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Supplementary Information Text 

Supplementary Methods 

Systematic literature review 

We conducted a systematic review of the literature on caterpillar fungus (1).  To identify papers 

for inclusion, on March 6, 2017, we searched Web of Knowledge for the terms “Ophiocordyceps 

sinensis” and “Cordyceps sinensis” (its former Latin name) and filtered out research categories not related 

to environmental or social topics, which eliminated most of the pharmacological studies that otherwise 

dominated the search results.  This produced 54 papers for “Ophiocordyceps sinensis” and 200 papers for 

“Cordyceps sinensis.”  We scanned titles and abstracts to further eliminate papers about its artificial 

cultivation, medical studies, and other species of Cordyceps.  We then supplemented this with searches on 

Google Scholar, the China National Knowledge Infrastructure database, the Digital Library of the 

Commons, and with content alerts from Google Scholar for these search terms, which continued to update 

results through December 31, 2017.  Additional publications were the result of “snowball sampling” from 

the references cited in other papers.  In total, these searches produced 396 papers, books, reports, theses, 

and presentations that contained information about the caterpillar fungus social-ecological system, 

published between 1723‒2017, and written in English, French, German, Chinese, or Japanese.  

Publications in English and French were read by the first author, and publications in other languages were 

translated by native or fluent speakers. 

Of the 396 publications, we identified 73 that reported trends in its production.  To focus on 

sources of LEK, we filtered out studies that were based on model results or harvest amounts without 

supporting LEK (n = 12), and those that were author assertions, including sources that did not clearly 

differentiate whether a statement was LEK or the author’s own interpretation (n = 13).  We also excluded 

studies that did not describe any methods for obtaining LEK (n = 14), that only repeated results from 

earlier studies (n = 4), or that were too unclear to interpret confidently (n = 1).  This left 29 studies with 

information about LEK of caterpillar fungus production trends and their causes. 



3 

 

Local ecological knowledge 

We conducted interviews about local ecological knowledge (LEK) of caterpillar fungus 

production trends during the 2017 harvest season in collection areas in Rebgong county, Qinghai and in 

Damshung county, Tibet; in caterpillar fungus markets in Xining and Rongbo, Qinghai, Lhasa and 

Damshung, Tibet, and Chengdu, Sichuan; and in person or by phone with others identified through our 

network of collaborators and respondents.  All interviews were conducted in the local dialect of Tibetan 

by a native speaker except one in Mandarin and three in English with interviewees who were also fluent 

in those languages.  Of the 49 interviewees, 12 were female (24.5%) and 37 were male (75.5%), and all 

were ethnically Tibetan.  On average, they had been involved in the caterpillar fungus trade for a mean of 

16.9 years and median of 18 years (st. dev. = 10.2 years; 4 people did not give responses about their 

involvement time).  Twenty-two people (45%) had been involved with it for 20 years or longer, while 

only 11 people (22%) had less than a decade of experience.  Three men had started collecting it as early 

as the 1970s.  For interviews that occurred outside of collection areas, we recorded the location of the 

collection area to which they were referring. 

In addition to our 49 interviews, we included 10 studies with clearly stated sample sizes and 

quantitative LEK responses (N = 768 interviewees), 6 studies with clearly stated sample sizes but only 

qualitative LEK information that may not have been from their full sample of interviewees (N = 3919), 

and 13 studies with only qualitative LEK information and no stated sample size.  For these studies and 

our interviews, we used a combination of a priori and emergent codes to classify LEK of changes in 

caterpillar fungus production and their causes (Table S3).  A priori codes included responses about trends 

and causes that we anticipated encountering and/or wanted to examine from the outset (e.g., “increasing,” 

“decreasing,” “climate change,” “overexploitation,” “competition”).  Emergent codes arose as we began 

to read the LEK responses and found other frequently mentioned themes that did not fit easily into our a 

priori categories (e.g., “fluctuating,” “unsustainable,” “weather” distinct from broader climate trends).  

We ensured that two coders reached consensus on code designations for each study before proceeding 

with analysis.  We assigned confidence weightings to all LEK data as follows.  For our interviews, we 
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weighted responses by the number of respondents within each county (see sample sizes in Table S4).  For 

data from the literature, quantitative studies with clearly stated sample sizes (all of which were larger than 

the largest number of people we interviewed per county) were assigned the largest weighting from our 

interviews (i.e., 16), and all others for which the exact number of respondents was unclear were assigned 

the smallest weighting from our interviews (i.e., 1).   

We organized LEK data spatially at the level of county (China), gewog (Bhutan), or district 

(Nepal and India).  We define the timing of the LEK data as the latest year in which field data were 

collected for each study.  To understand spatial trends, we consider only data collected within the past 

decade (2008‒2017) as indicative of contemporary LEK.  To understand temporal trends, we fit quasi-

binomial regressions to data from all years (1999‒2017), but removed one study for which the year of 

data collection was unclear.  For 4 studies that described a qualitative response across 2-3 administrative 

units (e.g., counties), we displayed these responses across all relevant administrative units when 

examining spatial trends, but used only one response per study when examining temporal trends in order 

to avoid weighting them disproportionately. 

Few of the published studies were explicitly designed to investigate LEK of caterpillar fungus 

production, and many had limitations due to unclear methods or results with regard to our aims.  In the 

case of our interviews, sample sizes for specific areas tended to be low, given our opportunistic sampling 

of people from diverse areas encountered at regional markets.  Recognizing these caveats, we consider the 

broader regional picture that emerges from these data, rather than relying on them as strong evidence for 

the changes occurring in any particular location.   

 

Species distribution modeling 

We obtained caterpillar fungus presence points for the species distribution models by extracting 

caterpillar fungus location data from all publications in our review that included spatial information for 

occurrence points or collection areas.  Each point underwent a quality control check to ensure accuracy of 

the input data.  From each publication, we either used coordinates reported, asked authors to provide 
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location details, or digitized figures with maps.  Administrative boundaries, village locations, roads, 

rivers, and graticules served as reference points for georectifying the maps.  We calculated the root mean 

square error (RMSE) between reference points and digitized figures.  Fine-scale locational errors have 

been found to have minimal effect on model performance, particularly for presence-background 

approaches such as ours (described below) (2, 3).  Still, precise georecification can provide slight 

improvements when modeling more specialized species and when using predictor variables derived from 

empirical data such as elevation (as opposed to modeled surfaces) (4, 5). After removing 2 publications 

for which precise georectification was not possible (RMSE > 1000 m), the mean RMSE across all 

digitized figures was 293 m (but dropped to 278 m if only considering publications with data used in the 

final models, after performing all quality control steps described in more detail below).  If maps showed 

collection area boundaries instead of point locations, we reduced uncertainty caused by digitization error 

by first creating an inverse buffer within the collection area equal to the RMSE distance for that figure.  

