CNA etc), (ii) support for
user-defined networks, and (iii) support for user-defined methods for quantifying

dysregulation of a subnetwork. For (i), users can supply the location and names
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of the files they would like to analyze with SIMMS. For (ii), a text file describing
networks in a tab-delimited format can be supplied as an input to SIMMS, see
pathway based networks*.txt files that comes as a part of R package. For (iii),
the package offers an interface function ‘derive.network.features’ that accepts a
parameter ‘feature.selection.fun’ for user-defined function name (see code
snippet below). By default, the function ‘calculate.network.coefficients’ is called to
estimate MDS and risk scores for Mode N, Model E and Mode N+E as described
in this paper. However, users can easily write their own algorithms and simply
use them with SIMMS as a plug and play component. For details, see package

manual and vignettes.

derive.network.features <- function(
data.directory = ".",
output.directory = ".",
data.types = c("mRNA"),
feature.selection.fun = "calculate.network.coefficients",
feature.selection.datasets = NULL,
feature.selection.p.thresholds = c¢(0.05),

subset = NULL,

) ;
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Supplementary Figure Legends

Molecular profiles Pathway subnetworks
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Supplementary Figure 1

Schematic overview of SIMMS. Subnetwork modules were extracted from NCI-
Nature/Biocarta/Reactome curated pathways by isolating protein-protein
interaction networks within a pathway. Molecular profiles were systemised and
split into independent training and validation sets. Each extracted subnetwork
was scored (module-dysregulation score) using 3 different models and ranked.
High-ranking subnetworks were used to compute a patient-wise risk score. Most

optimal combination of predictive subnetworks was selected using a machine
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learning algorithm with built-in options of generalized linear models with elastic-
nets parameter alpha («) supporting ridge to LASSO L 7-regularization (« € [0,1]),
Backward elimination and Forward selection algorithms, resulting in a
multivariate subnetwork-based classifier. The classifier is then tested on

independent validation sets.
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Supplementary Figure 2
Summary of pathways database. Distribution of nodes (a) and edges (b)
across all subnetwork modules extracted from NCI-Nature curated pathways

(Reactome and Biocarta inclusive).
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Supplementary Figure 3

Quality assessment and identification of repeated patient profiles. (a,b,c) A
univariate Cox model was fit to each gene in each study in the breast cancer
cohort. Genes were ranked according to their P value (Wald-test), and a
cumulative rank for all the genes was estimated using the rank product for each
gene. The top ranked 100 (a), 500 (b) and 1,000 (c) genes were used to identify
the study in which each gene was farthest away from the cumulative rank. The
frequency of a study being farthest was recorded for each of the top ranked 100,
500 and 1,000 genes. Li and Loi datasets seem to be notable outliers. As the
threshold is relaxed, Sabatier dataset also begins to show deviation compared to

other datasets.

(d) Heatmap showing a summary of barplots (a-c) of the top ranked (rank
product) 100 to 2000 genes with the percentage measure as the frequency of
each dataset being the farthest from the rank product of top n genes. The
covariates represent different microarray platforms: HG-U95AV2=purple, HTHG-
U133A=green, HG-U133A=red, HG-U133-PLUS2=yellow.

(e) 4-way Venn diagram representing overlap of genes across the four Affymetrix
array platforms used in the 14 breast cancer datasets included in this study. Note
that the Bild dataset (array platform: HG-U95AV2) has the least number of genes
(8,260) with 8,052 genes that exist across all array platforms. The analysis in a-d

was done on this common gene set only.

(f,g,h) Gene ranks transformed into percentile ranks within all studies. The rank
product based top 100 (f), 500 (g), and 1,000 (h) genes shown in terms of their
percentile rank within each study. Li, Loi and Chin datasets clustered together
and had lower percentile ranks compared to other datasets. However, Sabatier’s
percentile ranks were similar to other datasets thereby deemed suitable for

inclusion in this study.
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(i) Summary heatmap of percentile ranks across all studies, ordered by groups of
genes common across studies, thereby maintaining coherent comparison of

ranks.

() Heatmap of Spearman correlation between patients’ mRNA abundance
profiles. Loi dataset quite clearly shows weak correlation with the other datasets,

again reflecting unusual expression patterns compared to other datasets.

(k,]) Box-whisker plots of intra- (k) and inter-study (I) correlation between
patients” mMRNA abundance profiles. The results show distinctively strong
correlation within Loi dataset (k) and weak correlation between Loi and other
datasets (l). Boxplot lines show lower quartile, median and upper quartile.

Whiskers extend to the point closest to the upper/lower quartile + (1.5 x IQR).

