PNAS www.pnas.org

1 2 3	Supplementary Information for
4	Computational and Experimental Insights into the Circadian Effects of
5	SIRT1
6 7	Panagiota T. Foteinou, Anand Venkataraman, Lauren J. Francey, Ron C Anafi, John B. Hogenesch and Francis J. Doyle III
8 9 10	Francis J. Doyle III Email: frank_doyle@seas.harvard.edu
11 12 13	This PDF file includes:
14 15 16	Supplementary text Figs. S1 to S9 Tables S1 to S7
17 18 19 20	References for SI reference citations
21	
22 23	
24	
25	
26	
27 28 29 30	

31 Supplemental Experimental Procedures

32

33 siRNA transfections and kinetic bioluminescence recording. Cells were transfected using Lipofectamine RNAiMAX transfection reagent (Invitrogen) with 12pmol siRNA against all genes 34 except BMAL1. Only 3pmol of the siRNA against BMAL1 was transfected to prevent complete 35 36 arrhythmicity. A negative control siRNA (AllStars Negative control siRNA; Qiagen) was used to 37 ensure equal molar amounts of siRNA in all reactions. Two days post transfection, the cell-38 culture medium was changed to a recording medium [made up of phenol-red free DMEM (Sigma, 39 D-2902), 4mM sodium bicarbonate (Sigma, S5761), 10mM HEPES buffer (Gibco, 15630-122), 40 1x PSG, 0.1mM luciferin (Promega) and 0.1µM Dexamethasone (Sigma)] and the plates were 41 sealed shut using their own lids with sterile vacuum grease. Sealed plates were then placed into a 42 LumiCycle luminometer (Actimetrics) and luminescence was measured for over 5 days. 43 Alternatively, a linearly scaled down version of the above mentioned protocol was also used to 44 record luminescence in a 96 well plate format using the Synergy2 BioTek microplate reader.

45

46 Calculation of period length, amplitude and baseline. Circadian period from the luminescence 47 recordings was calculated using the WAVECLOCK package (1) on a Dell desktop PC running R for Windows version 2.7.0 (http://www.R-project.org) This wavelet-based assessment of period 48 49 varies as a function of time and the median period, corresponding to the "total mode", was used 50 to describe the overall period. Waveforms with dominant non-circadian periods (outside the range 51 of 20 - 28 hours) were considered arrhythmic. Circadian amplitude was determined by regression 52 to a sinusoidal waveform with the previously established period using the lm() function in R. 53 Baseline estimates used are the mean of all luminescence values recorded between day 1 and day 54 4 of the experiment.

55

Isolation of RNA and gene expression assays. Reverse transcription of 0.5-1 μg of RNA was performed using qScriptTM cDNA Synthesis Kit (Quanta Biosciences) and quantitative RT-PCR was performed using TaqMan gene expression assays (Applied Biosystems and IDT) and PerfeCTa® FastMix® II (Quanta Biosciences) as per the manufacturer's instructions. Catalog numbers of the primers used in this manuscript are listed in **Table S3**.

61

62 Model derivation for the SIRT1-dependent deacetylation of BMAL1 and PER2 (model

A). The following assumptions were made for the development of this model:

- 64 agreement with experimental observations i. In (2),the canonical 65 transcriptional/translational (PER-CRY/CLOCK-BMAL1) feedback loop is considered to be the primary generator of circadian oscillations. Complementary to 66 67 this, the rhythmic regulation of the positive element, BMAL1 transcription, by a 68 second transcriptional feedback loop that involves the nuclear receptors REV-ERB 69 and ROR, is not required for the generation of endogenous oscillations (3). 70 Consequently, we assume constitutive expression of BMAL1 gene expression.
- 71ii.For the purpose of simplicity, the mammalian homologs of period (*PER1*, *PER2* and72*PER3*) and cryptochrome (*CRY1*, *CRY2*) genes are not explicitly modeled. Instead,73they are represented by combined variables (*PER* and *CRY*) both at the mRNA and74protein level.
- 75iii.At the mRNA level, SIRT1 is produced almost at constant levels (4) (similar to the76constitutive levels of *CLOCK* expression in most tissues (5, 6)) and thereby both77*CLOCK* and *SIRT1* dynamics are not described by explicit model variables. Instead,78the model assumes NAD^+ levels represent SIRT1 deacetylase activity, whose79oscillations are in phase. In the case of the constitutive *CLOCK* expression, the80concentration of the nuclear CLOCK-BMAL1 complex is represented by the nuclear81(active) BMAL1 and therefore such terms are used interchangeably.