Then, we subtracted the buffer area from the original collection boundary and generated a random point 

within the remaining area. 

To prevent inclusion of erroneous caterpillar fungus locations in our models, we inspected all 

presence points using high-resolution imagery in Google Earth.  Of the 561 points intended to denote 

collection areas, we removed 108 because they were in settlements, dense forests, lakes, or other highly 

improbable locations.  We maintained a strict removal criterion for points within 1 km of towns to prevent 

apparent convenience sampling on the part of study authors from biasing our models toward lower 

elevations.  We removed 2 duplicate points and an additional 36 that had imprecise or incorrect locations, 

as indicated by low precision of their coordinates, our difficulty rectifying source images from the 

literature (RMSE > 1 km), or if they had very different elevations from what was reported for them in the 

source data.  These disqualification criteria removed 70 of the 218 locations (32%) reported by Yan et al. 

(6).  Our final caterpillar fungus location dataset is available at https://purl.stanford.edu/ww909xk7776. 

We restricted our analyses to elevations between 3000‒5500-m a.s.l., given caterpillar fungus’ 

reported distribution range (7, 8).  Although there were a few points in Gansu and northeastern Qinghai 



6 

 

below 3000 m that may have been credible (2700‒2860 m) (9, 10), all others below this range did not 

meet the quality control criteria.  Moreover, Li et al. determined that the lowest confirmed O. sinensis 

specimen was found at 3,084 m (7), which suggests that reports of lower locations should be viewed with 

skepticism until they can be verified.  The highest location was at 5500 m in Arunachal Pradesh, India 

(8).   

Our environmental predictor variables included elevation, MODIS Vegetation Continuous Fields, 

and CHELSA bioclimatic variables (Table S5).  To maintain parsimony and ecological relevance, we 

developed a decision tree and used insights from LEK to select variables for inclusion in the model that 

avoided ecological redundancy and highly correlated variables (11, 12) (Fig. S4, S5).  To prepare the 

predictor variables for use in the Software for Assisted Habitat Modeling (SAHM) (13), we masked water 

pixels and computed 17-year means (2000‒2016) for all MODIS data of percent non-tree vegetation, non-

vegetated, and tree cover.  To match the spatial resolution of the elevation and MODIS data, we 

resampled the 19 bioclimatic predictor variables to 250-m using a nearest neighbor interpolation within 

SAHM.  We removed all highly correlated variables from the models, but based on the importance of 

winter precipitation that emerged from our review of caterpillar fungus LEK, we decided to retain mean 

precipitation of the coldest quarter, despite its correlation with precipitation of the wettest quarter being 

above our 0.70 correlation cutoff (r = 0.72).  

As a final processing step, we removed presence points if they fell outside the bounds of the 

predictor layers (n = 2) or in the same pixel as another point (n = 13), leaving 400 presences.  To reduce 

the effect of sampling bias in our presence data, we generated 400 random pseudo-absence points within a 

binary kernel density estimator surface with a 99% isopleth and ad hoc optimization method (14).   

Then, we used the point data and environmental variables to develop habitat predictions from 

four models: boosted regression trees (BRT) (15), random forest (RF) (16), multivariate adaptive 

regression splines (MARS) (17-19), and a generalized linear model (GLM) (20).  Each of these models is 

widely used in the species distribution modeling literature, well-documented, and able to be run in open-

source R programming language.  BRT is an ensemble classifier that can be understood as an additive 
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regression model, with the advantages of being able to fit complex nonlinear relationships, automatically 

handle interaction effects between predictors, and requires no prior data transformation (15).  RF is a 

popular ensemble classifier and has been shown to be highly accurate and efficient with high-

dimensional, multi-source data sets (21, 22).  MARS is a non-parametric technique that fits piecewise 

logistic regressions to build a flexible model (23).  It is similar to generalized additive models, but is 

faster and offers improvements for models of a single species (19).  GLM is the simplest and most 

interpretable of the four models, and its implementation in SAHM uses a bidirectional, stepwise covariate 

selection procedure to identify a parsimonious model (23).  For MARS and GLM, we used the default 

settings in the SAHM package (23). For BRT, we set n trees = 1000 (15) and used SAHM’s internal 

settings to determine the learning rate and other parameters (23).  For RF, we set n trees = 500 (22) and 

used the tuneRF function to determine the mTry value that minimizes out-of-bag prediction error (24).  

The primary output from each model is a continuous raster surface showing the relative 

likelihood of caterpillar fungus occurrence for each 250-m cell.  To convert this to a discretized (binary) 

map as an input for further analysis, we applied a statistically-determined threshold based on maximizing 

the sum of sensitivity and specificity (25).  We evaluated model predictions using a 10-fold cross-

validation on the discretized maps.  This generated a suite of evaluation statistics, including area under the 

receiver operator characteristic curve (AUC) (26), percent correctly classified, sensitivity, specificity, and 

the true skill statistic (TSS) (27).  We calculated variable importance scores for the predictor variables 

included in each model using a model-independent method in SAHM, whereby the change in AUC is 

recorded when each variable is successively permuted between the presence and background data (23).  A 

larger change in AUC indicates a larger influence.  We then converted the AUC differences into values of 

relative importance.  Finally, we created a multivariate environmental similarity surface (MESS) map to 

identify areas where the models were extrapolating beyond the training data (28).    
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Permafrost comparison 

The 30-arcsecond modeled permafrost distribution data, which we compared to our caterpillar 

fungus locations and habitat predictions, are scaled from 0 to 1 and interpreted as ranging from 

permafrost occurring “only in very favorable conditions” (e.g., only with a sufficient combination of 

appropriate radiation exposure, snow drift, vegetation, ground material, etc.) to occurring “in nearly all 

conditions,” regardless of ideal solar radiation, etc. (29).  Using a threshold of 0.5, we considered areas 

above this level to be “likely” to have permafrost, and areas below this threshold to be “unlikely” to have 

it.  We then calculated the proportion of presence points and habitat area located in likely permafrost area, 

as well as the mean geodesic distance between all presence points and their nearest areas likely to have 

permafrost.  For the distance calculation, we excluded 69 presence points in Gansu, Sichuan, and Yunnan 

prefectures in China, since these prefectures had little likely permafrost according to our 0.50 threshold 

and other estimates of permafrost extent in China (30). 

