Appendix A. Supplementary data

Table S1. Inherent characteristics of hyaluronic acid (HA) as a candidate for hydrogel-based brain tissue regeneration.

Positive findings	Negative findings
 natural component of the CNS (biocompatible) [23,25,41,44,46] immunoneutral [32,65] biodegradable [32] highly porous [34,44] stimulates neuronal viability and differentiation of NS/PCs, NPCs, and iPS-NPCs <i>in vitro</i> [32,41,42,49] stimulates neurite outgrowth of HNPCs <i>in vitro</i> [40] promotes neuronal differentiation of hiPS-NPCs <i>in vivo</i> [14,47] holds antigliosis and anti-inflammatory effects <i>in vivo</i> [45,46] supports survival and proliferation of C17.2 and ReNcell <i>in vivo</i> [65] shields transplanted cells from host immune response <i>in vivo</i> [14,65] HA-PLGA co-gel provides functional improvement <i>in vivo</i> [46] does not influence gel stiffness in co-gels [55] superior to Matrigel in terms of neurite outgrowth in SH-SY5Y cell line <i>in vitro</i> [38] HA-modified alginate supports greater cell viability and neuronal differentiation of ESCs and NSCs and neurite extension when compared to unmodified alginate [78] HA is a shear-thinning agent in co-gels [96] 	 poor adhesiveness [32,34,36,49] does not interact with integrins [23,35] does not support hiPS- NPCs viability <i>in vivo</i> [14] requires modifications to reduce the biodegradation rate [23,34,35,49] requires another component (e.g. collagen) for stabilization [49] swelling [93]

NS/PCs – neural stem/progenitor cells – a heterogeneous cell population; NPCs – neural progenitor cells; iPS-NPCs – induced pluripotent stem cell-derived neural progenitor cells; hiPS-NPCs – human induced pluripotent stem cell-derived neural progenitor cells; C17.2 – a mouse immortalized NSC line; ReNcell – human immortalized NPC line; PLGA – poly(lactic-co-glycolic acid); SH-SY5Y – human neuroblastoma cell line; ESCs – embryonic stem cells; NSCs – neural stem cells **Table S2.** Inherent characteristics of collagen type I as a candidate for hydrogel-based brain tissue regeneration

Positive findings	Negative findings
 biocompatible [48,62–64] non-toxic[64] biodegradable [48] non-immunogenic [21,63–65] (though negated by Itosaka <i>et al.</i> [113]) self-healing <i>in situ</i> [64] reduces micro- and astrogliosis <i>in vivo</i> [64,66] gels under physiological conditions [49] supports differentiation of BMSCs towards neuronal lineage [59] retains and stabilizes HA [49,63] supports viability, proliferation, and differentiation of embryonic, postnatal, and adult NS/PCs when mixed with HA [49,63] supports neurite outgrowth [53,58,60,157] 	 does not naturally occur in mammalian brain tissue, except subventricular zone [49,61] has no measurable effect on NSC's viability [57,152] decreases in volume post gelation both <i>in vitro</i> and <i>in vivo</i> [64] increases stiffness in co-gels [55,59] inferior to Matrigel and self-assembling peptides in terms of NSCs survival and differentiation [61] inferior to Matrigel in terms of neural differentiation and neurite growth in hESCs experiments <i>in vitro</i> [107] inferior to Matrigel in terms of NSCs viability, differentiation, and migration <i>in vitro</i> [61]