- iv. Although core loop components have many post-translational modifications, this
 study focuses on the role of acetylation in the circadian function (7). Of particular
 interest is how SIRT1 deacetylates nuclear BMAL1 and PER.
- v. Since SIRT1-mediated deacetylation promotes proteasomal degradation, the
 acetylated levels of nuclear proteins BMAL1 and PER represent the active entities.
 The PER-CRY complex is assumed to exist either in the acetylated (active) form or
 non-acetylated (inactive). Similarly, BMAL1 levels are considered as acetylated
 (active) BMAL1 and non-acetylated (inactive).

90 The mathematical formulation of model A, which is illustrated in **Fig. 1**A, consists of thirteen 91 (13) ordinary differential equations (ODEs) and fifty-six (56) kinetic parameters. These state 92 variables represent the kinetics of mRNA abundance of PER (M_{PER}), CRY (M_{CRY}) and NAMPT 93 (M_{NAMPT}) genes, as well as the corresponding protein concentrations in the cytosol (PER, CRY, 94 NAMPT). Cytoplasmic and nuclear PER-CRY heterodimers are represented by PCC and PCN, 95 respectively. The variable NAD describes cellular levels of NAD⁺. Cytosolic and nuclear 96 concentrations of BMAL1 protein are denoted by BC and BN. Further, the acetylated forms of 97 the activator BMAL1 and the repressor complex PER-CRY are represented by BNac and PCNac. respectively. The model dynamics are described by the following system of ODEs (S1.1) -98 99 (S1.4):

(a) mRNA dynamics of E-box genes (PER, CRY and NAMPT)

$$\frac{\mathrm{d}\mathbf{M}_{i}}{\mathrm{d}t} = \mathbf{v}_{0i} + \frac{\mathbf{v}_{si} \cdot \mathbf{BN}_{ac}^{a}}{K_{A_{i}}^{a} \cdot \left(1 + \left(\frac{\mathbf{PCN}_{ac}}{R_{i}}\right)^{r}\right) + \mathbf{BN}_{ac}^{a}} - \frac{\mathbf{v}_{di} \cdot \mathbf{M}_{i}}{K_{di} + M_{i}} - \mathbf{k}_{dn} \cdot \mathbf{M}_{i}, \quad i = \{PER, CRY, NAMPT\}$$
(S1.1)

(b) cytosolic proteins/complexes

$$\frac{dPER}{dt} = k_{sP} \cdot M_{Per} + k_{d,PC} \cdot PCC - k_{a,PC} \cdot PER \cdot CRY - \frac{v_{dP} \cdot PER}{K_{dp} + PER} - k_{dn} \cdot PER$$

$$\frac{dCRY}{dt} = k_{sC} \cdot M_{Cry} + k_{d,PC} \cdot PCC - k_{a,PC} \cdot PER \cdot CRY - \frac{v_{dC} \cdot CRY}{K_{dc} + CRY} - k_{dn} \cdot CRY$$

$$\frac{dPCC}{dt} = k_{a,PC} \cdot PER \cdot CRY - k_{d,PC} \cdot PCC - k_{im,PC} \cdot PCC + k_{ex,PC} \cdot PCN - \frac{v_{dPCC} \cdot PCC}{K_{dPCC} + PCC} - k_{dn} \cdot PC_{c}$$

$$\frac{dBC}{dt} = k_{sB} - k_{im,B} \cdot BC + k_{ex,B} \cdot BN - \frac{v_{dBc} \cdot BC}{K_{dBc} + BC} - k_{dn} \cdot BC$$
(S1.2)