 

Environmental determinants of caterpillar fungus production 

If collection data for multiple years were available, or if a range of values was reported, we took 

the mean value for each administrative unit.  For Nepal and Bhutan, we only used data starting at least 

two years after collection became legal (in 2001 and 2004, respectively) to ensure that we were not 

capturing a potential “spin-up” time, when collection effort may have been lower and thus less 

representative of true production amounts.  For China, we included data from official reports starting in 

2000, due to China’s longer history of legal collection.  Had we limited China to data starting in 2003, to 

match the timing for Nepal, the final production level calculations would not have resulted in different 

production bin assignments, so we opted to retain more years of data for calculating means.  We 

discarded data from years with a known impediment to collection or reporting, such as when snow 

hindered access to harvesting areas, years when collectors in Bhutan were allowed to sell outside the 

official auction system, or when official statistics underestimated collection amounts relative to field data 

gathered by researchers (31, 32).  We did not include data that were the result of study authors’ 
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calculations (e.g., Winkler’s estimates for large areas of Nepal and India (33)).  In cases where no other 

data were available (i.e., Qinghai, Sichuan, and Gansu in China and Humla, Jumla, Mugu, and Kalikot in 

Nepal), we included collection amounts from the literature that were provided without a well-defined 

source, but only if the context of the publication suggested that these were from within our acceptable 

timeframe for each country.  We treat these with more caution in our interpretation of subsequent 

analyses using these data. 

In China, three prefectures had collection data at the county level that met our quality control 

criteria.  For Nagchu, Chamdo, and Nyingtri, county data from specific years allowed us to calculate the 

proportion of caterpillar fungus in those counties relative to the total for their prefecture in that same year.  

We then used these proportions to calculate the average amount collected in those counties based on the 

multi-year prefectural mean (2000-2009).   

To calculate production level for each administrative unit, we divided mean collection amounts 

(kg yr‒1) by the area of habitat (km2) predicted by the ensemble of our four species distribution models.  

Due to the uncertainty associated with the production and area estimates, we used tertiles to bin the 

production level data into categories of “low”, “medium”, and “high.”  

We performed ordered logistic regressions on binned production data with environmental 

variables selected by the majority of species distribution models as predictors.  This ensured that we 

included factors thought to be relevant to caterpillar fungus growth, based on insights from the species 

distribution models and a priori information from the literature and LEK, thereby avoiding “a ‘shot-gun’ 

attempt to find significant variables” (34).  For bioclimatic variables, we followed the methods described 

below to derive a customized climate data set and then calculated mean conditions for each pixel from 

2000-2013, corresponding to the time period of the collection data.  For each predictor variable, we 

calculated its mean across the predicted habitat area in each administrative unit.  Using the polr function 

in the MASS package in R (35, 36), we ran regressions with a logistic link function on all combinations 

with three or fewer predictors, excluding highly correlated (r > 0.70) and collinear (VIF > 5) variables.  

We limited each model to a maximum of three predictors to avoid over-fitting to our relatively small data 
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set (N = 33 administrative units).  We used Akaike information criterion scores corrected for small 

samples (AICc) (37) and log-likelihood tests to assess model performance and parameter significance.  

We present several models with similar AICc scores (ΔAICc < 2 from the model with smallest AICc) to 

avoid some of the bias associated with selecting a single, minimum adequate model (34), while also 

prioritizing model parsimony and generalizability (38). 

 

Climate change trends 

To assess changes in climatic conditions likely to affect caterpillar fungus, we conducted pixel-

wise linear regressions through time (1979‒2013) for each climate variable (39).  For this we calculated 

annual bioclimatic variables equivalent to those used in the species distribution models and logistic 

regression analyses, using monthly CHELSA precipitation and temperature data from 1979-2013 (40) and 

the “biovars” function in the dismo package in R (41). 

 

We conducted all analyses in R (v. 3.4.3) and created all maps in R and ArcGIS (v. 10.5.1). 
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Fig. S1. Species distribution models indicate where the likelihood of caterpillar fungus occurrence is 

highest.  Caterpillar fungus presence points (N = 400) used as inputs to the models are shown in (a).  

Results from four models are shown: generalized linear model (b), multivariate adaptive regression 

splines (c), boosted regression tree (d), and random forest (e). 
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Fig. S2. Four species distribution models identified relationships between suitable caterpillar fungus 

habitat and environmental conditions.  Response curves are shown for environmental variables selected 

by the models (a): generalized linear model (GLM), multivariate adaptive regression splines (MARS), 

boosted regression tree (BRT), random forest (RF).  Relative importance scores for each variable are 

determined from a model-independent comparison of the relative influence of each predictor in each 

model (b).  Predictor variables are: Bio_16 = precipitation of the wettest quarter, Bio_19 = precipitation 

of the coldest quarter, NonVeg = non-vegetated cover, elevation, Bio_11 = mean temperature of the 

coldest quarter, Bio_15 = precipitation seasonality, Bio_3 = isothermality. 
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Fig. S3. Caterpillar fungus habitat and production are constrained by climate.  Logistic regressions predict 

that production increases with colder winter temperatures (Bio_11) and higher elevations (a).  “NA” 

denotes areas with elevation or temperature values beyond the range of the data included in the model, 

which were based on administrative units’ mean conditions from 2000-2013.  Mean climatic conditions 

from 1979-2103 are shown for Bio_11 (b), Bio_19 (d), and Bio_16 (f).  The total amount of change from 

1979-2013 for Bio_11 (c), Bio_19 (e), and Bio_16 (g) is shown for pixels with significant linear trends (p 

< 0.05). 
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Fig. S4. Decision tree for selecting variables to retain in the species distribution model.  Due to the study 

region’s monsoon climate, BioClim variables could be grouped into highly correlated seasonal categories, 

with “warmest” and “wettest” time periods roughly corresponding to summer conditions, and “driest” and 

“coldest” corresponding to winter. 
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Fig. S5. Correlation matrix of all environmental variables considered as candidates for inclusion in the 

species distribution models, arranged to show clusters of highly correlated variables.  Environmental data 

were extracted for each of the 400 caterpillar fungus presence points used in these models.  Following the 

criterion used by SAHM, the maximum of Spearman, Pearson, and Kendall coefficients are displayed.  

