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Supplementary Figure 1 : Coverage plots for all analyzed murine tumors, CIRCOS plots

and blow-out views of the chromosomes affected by complex rearrangements and

validation of a subset of structural variants by PCR.

a. Coverage plots for all analyzed murine tumors. Red boxes show chromosomes affected by

complex genome rearrangements. Blow-out views of all affected regions are shown in b and

circos plots in c. b. Blow-out views for regions affected by complex genome rearrangements in all

murine tumors. BND, break end; TRA, translocation; INV, inversion; CNV, copy-number variation.

c. CIRCOS plots for all murine tumors. BND, break end; TRA, translocation; INV, inversion; CNV,

copy-number variation. d. Validation of a subset of rearrangements by PCR. For 12 of the 14

breakpoints for which we designed primers, we obtained a PCR product at the expected size.
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Supplementary Figure 2: Complex genome rearrangements drive tumor development and

frequency of complex rearrangements in DNA repair proficient murine MBs and in MYC/MYCN-

driven MB models with various p53 status

a. Complex genome rearrangements drive tumor development. Driver genes located in the chromosome

regions affected by the catastrophic events are overexpressed. Expression levels for selected genes

from Affymetrix expression arrays for medulloblastomas from XRCC4/p53 deficient mice (MB, n=8) and

normal brain from animals of the same genotype (Control, n=4; 2 from whole cerebella and 2 from

isolated cerebellar granule neural progenitors, shown together on the yellow box plots). Unpaired t-tests

were used to test for significance. b. Frequency of complex genome rearrangements in DNA repair

proficient mouse models of medulloblastoma of various p53 status. Re-analysis of low-coverage

WGSeq data from published studies1, 2. From the 10 mouse models (3 to 6 mice per genotype), 4 are

MYC- or MYCN-driven (see table below). A subset of the MBs from the mouse models not based on

Myc/Mycn overexpression show Myc/Mycn amplifications (marked with asterisks).
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Supplementary Figure 3: Amplifications of Myc and Mycn are linked with catastrophic 

events 

a. Amplifications of Myc and Mycn may possibly facilitate catastrophic events. FISH analysis 

with probes for Myc (RP23 98D8, green) or Mycn (RP23 10C3, red) in combination with 

probes matching for loci affected by complex genome rearrangements (Mtbp1, RP23 288J22 

and Grhl1, RP23 431C5) showed subpopulations of cells with amplifications of Myc or Mycn

but without gain associated with complex genome rearrangements, suggesting that 

amplifications of Myc or Mycn might potentially occur before the catastrophic event. 

Quantifications of the signals for the control probes Rpa7a and Prkch are shown in 

Supplementary Figure 3b and c. Magnification, X1000. b. Top panel showing amplifications of 

Myc (RP23 98D8) in comparison to the control probe Rrp7a (RP23 25N17) in metaphase 

spreads from tumor cells. Bottom two panels showing FISH for probes Myc, Mtbp1 (RP23 

288J22) and Rrp7a in metaphase spreads from a healthy control mouse. Magnification X1000.

c. Top panel showing amplification of Mycn (RP23 10C3) in comparison to Prkch (RP23 

440M11) in metaphase spreads from tumor cells. Bottom two panels showing FISH for Mycn, 

Grhl1 ( RP23 431C5) and Prkch in metaphase spreads from a healthy control mouse. 

Magnification X1000.
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Supplementary Figure 4: Telomere FISH and immunofluorescence analysis for Ki67 in the brain

of Xrcc4/p53 deficient and control heterozygous mice

a. Immunofluorescence for Ki67 and Telomere FISH analysis in the cerebellum of XRCC4/p53

deficient and control mice. Ki67 magnification, X100; Unpaired t-tests were used to test for

significance. Between 4 and 12 sections were analyzed per animal. XRCC4 deficient mice, 9 animals;

XRCC4 proficient mice, 5 animals. CBL, cerebellum. Unpaired t-tests were used to test for

significance. Between 4 and 12 sections were analyzed per animal. XRCC4 deficient mice, 9 animals;

XRCC4 proficient mice, 5 animals. CBL, cerebellum. b. Telomere FISH magnification X1000.

Telomere content analysis from the whole-genome sequencing data was done according to Telomere

Hunter3 and did not show any significant difference between tumor and matched germline controls or

between cases with or without complex genome rearrangements

a b
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Supplementary Figure 5: Representative images of TUNEL, gH2AX and 53BP1

staining's at intermediate developmental stages with quantifications of the numbers of

positive cells

Intermediate time point (P60), yH2AX, 53BP1 and TUNEL staining in the cerebellum of

XRCC4/p53 deficient mice and control animals (magnification, X100; insets, X200 and X1000

respectively). Unpaired t-tests were used to test for significance for the quantifications.