(c) nuclear proteins/complexes

$$\begin{aligned} \frac{dPCN}{dt} &= k_{im,PC} \cdot PCC - k_{ex,PC} \cdot PCN - \frac{v_{PAC} \cdot PC_{N}}{K_{PAC} + PC_{N}} + \frac{v_{PDAC} \cdot NAD \cdot PCN_{ac}}{K_{PDAC} + PCN_{ac}} - \frac{v_{dPCN} \cdot PCN}{K_{dPCN} + PCN} - k_{dn} \cdot PCN \\ \frac{dPCN_{ac}}{dt} &= \frac{v_{PAC} \cdot PC_{N}}{K_{PAC} + PC_{N}} - \frac{v_{PDAC} \cdot NAD \cdot PCN_{ac}}{K_{PDAC} + PCN_{ac}} - k_{dn} \cdot PCN_{ac} \\ \frac{dBN}{dt} &= k_{im,B} \cdot BC - k_{ex,BC} \cdot BN - \frac{v_{BAC} \cdot BN}{K_{BAC} + BN} + \frac{v_{BDAC} \cdot NAD \cdot BN_{ac}}{K_{BDAC} + B_{Nac}} - \frac{v_{dBN} \cdot BN}{K_{dBN} + BN} - k_{dn} \cdot BN \\ \frac{dBN_{ac}}{dt} &= \frac{v_{BAC} \cdot BN}{K_{BAC} + BN} - \frac{v_{BDAC} \cdot NAD \cdot BN_{ac}}{K_{BDAC} + B_{Nac}} - k_{dn} \cdot BN \\ \end{aligned}$$

$$(S1.3)$$

(d) NAMPT/NAD loop

$$\frac{dNAMPT}{dt} = k_{sN} \cdot M_{Nampt} - \frac{v_{dN} \cdot NAMPT}{K_{dN} + NAMPT} - k_{dn} \cdot NAMPT$$

$$\frac{dNAD}{dt} = s_{n} \cdot NAMPT - \frac{v_{dNAD} \cdot NAD}{K_{dNAD} + NAD} - k_{dn} \cdot NAD$$
(S1.4)

100

101 As shown above, transcription is mathematically described by Hill equations (an expression commonly used in the literature (8, 9) characterized by five parameters representing the 102 maximum velocity v_{si} (i = *PER*, *CRY*, *NAMPT*), two DNA binding constants of an activator (K_{Ai}) 103 104 and a repressor (R_i , i = Per, Cry, Nampt) and two Hill coefficients for activation (a) and 105 repression (r). We further introduced basal synthesis rate for v_{0i} (i = PER, CRY, NAMPT), which 106 represents transcriptional activation from the constitutive promoter. Translation rate is proportional to mRNA concentration with the kinetic constant (k_{si} , i = P, C, N). The law of mass 107 108 action describes association and dissociation of PER-CRY complexes, nuclear transportation, and 109 reversible acetylations. Michaelis-Menten-type equations are employed to describe enzyme-110 mediated degradation processes. Nonspecific degradation terms are also incorporated and are proportional to each variable with the kinetic constant k_{dn} . Taken together, this model integrates 111 112 the classical PER-CRY transcriptional feedback loop with the circadian NAMPT/NAD⁺ 113 enzymatic loop.

114

115 Equation (S1). Let us consider an ordinary differential equation system (ODE)

116
$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, \mathbf{p}), \quad \mathbf{x} \in \mathbb{R}^n, \ \mathbf{p} \in \mathbb{R}^n$$

117 where \mathbf{x} denotes the vector of state variables and \mathbf{p} the vector of parameters. Suppose that this 118 system has a stable periodic solution with period (T). Using the scaling

119 $\tau_0 = \frac{t}{T}$

120 the system reads as follows:

121
$$\frac{d\mathbf{x}}{d\tau_0} = TF(\mathbf{x}, \mathbf{p}), \quad \mathbf{x} \in \mathbb{R}^n, \ \mathbf{p} \in \mathbb{R}^n$$

with $\tau_0 \in (0,1)$. In order for the system to yield a period close to naturally occurring in continuous darkness (τ_{dd}), the system is transformed as

124
$$\frac{d\mathbf{x}}{d\tau} = \frac{T}{\tau_{dd}} F(\mathbf{x}, \mathbf{p}), \quad \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{p} \in \mathbb{R}^{m}$$

with $\tau \in (0, \tau_{dd})$; hence all rate parameters are multiplied by the scaling factor (T/τ_{dd}) . In this study the cell autonomous period (τ_{dd}) is considered to be 23.7h which is the average period of an individual circadian oscillator $(23.7 \pm 1.2 \text{ h})$ (10).