Coefficients > |0.70| are in white.  (NonVeg = % non-vegetated cover, Bio_2 = mean diurnal temp range, 

Bio_4 = temp seasonality, Bio_3 = isothermality, Bio_15 = precip seasonality, Bio_5 = max temp 

warmest month, Bio_8 = mean temp wettest quarter, Bio_10 = mean temp warmest quarter, Tree = % tree 

cover, Bio_9 = mean temp driest quarter, Bio_1 = annual mean temp, Bio_6 = min temp coldest month, 

Bio_11 = mean temp coldest quarter, NonTreeVeg = % non-tree vegetation cover, Bio_12 = annual 

precip, Bio_18 = precip warmest quarter, Bio_13 = precip wettest month, Bio_16 = precip wettest quarter, 

Bio_19 = precip coldest quarter, Bio_14 = precip driest month, Bio_17 = precip driest quarter.) 
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Table S1. Species distribution model evaluation statistics on test data and total predicted habitat area are 

shown for four models: generalized linear model (GLM), multivariate adaptive regression splines 

(MARS), boosted regression tree (BRT), and random forest (RF).  Total predicted habitat area refers to 

the area of pixels generated by binary thresholding of the continuous likelihood surface produced by each 

model.  The percentage of habitat in extrapolated areas is the proportion of the predicted habitat that fell 

within areas where the model was extrapolating to environmental characteristics beyond those sampled by 

the presence and background point locations. 

 

Evaluation statistic GLM MARS BRT RF 

AUC train 0.90 0.92 0.96 0.93 

AUC test 0.88 0.90 0.91 0.93 

Correctly Classified (%) 82 81 81 84 

Sensitivity 0.88 0.85 0.80 0.85 

Specificity 0.77 0.76 0.82 0.83 

True Skill Statistic 0.64 0.62 0.62 0.68 

Total predicted habitat area (km2) 738,793 705,710 635,147 395,228 

Habitat in extrapolated areas (%) 1.19 2.37 0.37 1.42 
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Table S2. Model comparison of environmental effects on caterpillar fungus production using ordered 

logistic regression.  Model fit statistics are shown for the best-fitting models (ΔAICc < 2 from the model 

with smallest AICc).  For the null (intercept-only) model, AICc = 76.63, AIC = 76.51, BIC = 79.50, and 

log likelihood = ‒36.25.  P-values for each coefficient are from likelihood ratio chi-square tests.  

Coefficients’ standard errors are shown in parentheses.   

 

 
Model 1 Model 2 Model 3 

Bio_111 ‒1.10 (0.29)*** ‒1.01 (0.27)*** ‒0.88 (0.241)*** 

Elevation2 0.42 (0.21)* 0.45 (0.21)* 
 

Bio_193 ‒0.02 (0.01) 
 

‒0.02 (0.01)* 

AICc 59.98 60.52 61.96 

AIC 59.33 60.09 61.54 

BIC 66.81 66.08 67.52 

Log likelihood ‒24.67 ‒26.04 ‒26.77 

Deviance 49.33 52.09 53.54 

Pseudo R2 0.57 0.52 0.49 

Num. obs. 33 33 33 

***p < 0.001, **p < 0.01, *p < 0.05 
1 Bio_11 = mean temperature of the coldest quarter 
2 Elevation was rescaled (m/100) to improve model performance 
3 Bio_19 = precipitation of the coldest quarter 
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Table S3. Description of codes assigned to local ecological knowledge of trends in caterpillar fungus 

production and their causes. 

 

Code Type Description Exemplary quote 

Increasing A priori Mention increasing production “Some places are having less and some are having more, and 
in my place we’re having more” (this study; Temchen, China). 

No change A priori Mention no change in production “The quality and amount isn’t changing because they put the 
soil back after digging, so it doesn’t affect the mountain” (this 
study; Damshung, China). 
“The amount of caterpillar fungus isn’t changing, even with the 
weather” (this study; Damshung, China). 

Fluctuating Emergent Refer to transient changes in production 
from year to year, without invoking a 
sustained, directional production trend 
through time; closely connected to 
“weather” as a causal factor 

“Harvesters mentioned fluctuations of the abundance of O. 
sinensis from year to year, due to climatic factors such as snow 
fall and temperature” (42). 
“The amount changes according to the weather. There hasn’t 
been an overall change in the amount” (this study; Nagchu, 
China). 

Per capita A priori Specify that there is only a decrease in 
collection amount per capita, not a true 
decrease in production; closely 
connected to “competition” as a causal 
factor 

“…collectors made sure to point out that the total Cordyceps 
population has not decreased, just the number of Cordyceps 
available per person due to the increase in collectors” (43). 

Unsustainable Emergent Indicate an expectation that production 
could decrease, although it hasn’t 
definitively yet 

“Harvesters are currently concerned that resource yields are 
threatened and potentially decreasing” (44). 

Decreasing A priori Mention decreasing production “The quality is becoming worse and the quantity is becoming 
less since when I was young.  Before in one place I could find 
30 pieces, and now I can only find one” (this study; Damshung, 
China). 

Don’t know A priori Interviewees report that they don’t know if 
production is changing 

“…2% indicated that they are not sure if there is less 
Cordyceps now” (43). 

Weather Emergent Attribute changes in production to 
interannual fluctuations in weather 
conditions, without invoking a sustained, 
directional climate trend through time; 
closely connected to “fluctuating” 
production response 

“Every year is different.  If there’s no snow in winter, production 
isn’t good.  With snow in the winter and rain during the 
collection season, it’s good” (this study; Tengchen, China). 
“The amount goes up and down from year to year.  The 
weather is very important. With snow in winter we will find a lot 
in the spring.  Without snow, we can’t find it” (this study; 
Damshung, China). 