Between 4 and 12 sections were analyzed per animal. XRCC4 deficient mice, 9 animals;

XRCC4 proficient mice, 5 animals.
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Supplementary Figure 6: Expression levels for the main repair factors, controls for microhomology analysis

(indels) and controls for mutational signature analysis

Normalized expression levels for repair factors involved in the main DNA DSB repair processes a. Red boxes show

the expression levels in medulloblastoma cells of XRCC4/p53 mice (n=8) and yellow boxes show the expression

levels in the healthy cerebellum (n=2) and in granule neural progenitors (n=2) for age-matched animals of the same

genotype (the expression levels for the non-neoplastic cerebellum and for granule neural progenitors were not

significantly different and therefore shown as one box). The horizontal line depicts the threshold for which genes are

considered to be expressed b. Normalized expression levels for repair factors in high grade gliomas developing in

BRCA2/p53 (blue boxes) or Lig4/p53 (green boxes) deficient animals. Unpaired t-tests were used to test for

significance in a and b. c.Size of small deletions related to homology in regions affected by catastrophic events. The

plot shows the sizes of the small deletions (<=10bp) within regions affected by catastrophic events. Indels were called

by svaba using default threshold and filtering. The differences are not significant (beta-regression analysis). d. Size

of small deletions related to homology in all regions. The plot shows the sizes of the small deletions (<=10bp) in the

whole genome. Indels were called by svaba using default threshold and filtering. The differences are not significant

(beta-regression analysis). e. Controls for Mutational Signature analysis. As mutational signature 3 was detected in

homologous recombination proficient tumors (see figure 4), we wanted to test whether mutational signature 3 might

be linked with deficiencies in the p53 pathway, beyond the association with HR defects. Therefore, we did mutational

signature analysis for mouse models with published high-coverage WGSeq data. 1 and 2 are murine mammary

carcinomas from a STAT1 knock-out model4 (with a Rad50 mutation in 1), 3 is a pancreatic tumor from a p53 wild-

type/Cdnk2a deficient model5, 4 and 5 are from a p53 wild-type aflatoxin B induced tumor model6.
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Supplementary Figure 7: Synthetic lethality in mouse cells, read-out after 24h of

treatment. Cytotoxicity of PARPi in combination with topoisomerase inhibitors in human

medulloblastoma and high-grade glioma cells with complex genome rearrangements.

a. Early time point (24h) for synthetic lethality approaches targeting medulloblastoma cells from

XRCC4/p53 deficient mice. Medulloblastoma cells (MB594, MB794 and MB1197) from Nestin-

Cre p53 -/- Xrcc4 c/- and Nestin-Cre p53 -/- Xrcc4 c/c mice as well as control neural progenitor

cells (NSPC1 and NSPC2) from Nestin-Cre p53 -/- Xrcc4 +/- mice were treated with RAD51

inhibitors to block HR (B02, 10uM and Ri1, 10uM), PARP inhibitor (Olaparib, 5uM), topotecan to

induce DNA damage (100nM) or with combinations (B02 10uM, Olaparib 5uM and Topotecan

100nM or Ri1 10uM, Olaparib 5uM and Topotecan 100nM). Cell viability values are shown as

averages +/- standard deviation for 3 independent experiments. ANOVA was used to test for

significance. b. The effect of single drug treatments and combinations with PARPi (Talazoparib,

3nm-1µM), Topotecan or Camptothecin (10nm-1µM) on human medulloblastoma (DAOY) and

glioblastoma (A172) cells with complex genome rearrangements, measured after 72 h. Cell

viability values are shown as averages +/- standard deviation for 3 to 4 independent

experiments as percentages of the values for solvent-only cells.
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Supplementary Figure 8: Validation of CRIPSR/Cas9 experiments and

immunofluorescence for 53BP1

a. Western blot showing whole protein lysates for human neural stem cells (NSCs) for wild

type, non target, CRISPR/Cas-mediated disruption of TP53 and/or Lig4. Bar graph analysis

on the right shows average relative LIG4 and TP53 in comparison to Alpha-Tubulin from the

two western blots (WB) ± SD for two independent experiments. b. 53BP1

immunofluorescence for NSC DMSO control and NSC topotecan (1uM) treated cells after

48h. Magnification X100. Bar graph on the right shows the number of positive cells for

53BP1 from a total of 100 counted cells. Error bars indicate ±SD for three independent

experiments
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Supplementary Figure 9: Pan cancer analysis of the association between

chromothripsis and MYC status in human tumors

Pan-cancer analysis of regions with copy-number gains significantly associated with

chromothripsis. MYC gains are strongly linked with chromothripsis across multiple

tumor entities (re-analysis of TCGA data). Y axis, -log10 (p value) for the association; x

axis, genomic position.
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Supplementary Figure 10: Microhomology at the breakpoints in human GBM and Pan cancer 

analysis of the association between repair deficiencies and chromothripsis

a. Size of the microhomology utilized by the structural variants junctions in different regions in human

GBM. “CTGBM CT” indicates breakpoints within chromothriptic regions, “CTGBM -CT” indicates

breakpoints outside chromothriptic regions for tumors showing chromothripsis, and “NCTGBM” indicates

all breakpoints in tumors without chromothripsis. Beta-regression was used to test for significance. b.

Association between deficiency in repair processes and chromothripsis in adult glioblastoma. Link

between loss of repair factors and chromothripsis in adult GBM cases (reanalysis of TCGA data). Left

panel, proportion of cases with loss of the genomic loci where BRCA2, LIG4, XRCC4 and TP53 are

located, respectively, among cases with or without chromothripsis. Right panels, expression levels for

BRCA2, LIG4, XRCC4 and TP53 in cases with (blue) or without (red) hemizygous loss of the respective

genomic loci (violine plots) and in cases with or without chromothripsis (box plots, far right). Unpaired t-

tests were used to test for significance. c. Link between chromothripsis and mutational signature 3 in

melanoma. Unpaired t-tests were used to test for significance. d. Link between chromothripsis and

Homologous Recombination Deficiency index in breast cancer (reanalysis of data from Nik-Zainal et al,

Nature 2016). Low HRD, up to 5; High HRD, 6 and more. Unpaired t-tests were used to test for

significance.
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