(m) Histogram of Spearman correlation of patients’ mRNA abundance profiles.
From left to right, the first peak represents correlation between Loi and other
datasets. The second peak represents correlation between Bild and other
datasets, while the third peak constitutes the correlation between the remaining
datasets. The survival data of highly correlated profiles (zoomed in panel, 0.98 <
p < 1.00) was further inspected, resulting in 22 patients that were found in both
Sotiriou and Symmans (JBI) datasets having identical survival data. These were

removed from Symmans (JBI) dataset for further analysis.

Page 19 of 45



434

435

436
437

438

439
440
441

442
443
444
445

Haider et al.

Breast"

Model N+E

log, Count
- N W s OO~

EET L

LT

log, Count
- N W s OO~

Edgesp «’— 4‘

log, Count

Edgesgp -

- N WA O O N

Supplementary Figure 4
Distribution of prognostic ability versus the size

Edgesyp
Edgesp -

of subnetworks. (a-c) For

each of the three scoring schemes i.e. Model N+E, Model N and Model E (see
Methods), distribution of subnetwork size for prognostic (P) (Wald test P < 0.05;

validation cohorts) and not prognostic (NP) subnetwork modules. Size of a

subnetwork was defined in terms of number of nodes and number of edges.

Pairwise comparisons were performed using Wilcox rank sum test (* P<0.05, **
P<0.01, *** P<0.001, N.S P>0.1). Boxplot lines show lower quartile, median and

upper quartile. Whiskers extend to the point closest to the upper/lower quartile +

(1.5 x IQR
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448 Supplementary Figure 5

449  Prognostic ability of SIMMS’ models (a) Distribution of prognostic ability (-
450 logqoP) of subnetwork modules which were significant (Wald test P < 0.05) in at
451 least one scoring scheme (Model N+E, Model N and Model E), in respective
452  cancer type. -logioP values were compared using one-way ANOVA (P < 0.05)
453 followed by Tukey HSD test. Tukey HSD test's adjusted P values for only Model
454 N vs Model N+E and Model E are displayed (* P<0.05, ** P<0.01, *** P<0.001).
455 Boxplot lines show lower quartile, median and upper quartile. Whiskers extend to

456  the point closest to the upper/lower quartile + (1.5 x IQR).
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Supplementary Figure 6

Comparison of subnetwork scoring methods. Sensitivity assessment of
correctly recovered ‘positive’ subnetwork modules (those likely to be associated
with patient outcome) by various subnetwork/pathway scoring methods. Height of
each bar represents total number of ‘positive’ subnetworks, while the blue colour
shows proportion of correctly recovered ‘positive’ subnetworks. Numbers above

the bars represent % true positive rate.
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Supplementary Figure 7

Prognostic assessment of SIMMS’ predicted risk scores. Dot plot of hazard
ratios and P values of subnetwork modules significant in at least 2/4 cancer
types. A Cox proportional hazards model was fitted to dichotomous risk scores
(threshold derived from the training cohort) across the entire validation cohort.

Crosses represent absence of subnetwork module from a particular cancer type.
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Supplementary Figure 8

Prognostic assessment of mutation burden. Dot plot of hazard ratios and P
values of subnetwork modules in Figure 1i. Using TCGA datasets for breast,
colorectal, lung adenocarcinoma and ovarian cancers; for each of these
subnetwork modules (using mutations in genes involved), patients were assigned
to mutant group if any gene in the subnetwork was mutated, otherwise to non-
mutant group. A Cox proportional hazards model was fitted to test association of

these groups with patient outcome.
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Supplementary Figure 9

Overlap of genes in subnetworks with both prognostic and predictive
ability. Upset plot showing overlap of genes between subnetworks which
showed significant prognostic as well as predictive (platinum response)

association in TCGA ovarian cancer cohort.
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Supplementary Figure 10

Overlap of genes in cell cycle subnetwork modules, and prognostic
assessment of immune and stromal scores. (a) Venn diagram showing
overlapping genes between proliferation subnetwork modules derived from the
pathways of Aurora A signaling (module 1), Aurora B signaling (module 1), PLK1
signaling events (module 1) and Mitotic Telophase/Cytokinesis (module 1). The
maximal overlap was of a single gene (AURKA) common across three modules
(Aurora A, Aurora B and PLK1 modules). Module number in parenthesis refers to
unique module number within a pathway in SIMMS’ network database (SIMMS R
package). (b, c¢) Prognostic assessment of Immuno and Stromal scores
estimated using ESTIMATE in Affymetrix based breast cancer validation cohorts
(Supplementary Table 2). (d, e) Prognostic assessment of Inmuno and Stromal

scores estimated using ESTIMATE in llumina based Metabric breast cancer
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cohort. For b-e, patient groups (Q1-Q4) were created using quantiles of