Climate change A priori Indication of a directional climate trend 
(even if described as changing 
“weather”), denoting a sustained change 
rather than only interannual variations 

“It’s becoming dry, with less rain, and I can’t find as much 
caterpillar fungus” (this study; Damshung, China). 
“There’s less and less caterpillar fungus because…the weather 
is changing” (this study; Damshung, China). 

Competition A priori Specify that increased competition 
among collectors causes lower harvest 
amounts per capita, but does not affect 
true production amounts; closely related 
to “per capita” production response 

“I think in the past there were only 6, 7, 8 people, and they got 
more pieces.  But these years most of the people are 
harvesting it.  So when we put together everything they found, I 
think there’s no big difference from in the past” (this study; 
(Pasho, China). 
“Thirty years ago there weren’t many collectors, so I could find 
more.  Starting in 2008 there was less of it because of more 
competition to find it.  Having more people doesn’t make less 
caterpillar fungus grow” (Damshung, China). 

Degradation Emergent Mention habitat degradation, livestock 
grazing impacts, soil degradation 

“The surface of the land is destroyed a lot now, and the 
caterpillar fungus can’t grow.  The soil is destroyed, and the 
caterpillar fungus can’t grow” (this study; Driru, China). 
“There’s less and less caterpillar fungus because there are 
more yaks and sheep” (this study; Damshung, China). 

Overexploitation A priori Attribute decreasing production 
specifically to over-harvesting, or else 
report that availability is decreasing due 
to higher collection pressure, without 
specifying that this was only an apparent 
effect due to higher competition to find it  

“It’s decreasing because of over-collection” (this study; 
Rebgong, China). 
“There is less and less caterpillar fungus every year because 
more and more people are collecting” (this study; Damshung, 
China). 
“It’s really clearly becoming less.  Because now it’s quite 
expensive, so people are collecting too much, …and we lose 
the balance” (this study; Dartsendo, China). 

Other Emergent Causal factors not captured by the other 
categories 

“…there are less spores or the spores are not able to spread” 
(43). 
“[The decrease] is a natural thing” (this study; Rebgong, 
China). 

Don’t know A priori Interviewees report that they don’t know 
why production is changing 

“There’s not less because of competition, but I don’t know why 
there’s less” (this study; Rebgong, China). 
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Table S4. Data sources and responses for local knowledge of changes in caterpillar fungus production.  

For changes and their causes, percentages of the number of people who gave each response are reported if 

quantitative data were available; otherwise, qualitative responses are shown.  Percentages for causes add 

to more than 100% if interviewees gave more than one response.  Shaded rows denote data that were 

collected entirely before 2008 and are therefore not displayed in Fig. 2.  If the year in which the data were 

collected was unclear, we give an assumed year based on the publication date or other methods described 

by the study authors. 

Country Province/ 

State* 

Dzongkhag/ 

Prefecture/ 

Division/ 

Zone* 

Gewog/ 

County/ 

District* 

Study 

year 

Caterpillar 

fungus 

changes 

Change 

N† 

Causes of 

caterpillar fungus 

change 

Cause 

N† 

Ref 

Bhutan  Bumthang Chokhor 2008 40% decrease, 

40% no change, 

20% not 

reported 

39 70% 
overexploitation 
and degradation,  
30% not reported‡ 

39 (45) 

Bhutan  Bumthang Chokhor 2004‒

2009 

unsustainable, 

no change 

(168) overexploitation  (46) 

Bhutan  Paro Tsento 2010 68% decrease, 

23% increase,    

9% no change 

23   (47) 

Bhutan  Wangdue-

phodrang 

Dangchu, 

Gangtey, 

Kazhi, 

Sephu 

2004‒

2009 

unsustainable, 

no change 

(226) overexploitation  (46) 

China Qinghai Golog (Ch: 

Guoluo) 

Chikdril (Ch: 

Jiuzhi) 

2017 100% decrease 5 100% 
overexploitation, 
20% degradation,  
20% competition,  
20% climate 
change 

5 ** 

China Qinghai Golog  Gade (Ch: 

Gande) 

2017 decrease 1 overexploitation 1 ** 

China Qinghai Golog Machen 

(Ch: Maqin) 

2017 100% decrease 3 50% 
overexploitation, 
50% competition,  
50% don’t know 

2 ** 

China Qinghai Tsoshar (Ch: 

Haidong) 

Yadzi (Ch: 

Xunhua) 

2017 per capita 1 competition 1 ** 

China Qinghai Malho (Ch: 

Huangnan) 

Sogdzong 

(Ch: Henan) 

2017 decrease 1  1 ** 

China Qinghai Malho Rebgong 

(Ch: 

Tongren) 

2017 81% decrease,  

12% per capita, 

25% fluctuating  

16 25% 
overexploitation,   
8% degradation,  
17% competition,  
8% climate change,     
25% weather,  
8% other, 
25% don’t know 

12 ** 

China Qinghai Malho Tsekhok 

(Ch: Zeku) 

2017 50% decrease, 

50% no change 

2 degradation 1 ** 

China Qinghai Tsonup (Ch: 

Haixi) 

Temchen 

(Ch: 

Tianjun) 

2017 increase 1   ** 

China Qinghai Yulshul Dzato (Ch: 

Zaduo) 

2010‒

2011 

decrease    (48) 

China Qinghai Yulshul (Ch: 

Yulshu) 

Tridu (Ch: 

Chengduo) 

2006 fluctuating  weather  (49) 

China Qinghai Yulshul Yulshul (Ch: 

Yushu) 

2013 decrease 1 degradation  (50) 

China Sichuan Kardze (Ch: 

Ganzi) 

Dabpa (Ch: 

Daocheng) 

2009 56% decrease,  

4% increase,  

18% fluctuating, 

22% don’t know 

50 competition, climate 
change, weather 

 (51) 

China Sichuan Kardze Dartsendo 

(Ch: 

Kangding) 

2017 decrease 1 overexploitation, 
climate change 

1 ** 

China Sichuan Kardze Kardze (Ch: 

Ganzi) 

2017 decrease 1  1 ** 

China Sichuan Kardze Litang 1999 fluctuating  weather  (52) 
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China Tibet (TAR) Chamdo Joda (Ch: 

Jiangda) 

2007 per capita 1   (53) 

China Tibet (TAR) Chamdo (Ch: 

Changdu) 

Pasho (Ch: 

Basu) 