128 Self-sustained oscillations and relevant phases. We tested the ability of our proposed circadian 129 oscillator model to reproduce experimentally observed sustained oscillations. Using the parameter 130 values as shown in **Table S1** our first modeling effort (model A) can reproduce cell autonomous 131 oscillations with relevant phase relations as illustrated in Table S5. Specifically, for both 132 parameter sets (H1 and H2) the mRNA of co-regulated E-box genes (PER, CRY, NAMPT) peaks 133 early during the subjective night while the circadian levels of the protein NAMPT and NAD 134 cofactor peak later in the middle of the subjective night. Such phase delay is related to the 135 upregulation of metabolic processes during the fasting period. Further, the model reproduces a 4-136 hour phase relationship between PER mRNA and PER protein, which lies within the 137 experimental range of a 4-hour to 8-hour delay (5). In this model, the rhythmic levels of PER, 138 rather than CRY, are critical for circadian oscillations which are consistent with experimental 139 findings from these studies (11, 12). Meanwhile the simulated circadian oscillations of acetylated BMAL1 (BMAL1^{AC}) are almost antiphasic to the variation levels of NAD regulator. Importantly, 140 Nakahata et al. (4) found in both synchronized fibroblasts and liver tissue that the peak phase of 141 142 SIRT1 deacetylase activity is consistent with the low levels of cyclic acetylation of histone H3 143 and non-histone substrates (i.e. BMAL1). In regard to phase relation between SIRT1 (or NAD) activity and acetylated PER (PER^{AC}-CRY), it is noteworthy that the model predicts an in-phase 144 relationship. This is captured for parameter set H2 where SIRT1 regulates the dynamics of 145 PER^{AC}-CRY (negative clock component). As the active repressor, PER^{AC}-CRY is expected to 146 147 peak late in the evening, which is experimentally shown in (13) and also reproduced by the 148 model. For the parameter set H1, an in-phase relationship between the peak phases of SIRT1 and 149 PER^{AC}-CRY is not necessary. This explains the phase difference (advance) simulated for NAD 150 when parameter set H1 is compared with set H2 (Table S5).

151

152 Model derivation for the SIRT1-dependent regulation of PGC1a, BMAL1 and PER2

153 (model B). The following assumptions were made for the development of this model:

- i. All members of the ROR (α , β and γ) and REV-ERB subfamilies (α and β) are not explicitly modeled. Instead, they are represented by combined variables (ROR and REV-ERB) both at the mRNA and protein level.
- 157 ii. At the mRNA level, the transcription of *ROR* genes is assumed to be regulated not only by
 158 the core PER/CRY loop (E-box regulation) but also directly by the ROR/REV-ERB loop
 159 (RORE mediated regulation). This assumption is in agreement with the experimental
 160 findings of Liu et al. (3), which indicate that *ROR* harbors a functional RORE.
- 161 iii. For the sake of simplicity, the model does not distinguish between rhythmic PGC1a162 expression and the corresponding protein. Instead, the variable PGC1a is assumed to 163 represent the rhythmic activity of PGC1a that depends upon NAD⁺-dependent 164 deacetylation by SIRT1. Quantitatively, the induction of PGC1a by SIRT1 is described by 165 a Michaelis-Menten type equation while a basal rate and non-specific degradation term are 166 used to describe constitutive activation.
- 167 iv. The stimulatory activity of the protein ROR at the ROR-binding sites (RORE) is exerted 168 via its synergistic action with the transcriptional coactivator PGC1 α (14), a transcriptional 169 regulator highly responsive to nutrient signals. This interaction results in the formation of 170 the complex (ROR^{*}) which represents the active ROR protein.
- v. With regard to the core PER/CRY loop, the model distinguishes two homologs of the PER subfamily (*PER1* and *PER2* genes) and SIRT1 regulates the acetylation level of PER2. The sum of the PER1/CRY complex and the active (acetylated) PER2/CRY (denoted P1C and P2C_{ac}, respectively) represent the total (active) PER/CRY repressor.
- vi. For the purpose of simplicity, we only consider reversible entry of the cytosolic protein
 BMAL1 into the nucleus (denoted BC and BN, respectively). Nuclear BMAL1 undergoes
 reversible acetylation regulated by SIRT1, consistent with model A.