BMSCs – bone marrow-derived stem cells; hESCs – human embryonic stem cells

Pos	itive findings		Negative findings
• non-toxic [68,71–	73,78,91]	٠	does not naturally occur in mammalian
• biocompatible [78]		brain tissue [67,68]
 non-inflammatory 	[78]	•	poorly recovers after shear stress [77]
 shields NSCs from 	host immune response [78]	٠	hardly injectable [77]
• neuro-protective [73,75]	٠	non-degradable [68]
 stimulates structur 	al and functional maturation of	٠	degradation products decrease NPCs
NSCs, glial cells [74,75]		proliferation [68]
 supports NSCs via 	bility and proliferation	٠	insufficient porosity [68,74]
[71,74,78]		•	requires modifications to provide cell
 promotes self-heal 	ing when used as a cross-linker		attachment and survival [74,78]
for the chitosan-ba	sed hydrogel [91]	•	supports worse NSCs spheroids
• chitosan-alginate c	o-gel supports viability and		proliferation and differentiation when
neuronal different	ation of NSCs [91]		compared to chitosan-based hydrogel
• alginate-poly(γ-glu	tamic acid) ICC scaffolds are		[77]
highly porous, nor	-cytotoxic to iPS-NPCs and	•	requires cross-linking to prevent
promote their neur	onal differentiation [76]		diffusion in vivo [78]

Table S3. Inherent characteristics of alginate as a candidate for hydrogel-based brain tissue regeneration

Table S4. Inherent characteristics of chitosan as a candidate for hydrogel-based brain tissue regeneration

Positive findings	Negative findings
 thermally cross-linkable [84] highly porous [85,86,90] biodegradable [85] non-immunogenic [83] non-toxic to NSCs [77,91] cell-adhesive for cervical ganglion neurons and embryonic cortical neurons [82,85] decreases stiffness in chitosan-agarose co-gel [82] suits for drug delivery systems [89] favors NSC spheroids' proliferation and differentiation [77] improves functional recovery in zebrafish embryos when injected with neurosphere NSCs [77] chitosan-alginate co-gel supports viability and neuronal differentiation of NSCs [91] 	 long gelling time [84,89] can induce cationic cytotoxicity [90] requires modifications to support cell viability and neurite outgrowth [84,85] requires modifications for self-healing [77,89,91]

Table S5. Inherent characteristics of methylcellulose- and HAMC- as candidates for hydrogel-based tissue regeneration

Positive findings	Negative findings
 gelling at physiological temperatures [15] injectable [15,93,94,97,101,103] biodegradable [103] exhibit anti-inflammatory [93,97–100,103] and anti- astrogliosis effects [98–100,103] non-toxic [97,103] applicable to drug delivery systems [92,93,95–100] support viability of NS/PCs [94] improve the solubility of sparingly soluble drugs [92] methylcellulose reduces swelling in co-gels [93,94,103] methylcellulose is self-healing [96,103] HAMC prevents cell sedimentation and aggregation [94,102] HAMC promotes NSC viability and penetration into host brain <i>in vivo</i> [102] 	 methylcellulose exhibits low hydrophilicity unless blended with HA or modified [92] barely functionalizable backbone [96]

Positive findings	Negative findings
 contains growth factors and adhesive proteins [15,20,22,26,104] injectable [15] porous [180] physiological stiffness [106] growth factor-reduced form exhibits an anti- inflammatory effect, supports ES-NPCs viability and neuronal differentiation, and promotes host cell proliferation <i>in vivo</i> [109] promotes NS/PCs maturation and functionality in MCAO model [112] superior to collagen I in terms of neuronal differentiation and neurite growth in hESCs experiments <i>in vitro</i> [107] growth factor reduced form is superior to RADA16-I in terms of viability, migration, and maturation of ES- NPCs <i>in vitro</i> [109] superior to collagen I in terms of NSCs viability, neuronal differentiation, and migration <i>in vitro</i> [61] supports viability and maturation of spiral ganglion neurons <i>in vitro</i> [111] applicable for modification of porous PEG scaffold to promote rat neurons' neurite outgrowth [156] 	 unstandardized composition [15,66,105,109] immunogenic [15] solidifies at room temperature [108] inferior to salmon fibrin in terms of stimulating neurite growth of cortical and spinal neurons <i>in vitro</i> [106] inferior to RADA16-I in terms of NSCs survival and neuronal differentiation <i>in vitro</i> [108] inferior to RADA16-I hydrogel in terms of NSCs viability <i>in vitro</i> [61] inferior to HA in terms of neurite outgrowth in SH-SY5Y cell line <i>in vitro</i> [38] increases stiffness in co-gels [110]

Table S6. Inherent characteristics of Matrigel as a candidate for hydrogel-based brain tissue regeneration

ES-NPCs – embryonic stem cell-derived neural progenitor cells; MCAO – middle cerebral artery occlusion; RADA16-I – a 16-mer peptide consisting of four RADA (arginine, alanine, aspartate, alanine) tetramers, also known as PuraMatrix; PEG – poly(ethylene glycol)

Additional citation:

[180] Balachandran NTL and HL and NMS and K. Fabrication of a matrigel–collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Biomed Mater 2017;12:45013.