2017 decrease, per 

capita 

1 competition, climate 
change 

1 ** 

China Tibet (TAR) Chamdo Tengchen 

(Ch: 

Dingqing) 

2005‒

2006 

per capita  competition  (54) 

China Tibet (TAR) Chamdo Tengchen  2017 fluctuating 1 weather 1 ** 

China Tibet (TAR) Lhasa (Ch: 

Lasa) 

Damshung 

(Ch: 

Dangxiong) 

2017 67% decrease,  

8% per capita,    

25% fluctuating,   

8% no change  

12 22% 
overexploitation,  
11% degradation,  
22% competition,  
56% climate 
change,    
22% weather 

9 ** 

China Tibet (TAR) Nagchu (Ch: 

Naqu) 

Driru (Ch: 

Biru) 

2017 decrease 1 overexploitation, 
degradation 

1 ** 

China Tibet (TAR) Nagchu Nagchu 

(Ch: Naqu) 

2011 unsustainable  degradation  (55) 

China Tibet (TAR) Nagchu Nagchu 2017 fluctuating 1 weather 1 ** 

China Tibet (TAR) Nagchu Sogdzong 

(Ch: Suo) 

2017 decrease 1 overexploitation, 
climate change 

1 ** 

China Tibet (TAR) Nyingtri (Ch: 

Linzhi) 

Kongpo 

Gyamda 

(Ch: 

Gongbujian

g-da) 

2010 fluctuating, 

increase 

 weather  (53) 

China Yunnan Dechen (Ch: 

Diqing) 

Dechen 

(Ch: Diqing) 

2007 unsustainable    (44) 

China Yunnan Dechen Dechen 2006‒

2008 

per capita, 

fluctuating 

(54) competition, 
weather 

 (42) 

China Yunnan Dechen Dechen 2007‒

2011 

per capita, 

fluctuating 

 competition, 
weather 

 (56) 

China Yunnan Dechen Gyaltang 

(Ch: 

Xianggelila) 

2007 unsustainable    (44) 

China Yunnan Dechen Gyaltang 2011 per capita, 

fluctuating 

 competition, 
weather 

 (56) 

India Sikkim  North 

Sikkim 

2015 decrease  overexploitation  (57) 

India Uttarakhand Garwhal Chamoli 2011 decrease, 

fluctuating 

 weather  (58) 

India Uttarakhand Garwhal Chamoli 2014 86% decrease,    

12% no change,   

2% don’t know 

88 68% 

overexploitation, 

10% competition,  

21% climate 

change,    

23% other 

88 (43) 

India Uttarakhand Garwhal Chamoli < 2015 decrease (205)   (59) 

India Uttarakhand Garwhal Chamoli 2015‒

2016 

82% decrease,  

3% increase,   

9% no change,  

6% don’t know 

312 overexploitation, 
degradation 

 (60) 

India Uttarakhand Garwhal Uttarkashi < 2015 decrease (312)   (59) 

India Uttarakhand Kumaon Pithoragarh 2012‒

2014 

decrease, 

fluctuating 

(2511) degradation  (61) 

India Uttarakhand Kumaon Pithoragarh < 2015 decrease (354)   (59) 

Nepal No. 1 Koshi Sankhusabha 2015 decrease    (62) 

Nepal No. 7 Mahakali Darchula 2004‒

2007 

per capita  competition  (63) 

Nepal No. 7 Mahakali Darchula 2010‒

2014 

decrease 51 overexploitation 44 (64) 

Nepal Karnali Karnali Dolpa 2011 decrease (54)   (65) 

Nepal Karnali Karnali Dolpa 2011 95% decrease,  

1% increase,   

3% no change,  

1% don’t know 

203 75% 
overexploitation,      
> 66% climate 
change‡ 

203 (66, 

67) 

Nepal Karnali Karnali Dolpa 2016 decrease (35) overexploitation  (68) 

Nepal No. 5 Rapti Rukum 2007 decrease, no 

change 

   (69) 
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Nepal No. 5 Rapti Rukum 2012 decrease    (70) 

Nepal No. 4 Dhaulagiri Baglung 2012 decrease    (70) 

Nepal No. 4 Dhaulagiri Myagdi 2012 decrease    (70) 

* For place names we use spellings from the Tibetan and Himalayan Library (http://www.thlib.org), 

except in several places where a different transliteration is more commonly used.  Chinese names in 

pinyin are given in parentheses where they differ from the Tibetan.  TAR = Tibet Autonomous Region. 

 

† Sample sizes not in parentheses reflect the number of people who specifically responded to questions 

about caterpillar fungus change and its causes.  Sample sizes in parentheses denote studies that listed the 

total sample size of interviewees, but gave only a generalized response about the changes they reported; 

therefore, the actual number of responses may have been lower than the total sample.  If studies reported 

generalized responses without specifying any sample size for their interviews, the cell is left blank. 

 

‡ Proportional responses were given, but they were reported in a way that prevented attributing exact 

percentages to our codes.  For Shrivastava et al. (45), overexploitation and degradation were reported 

together.  For Shrestha and Bawa (67), interviewees selected multiple types of climate change, making it 

impossible to accurately assign a total percentage of people who observed “climate change” as a general 

category.  Therefore, we treat these cases as qualitative responses that are equally divided between 

“overexploitation” and “degradation” in the former case and “climate change” and “overexploitation” in 

the latter, with a low-confidence weighting for each, given our uncertainty in the true proportions. 

 

** Data collected through interviews as part of this current study. 
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Table S5. Candidate variables for inclusion in caterpillar fungus species distribution models.  Those 

without a justification description were removed based on the variable selection decision tree (Fig. S4). 

Predictor 
variable 

Data product Spatial 
resolution (m) 

Data 
provider 

Included 
in model? 

Justification 

Elevation SRTMv4.1 
 

250 CGIAR-CSI 
(71) 

 

Yes Well-defined elevation ranges reported in many case 
studies; LEK of differences in caterpillar fungus production 
along elevation gradients (7, 8, 43, 49, 72-76) 

% Tree cover MOD44B.051 
 

250 LPDAAC 
(77) 
 

No -- 

% Non-tree 
vegetation 

MOD44B.051 
 

250 LPDAAC 
(77) 
 

No -- 

% Non-
vegetated 

MOD44B.051 
 

250 LPDAAC 
(77) 
 

Yes Vegetation composition and cover important for caterpillar 
fungus habitat in local-scale case studies; highest % 
deviance explained of all MODIS vegetation variables (72, 
75, 76, 78, 79) 

Annual mean 
temp. 