Immuno/Stromal scores.
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Supplementary Figure 11

Resampling of subnetworks database assessing sensitivity to initialisation
size of SIMMS’ multivariate models. Performance (SIMMS Model N) of breast,
colon, NSCLC and ovarian cancer candidate biomarkers represented as a
function of marker size. Jackknifing was performed over the subnetwork marker
space for various tumour types. Ten million unique markers (200,000 for each
marker size n=5,10,15,...,250) were randomly sampled using all 500
subnetworks regardless of their size. All biomarkers were generated using two
independent machine learning paradigms; backward elimination and forward
selection. The prognostic performance of each candidate biomarker was

measured by taking the absolute value of the loge-transformed hazard ratio
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estimated with a multivariate Cox proportional hazards model based on SIMMS
Model N scores. These randomization results depict a range of prognostic
performance between 75th and 95th percentiles at each marker size and were
used as a guide to estimate the optimal top n number of subnetwork modules
required to establish a multivariate classifier for a given tumour type.
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Supplementary Figure 12

Co-expression of subnetwork risk scores in breast cancer. Heatmap of
correlation and cluster analysis of patient's risk score of top ranked 50
subnetwork modules of breast cancer (validation datasets only). The plot
displays activity of subnetworks as well as clusters of highly co-expressed

modules as indicated in dark red clusters.
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534 Supplementary Figure 13

u

535 Co-expression of subnetwork risk scores in colon cancer. Heatmap of

536 correlation and cluster analysis of patients’ risk score of top ranked 75

537  subnetwork modules of colon cancer (validation datasets only). The plot displays

538 biological activity of subnetworks as well as clusters of highly co-expressed

539 modules as indicated in dark red clusters.
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542 Supplementary Figure 14

543 Co-expression of subnetwork risk scores in NSCLC. Heatmap of correlation
544  and cluster analysis of patients’ risk score of top ranked 25 subnetwork modules
545 of NSCLC (validation datasets only). The plot displays biological activity of

546  subnetworks as well as clusters of highly co-expressed modules as indicated in

547  dark red clusters.
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Supplementary Figure 15

Co-expression of subnetwork risk scores in ovarian cancer. Heatmap of
correlation and cluster analysis of patients’ risk score of top ranked 50
subnetwork modules of ovarian cancer (validation datasets only). The plot
displays biological activity of subnetworks as well as clusters of highly co-

expressed modules as indicated in dark red clusters.
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Supplementary Figure 16

Independent validation in
using SIMMS’ Model N on
Table 2)

(10-year survival

breast cancer cohorts. Kaplan-Meier survival plots
6 breast cancer validation sets (Supplementary

truncation) with subnetwork module selection

performed through generalized linear models with L7-regularization (10-fold

cross validation on training

subnetwork modules.
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Supplementary Figure 17

Independent validation in colon cancer cohorts. Kaplan-Meier survival plots
using SIMMS’ Model N on 2 colon cancer validation sets (Supplementary Table
3) (6-year survival truncation) with subnetwork module selection performed
through generalized linear models with L17-regularization (10-fold cross validation

on training set). Model was initialised with the top ranked 75 subnetwork

modules.
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Independent validation in NSCLC cohorts. Kaplan-Meier survival plots using
SIMMS’ Model N on 6 NSCLC validation sets (Supplementary Table 4) (5-year

survival truncation)

with subnetwork module selection performed through

generalized linear models with L7-regularization (10-fold cross validation on

training set). Model was initialised with the top ranked 25 subnetwork modules.

Page 34 of 45



583

584

585
586
587
588
589
590
591
592
593
594

Haider et al.

a . ‘ . b ‘
1.0 Konstantinopoulos 1.0 TCGA
c c
g (U133) | ¢
£ 0.8 £ 0.8
] o
o o
S o6 S 06
o o
o o
o4 204
© ©
E E
W 0.2 W 0.2
w w
Low risk — HR: 1.87 (0.67,5.28) Low risk — HR: 1.52 (1.07,2.15)
High risk — P- 023 High risk — P 0.018
0.0 T T T v 0.0 r T :
0 1 2 3 4 5 0 1 2 3 4 5
Time (Years) Time (Years)

Low risk 14 12 1 8 7 3 Low risk 136 104 82 59 4 21
High risk 14 12 8 6 4 4 High risk 124 83 87 39 23 15