	Positive findings		Negative findings
• • • • •	easily tunable mechanical properties [113,116,120,121] porous [121] biodegradable [15,119,121] injectable [15,113,122] bioactive (contains RGD peptide) [119,121] non-toxic [120] can be produced from patient's own blood (non-immunogenic) [113] advantageous drug delivery platform [116–118,122] promotes neuronal differentiation and maturation rather than glial differentiation of NSCs <i>in vitro</i> [120] supports viability and promotes neuronal differentiation and migration of BMSCs <i>in vivo</i> [113] salmon fibrin is superior to Matrigel in terms of stimulating neurite growth of cortical and spinal neurons <i>in vitro</i> [106] Tisseel fibrin gel is superior to PEG in terms of NPC neuronal differentiation <i>in vitro</i> [159]	•	pro-inflammatory [114,115] requires modifications for proper neuron-glial differentiation of ES-NPCs <i>in vitro</i> [118] inferior to collagen type I in terms of DRG neurite outgrowth stimulation <i>in</i> <i>vitro</i> [53]

Table S7. Inherent characteristics of fibrin as a candidate for hydrogel-based brain tissue regeneration

RGD – a cell-adhesive tripeptide (arginine-glycine-aspartate); DRG – dorsal root ganglion

Table S8. Inherent characteristics of gellan gum as a candidate for hydrogel-based brain tissue regeneration

Positive findings	Negative findings
 non-toxic [16,129] resistant to acid stress [16] injectable [124,126] <i>in situ</i> gelling [124] porous [127,129] 	 promotes oligodendrocytal differentiation of NS/PCs <i>in vitro</i> [126] aggregates NS/PCs [126] requires purification from divalent cations prior to injection [127,128] requires modifications to support cell viability, differentiation and neurite outgrowth [127–129]

Table S9. Inherent characteristics of self-assembling peptides and proteins as candidates for hydrogel-based brain tissue regeneration

Positive findings	Negative findings
 biocompatible at working concentration [61,137,143] biodegradable [130,149] non-immunogenic [61] RADA16-I is porous [137,139,143] RADA16-I is injectable and self-healing [104,148,149] RADA16-I supports NSC migration and differentiation into neurons and astrocytes <i>in vitro</i> [108] Keratin-based hydrogels support NS/PC survival <i>in vitro</i> [136] RADA16-I is an advantageous and easy-tunable drug-delivery system <i>in vitro</i> [137,138] RADA16-I supports NSC viability <i>in vitro</i> [143] and <i>in vivo</i> [149] RADA16-I is mechanically tunable [143] RADA16-I is mechanically tunable [143] RADA16-I is mechanically tunable [147] keratin-based hydrogels are highly porous [147] keratin-based hydrogels are highly porous [147] keratin-based hydrogels are highly porous [147] K_xL_y, R_xL_y and E_xL_y are easily injectable, porous, cause minimal gliosis and inflammation, exhibit no evident toxicity to neurons and induce vascularization <i>in vivo</i> [130] RADA16-I readily integrates with host tissue and reduces microand astrogliosis <i>in vivo</i> [104,148] RADA16-I is superior to Matrigel in terms of NSC survival and differentiation <i>in vitro</i> [108] (though neglected by [109]) RADA16-I is support ot DRG viability <i>in vitro</i> [146] human keratin promotes neurite growth and vascularization of peripheral nerves <i>in vivo</i> [147] 	 RADA16-I is toxic to human NSCs at concentrations above 1% [108] keratins are slowly degradable [147] K_xL_y, R_xL_y and E_xL_y support limited ingrowth of nerve fibers and neuron-supportive astroglia [130] RADA16-I does not promote migration of neurons and oligodendrocytes and does not prevent host cells from apoptosis [148] RADA16-I is inferior to growth factor-reduced Matrigel in terms of viability, migration, and maturation of ES-NPCs <i>in vitro</i> [109]