Bioclim_1 1000 CHELSA 
(40) 
 

No Removed a priori to focus on temperature dynamics at a 
finer temporal resolution 

Mean diurnal 
range 

Bioclim_2 1000 CHELSA 
(40) 
 

No -- 

Isothermality Bioclim_3 1000 CHELSA 
(40) 
 

Yes Strong thermal seasonality affects insect life cycles and 
periods of hibernation; host caterpillars’ physiology is 
sensitive to diurnal temperature fluctuations, and 
consequent behavioral changes may make them likelier to 
encounter fungal spores in the soil profile.  Bioclim_3 is not 
highly correlated with Bioclim_11, unlike its component parts 
(Bioclim_2 and Bioclim_7) (80, 81) 

Temp. 
seasonality 

Bioclim_4 1000 CHELSA 
(40) 
 

No -- 

Max. temp.  
warmest month 

Bioclim_5 1000 CHELSA 
(40) 
 

No -- 

Min. temp. 
coldest month 

Bioclim_6 1000 CHELSA 
(40) 
 

No -- 

Temp. annual 
range 

Bioclim_7 1000 CHELSA 
(40) 

 

No -- 

Mean temp. 
wettest quarter 

Bioclim_8 1000 CHELSA 
(40) 
 

No -- 

Mean temp. 
driest quarter 

Bioclim_9 1000 CHELSA 
(40) 
 

No -- 

Mean temp. 
warmest quarter 

Bioclim_10 1000 CHELSA 
(40) 
 

No -- 

Mean temp.  
coldest quarter 

Bioclim_11 1000 CHELSA 
(40) 
 

Yes O. sinensis and its host caterpillar species are highly 
adapted to low temperatures; highest % deviance explained 
of all winter temperature variables (82-84) 

Annual precip. Bioclim_12 1000 CHELSA 
(40) 
 

No Removed a priori to focus on precipitation dynamics at a 
finer temporal resolution 

Precip. wettest 
month 

Bioclim_13 1000 CHELSA 
(40) 
 

No -- 

Precip. driest 
month 

Bioclim_14 1000 CHELSA 
(40) 
 

No -- 

Precip. 
seasonality 

Bioclim_15 1000 CHELSA 
(40) 
 

Yes LEK suggests that caterpillar fungus is more productive 
under alternating periods of high precipitation (winter) and 
low (during fruiting); researchers suggest that O. sinensis 
populations are likely affected by seasonality of precipitation 
based on an observational field study (58, 85)  

Precip. wettest 
quarter 

Bioclim_16 1000 CHELSA 
(40) 
 

Yes Summer precipitation is an important factor for vegetation 
communities in this region, and it may also help fungal 
spores penetrate the soil to infect caterpillars; caterpillars 
require a specific soil moisture range; highest % deviance 
explained of all summer precipitation variables (80, 86, 87) 

Precip. driest 
quarter 

Bioclim_17 1000 CHELSA 
(40) 
 

No -- 

Precip. warmest Bioclim_18 1000 CHELSA No -- 
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quarter (40) 
 

Precip. coldest 
quarter 

Bioclim_19 1000 CHELSA 
(40) 
 

Yes According to LEK, winter snowfall is an important factor for 
caterpillar fungus production; Bioclim_19 is least highly 
correlated with Bioclim_16 of all the winter precipitation 
variables (42, 58, 60, 67) 
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Table S6. Mean caterpillar fungus collection quantity and habitat area are shown by administrative unit.  

Habitat area is derived from the ensemble of the 4 species distribution models.  The “QC” codes indicate 

quality control levels*.  Shaded rows designate data that were not used in the logistic regression either 

because they were not the best available for that administrative unit, or in the case of Dingxi prefecture 

and Kalikot district, because the production level results were implausibly high outliers in the model.  If 

the collection year was unclear, we give an assumed year or range based on the publication date or other 

methods described by the study authors. 

QC* Country Province

/ Zone† 

Prefecture/ 

District/ 

Dzongkhag/State† 

County† Years Mean 

collected 

(kg yr‒1) 

Habitat 

area (km2) 

Mean 

density 

(kg km‒2  

yr‒1) 

Source 

1 Bhutan  Bumthang  2006‒2008, 

2013‒2017 

67.85 269.13 0.252 (85, 88-

92) ‡ 

1 Bhutan  Gasa  2007‒2010, 

2013‒2017 

99.51 674.31 0.148 (85, 88-

93) ‡ 

1 Bhutan  Lhuentse  2008‒2010, 

2013‒2015 

1.83 273.88 0.0067 (85, 88-

90, 92, 

94) 

1 Bhutan  Paro  2006‒2010, 

2013‒2017 

12.89 170.06 0.0758 (85, 88-

92) ‡ 

1 Bhutan  Punakha  2007 3.00 64.25 0.047 (85) 

1 Bhutan  Thimphu  2006‒2009, 

2013‒2017 

84.92 329.19 0.258 (85, 88-

92, 95)‡ 

1 Bhutan  Trashiyangtse  2007‒2010, 

2014‒2017 

9.25 80.00 0.116 (85, 88-

92, 96) 

‡ 

1 Bhutan  Wangduephodrang  2006‒2010, 

2013‒2017 

253.75 544.06 0.466 (85, 88-

92, 97) 

‡ 

2 China Gansu Dingxi Min, Weiyuan, 

Zhang 

≤ 2010 400 6.13 65.306 (98) 

4 China Gansu Gannan Choné, Drukchu, 

Luchu, Machu, 

Sangchu, Tewo, 

Tso (Ch: Zhuoni, 

Zhouqu, Luqu, 

Maqu, Xiahe, 

Diebu, Hezuo) 

≤ 2010 5,200   (98) 

2 China Gansu Linxia Kangle, Hezheng, 

Linxia, Jishishan 

≤ 2010 50 126.50 0.395 (98) 

4 China Gansu Wuwei Pari (Ch: 

Tianzhu) – 5 

townships 

≤ 2010 2,000   (98) 

4 China Gansu Zhangye Sunan – 3 

townships 

≤ 2010 450   (98) 