Supplementary Figure 19

[ o]

1.0 Tothill
5
o 0.8
o
=%
206
o
o
204
©
E
W 0.2
w
Low risk — HR:1.74 (1.18,257)
High risk — P: 0.0052
0.0 i T T T
0 1 2 3 4
Time (Years)
Low risk 145 133 101 59 25
High risk 133 13 66 35 16

Independent validation in ovarian cancer cohorts. Kaplan-Meier survival plots
using SIMMS’ Model N on 3 ovarian cancer validation sets (Supplementary
Table 5) (5-year survival truncation) with subnetwork module selection performed

through generalized linear models with L7-regularization (10-fold cross validation

on training set). Model was initialised with the top ranked 50 subnetwork

modules.
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597 Supplementary Figure 20
508 Assessment of alternative machine learning algorithms. Kaplan-Meier

599  survival plots of SIMMS’ Model N in validation cohorts of various tumour types
600 using alternative training algorithms; backwards elimination (a-d) and forward
601  selection (e-h).
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604 Supplementary Figure 21

605 Prognostic assessment of naive and SIMMS model with all the genes in the
606 subnetwork database. Kaplan-Meier survival plots of validation sets in each
607 tumour type (a-d) for a Cox proportional hazard model using LASSO (L7-
608 regularization) with all genes contained in any subnetwork as model variables.
609 (e-h) Kaplan-Meier survival plots of validation sets in each tumour type for a Cox
610 proportional hazard model fitted using risk scores estimated by SIMMS on a
611  single module containing all the genes across all subnetworks.

612
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615 Supplementary Figure 22

616  Reproducibility of SIMMS’ models across mRNA quantification platforms.
617 Kaplan-Meier survival plots of SIMMS’ Model N based predictions on the
618 Metabric validation cohort. Separate classifiers were created using the Affymetrix
619 based breast cancer training cohorts (Supplementary Table 2) and llumina

620 based breast cancer cohort (Metabric training set). These two classifiers were
621 validated on lllumina based breast cancer cohort (Metabric validation set) (a,b)

622 and Affymetrix based breast cancer validation cohorts, respectively (c). All

623 models were trained in 10-fold cross validation setting.
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Supplementary Figure 23
Schematic overview of the PI3K signalling pathway. Figure illustrating key
relationships between modules assessed in the current study. Modules 1-7 are

highlighted with key signalling inter-relationships between the member genes.
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Supplementary Figure 24

Validation of SIMMS’ PI3K risk predictor. (a) Prognostic assessment of

SIMMS’ PI3K risk predictor by median-dichotomizing predicted risk scores into

low- and high-risk groups. (b) Prognostic assessment of model in (a) stratified by

PIK3CA mutations. Patients were classified into low- and high-risk groups, and
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each was further divided by PIK3CA mutant (+) and wild-type (-) status. (c-d)
Prognostic assessment of PI3K predictor on patients which were not treated with
chemotherapy and were further stratified into node —ve and node +ve groups. (e,
f) Prognostic performance assessment in patients with- and without
chemotherapy arms of the validation cohort. Within each subgroup, risk score
quartiles Q2-Q4 were compared against Q1 using Cox proportional hazards
modelling and the log-rank test. (g) Validation of SIMMS’ PI3K risk predictor
(FFPE samples trained model) on ER+ subset of Metabric cohort (fresh frozen
samples). Risk scores of Metabric samples were dichotomised using median risk

score derived from TEAM cohort.
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Supplementary Figure 25

Multi-modal assessment of SIMMS. Multi-modal prognostic biomarkers for
breast, colon, kidney and ovarian cancers. (a) Dot plot of summarised (Fisher’s
combined probability test) chi-square estimates and P values for each of the
MEMo derived cancer-type specific subnetwork modules (Mx) (Supplementary
Methods section 5, Supplementary Table 21). Covariates represent colours of
each cancer type. Size of the dot represents log(chi-square) estimate resulting
from the meta-analysis of Cox P values (1000 random subsets for each profile in
each cancer type). A Cox proportional hazards model was fitted to dichotomous
risk scores across the entire validation cohort to assess survival association of
predicted risk groups. Crosses represent absence of a module from a particular
cancer type. (b, ¢) Performance comparison of multi-modal prognostic models
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661 (Merged mRNA+CNA) against CNA models (b) and mRNA models (c) in each
662 cancer type using MEMo modules of that particular cancer. Within each cancer
663 type, modules are sorted by the largest fold-change in chi-squared values; with

664  positive values indicating improved prognostication by the multi-modal model
665 over CNA or mRNA models.
666

667
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