 K_xL_y , R_xL_y , and E_xL_y – diblock copolypeptide hydrogels including combinations of lysine and leucine (K_xL_y), arginine and leucine (R_xL_y), and glutamate and leucine (E_xL_y)

Positive findings	Negative findings
 highly hydrophilic [158] supports neurite extension at low concentrations (PC12 and DRG cells) <i>in vitro</i> [157,160] 4-arm PEG-cross-linked PLL hydrogels are biodegradable and promote viability, proliferation, and neuronal differentiation of NPCs and NSCs <i>in</i> <i>vitro</i> [153,154] PEG-RADA16-I composite supports DRG neurite outgrowth <i>in vitro</i> [161] IGF-1 gradient in PEG-PLGA system directs axonal growth <i>in vitro</i> [163] PLA-b-PEG-b-PLA-based hydrogels attenuate glial response <i>in vivo</i> [165,166] PEG-Si is thixotropic (shear-thinning and self- healing) [162] a PLA-b-PEG-b-PLA triblock-derived hydrogel is biocompatible and minimally-swelling [166] 	 poorly porous [156,159] non-degradable [152,157– 159,162,164,165] bioinert [160] photo-encapsulation of primary neurons induces apoptosis [120] poorly supports neuronal differentiation of NPCs <i>in vitro</i> [159] requires modifications to support cell viability and proliferation [152,158] PEG-Si increases glial response <i>in vivo</i> [162]

Table S10. Inherent characteristics of PEG as a candidate for hydrogel-based brain tissue regeneration

PC12 - rat pheochromocytoma cells; PLL - poly-L-lysine; IGF-1 - insulin-like growth factor 1; PLA-b-PEG-b-PLA - triblock polymer built of poly(lactic acid) and poly(ethylene glycol); PEG-Si - a thixotropic PEG-based hydrogel with dispersed silica nanoparticles

Table S11. Inherent characteristics of MA- and MAA-based polymers as candidates for hydrogel-based tissue regeneration

Positive findings	Negative findings
 pHPMA is highly porous [167] pHEMA can be modified to tune drug release kinetics <i>in vitro</i> [168] sialic acid-modified pHPMA is highly biocompatible, stimulates vascularization, host cell migration, their neuronal differentiation, TH-positive fiber growth, and prevents gliosis <i>in vivo</i> [167] pHEMA integrates with host spinal cord, stimulates neurofilament growth and attenuates glial response <i>in vivo</i> [171] pHPMA-RGD stimulates axonal growth and neuronal migration <i>in vivo</i> [172,174] pHEMA attenuates astrogliotic response and inhibits the synthesis of neuroinhibitory CSPG <i>in vivo</i> [175] PLA-b-pHEMA is non-toxic to spinal motoneurons and allows neurite outgrowth <i>in vitro</i> [170] PLA-b-pHEMA stimulates axonal growth and prevents glial scar formation <i>in vivo</i> [170] 	 pHEMA and pHPMA are non-degradable [12,16,167,170,175] pHEMA is stiff [168] pHPMA is swelling [167] pHPMA does not prevent glial scarring <i>in vivo</i> [172] pHPMA and pHEMA induce microglial infiltration <i>in vivo</i> [174,175] PLA-b-pHEMA induces microglial and macrophageal response <i>in vivo</i> [170]

pHPMA – *poly*(*N*-[2-hydroxypropyl] methacrylamide); *pHEMA* – *poly*(2-hydroxyethyl methacrylate); *PLAb*-*pHEMA* – *a* block copolymer hydrogel built of poly(lactic acid) and poly(2-hydroxyethyl methacrylate); *TH* – *tyrosine* hydroxylase (the key dopamine synthesis enzyme)