2 China Qinghai Golog (Ch: Guoluo)  2008, ≤ 2012 26,000 11,793.00 2.205 (33, 99) 

2 China Qinghai Yulshul (Ch: 

Yushu) 

 ≤ 2012 14,000 12,726.19 1.100 (99) 

2 China Sichuan Kardze (Ch: Ganzi)  ≤ 2012 11,000 51,882.19 0.212 (99) 

2 China Sichuan Ngawa (Ch: Aba)  ≤ 2012 10,000 17,298.88 0.578 (99) 

1 China TAR (Ch: 

Xizang) 

Chamdo (Ch: 

Changdu) 

Pembar (Ch: 

Bianba) 

2000‒2009 937.35 1,489.25 0.629 (54, 

100, 

101) 

1 China TAR Chamdo Riwoché (Ch: 

Leiwuqi) 

2000‒2009 1,625.12 2,497.88 0.651 (54, 

100, 

101) 

1 China TAR Chamdo Tengchen (Ch: 

Dingqing) 

2000‒2009 3,554.22 2,101.81 1.691 (54, 

100, 

101) 

3 China TAR Chamdo Tengchen ≤ 2007 > 6,000   (102) 

1 China TAR Chamdo Other Chamdo: 

Chamdo, 

Drakyap, 

Dzogang, Gonjo, 

Jomda, Lhorong, 

Markham, Pashö 

2000‒2009 10,226.56 16,892.56 0.605 (54, 

100, 

101) 
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(Ch: Changdu, 

Chaya, Zuogong, 

Gongjue, 

Jiangda, Luolong, 

Mangkang, Basu) 

3 China TAR Chamdo  ≤ 2012 13,000   (99) 

1 China TAR Lhasa (Ch: Lasa)  2000‒2009 2,227.27 2,900.00 0.768 (100, 

101) 

1 China TAR Lhoka (Ch: 

Shannan) 

 2000‒2009 3,321.99 2,343.44 1.418 (100, 

101) 

1 China TAR Nagchu (Ch: Naqu) Driru (Ch: Biru) 2000‒2009 4,645.88 1,801.56 2.579 (54, 

100, 

101) 

3 China TAR Nagchu Driru ≤ 2007 5,000‒

7,000 

  (102) 

1 China TAR Nagchu Lhari (Ch: Jiali) 2000‒2009 1,995.18 533.19 3.742 (54, 

100, 

101) 

1 China TAR Nagchu Sogdzong (Ch: 

Suoxian) 

2000‒2009 1,953.15 2,191.06 0.891 (54, 

100, 

101) 

3 China TAR Nagchu Sogdzong ≤ 2007 4,000‒

4,500 

  (102) 

3 China TAR Nagchu Lhari, Sogdzong 1998‒2008 2,000‒

2,500 

  (103) 

1 China TAR Nagchu Other Nagchu: 

Drachen, Nagchu, 

Nyenrong (Ch: 

Baqing, Naqu, 

Nierong) 

2000‒2009 8,198.82 1,294.19 6.335 (54, 

100, 

101) 

3 China TAR Nagchu Drachen ≤ 2007 5,000‒

10,000 

  (102) 

3 China TAR Nagchu  ≤ 2007 15,000   (102) 

3 China TAR Nagchu  ≤ 2012 14,000   (99) 

1 China TAR Nyingtri (Ch: 

Linzhi) 

Nyingtri high: 

Kongpo Gyamda, 

Menling, Nang, 

Nyingtri (Ch: 

Gongbujiangda, 

Milin, Lang, 

Linzhi) 

2000‒2009 3,818.32 3,419.19 1.117 (100-

102) 

1 China TAR Nyingtri Nyingtri low: 

Dzayül , Pomé 

(Ch: Chayu, 

Bomi) 

2000‒2009 197.87 472.63 0.419 (100-

102) 

3 China TAR Nyingtri  ≤ 2007 > 10,000   (102) 

1 China TAR Shigatse (Ch: 

Rikaze) 

 2000‒2009 1,691.88 5,547.75 0.305 (100, 

101) 

2 China Yunnan Dechen (Ch: 

Diqing) 

 < 2010 300 1,199.31 0.250 (33) 

2 India  Uttarakhand  2003‒2008 1,525 5,334.31 0.286 (33) 

1 Nepal Karnali Dolpa  2009 1,560 1,941.56 0.803 (31) 

2 Nepal Karnali Humla  ≤ 2004, 

2006?, 2006‒

2009? 

130.83 1,750.88 0.075 (33, 

104, 

105) 

2 Nepal Karnali Jumla  2006‒2009?, 

≤ 2015 

250.50 1,102.63 0.227 (104, 

106) 

2 Nepal Karnali Kalikot  ≤ 2004 200 190.44 1.050 (33) 

2 Nepal Karnali Mugu  2006?, 2006‒

2009? 

275 1,032.44 0.266 (104, 

105) 

2 Nepal Mahakali Darchula  2004, 2006‒

2009? 

481** 754.81 0.637** (32, 

104)** 

* Quality control levels: “1” indicates preferred data, with the original source and collection year clearly 

stated.  “2” indicates the best-available data, despite the original source and/or collection year not being 

clearly stated.  “3” indicates data that were not used because the original source and/or collection year 

were not clearly stated, and level 1 data were available for that administrative unit instead.  “4” indicates 

counties in Gansu prefecture for which collection data were given for a subset of townships within the 
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county; since Chinese township boundaries are not available, caterpillar fungus habitat areas could be not 

calculated. 

 

† We use place name spellings from the Tibetan and Himalayan Library (http://www.thlib.org), except in 

several places where a different transliteration is more commonly used.  Chinese names in pinyin are 

given in parentheses where they differ from the Tibetan.  TAR = Tibet Autonomous Region. 

 

‡ 2016 caterpillar fungus auction data are from Bhutan’s Department of Agricultural Marketing and 

Cooperatives, sent by Sonam Wangdi in an email to K. Hopping on April 16, 2017. 

 

** A study published after the completion of our data analysis reported that 384.1 kg of caterpillar fungus 

was collected in Darchula district, Nepal in 2014 (107).  Including this additional year of data would 

change the mean collection amount for Darchula to 403 kg yr-1, at a density of 0.534 kg km-2 yr-1. 
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