178 179 The model described in this section explicitly considers the rhythmic regulation of *BMAL1* 180 transcription by the auxiliary ROR/REV-ERB feedback loop (model B). Within this loop, the 181 clock genes *ROR* (M_{ROR}) and *NR1D1*/2 (M_{REV}) are transcribed and translated into the 182 corresponding proteins ROR and REV-ERB (REV), which regulate *BMAL1* expression (M_B) by 183 competing at the BMAL1 promoter as activator and repressor, respectively. The dynamics of this 184 model illustrated in **Fig. 2** are described by the following system of ODEs (S1.5) – (S1.9): 185

(a) mRNA dynamics of E-box and RORE genes

$$\frac{dM_{i}}{dt} = v_{0i} + \frac{v_{si} \cdot BN_{ac}^{a}}{K_{A_{i}}^{a} \cdot \left(1 + \left(\frac{PIC}{R_{i}} + \frac{P2C_{ac}}{R_{i}^{c}}\right)^{r}\right) + BN_{ac}^{a}}{K_{di}^{a} + M_{i}} - k_{dn} \cdot M_{i},$$

$$i = \{PERI, PER2, CRY, REV, NAMPT\}$$

$$\frac{dM_{B}}{dt} = v_{0B} + \frac{v_{sB} \cdot ROR^{*b}}{K_{AB}^{b} \left(1 + \left(\frac{REV}{R_{B}}\right)^{c}\right) + ROR^{*b}} - \frac{v_{dB} \cdot M_{B}}{K_{dB} + M_{B}} - k_{dn} \cdot M_{B}$$

$$\frac{dM_{Ror}}{dt} = v_{0Ror} + \frac{v_{sIRor} \cdot BN_{ac}^{a}}{K_{AIror}^{a} \cdot \left(1 + \left(\frac{PIC}{R_{IRor}} + \frac{P2C_{ac}}{R_{IRor}^{c}}\right)^{r}\right) + BN_{ac}^{a}} + \frac{v_{s2Ror} \cdot ROR^{*b}}{K_{A2ror}^{a} \left(1 + \left(\frac{REV}{R_{2Ror}}\right)^{c}\right) + ROR^{*b}}$$

$$- \frac{v_{dRor} \cdot M_{Ror}}{K_{dRor} + M_{Ror}} - k_{dn} \cdot M_{Ror}$$
(S1.5)
(S1.5)

(b) Proteins/complexes of PER1/CRY loop

$$\frac{dPER1}{dt} = k_{sP} \cdot M_{Per1} + k_{d,PIC} \cdot PIC - k_{a,PIC} \cdot PER1 \cdot CRY - \frac{v_{dP1} \cdot PER1}{K_{dp} + PER1} - k_{dn} \cdot PER1$$

$$\frac{dCRY}{dt} = k_{sC} \cdot M_{Cry} + k_{d,PIC} \cdot PIC - k_{a,PIC} \cdot PER1 \cdot CRY - \frac{v_{dC} \cdot CRY}{K_{dc} + CRY} - k_{dn} \cdot CRY$$

$$\frac{dPIC}{dt} = k_{a,PIC} \cdot PER1 \cdot CRY - k_{d,PIC} \cdot PIC - \frac{v_{dPIC} \cdot PIC}{K_{dPIC} + PIC} - k_{dn} \cdot PIC$$

(c) Proteins/complexes of PER2/CRY loop

$$\frac{dPER2}{dt} = k_{sP} \cdot M_{Perl} + k_{d,P2C} \cdot P2C - k_{a,P2C} \cdot PER2 \cdot CRY - \frac{v_{dP2} \cdot PER2}{K_{dP} + PER2} - k_{dn} \cdot PER2$$

$$\frac{dCRY}{dt} = k_{sC} \cdot M_{Cry} + k_{d,PlC} \cdot PlC - k_{a,PlC} \cdot PER1 \cdot CRY + k_{d,P2C} \cdot P2C - k_{a,P2C} \cdot PER2 \cdot CRY$$

$$- \frac{v_{dC} \cdot CRY}{K_{dc} + CRY} - k_{dn} \cdot CRY$$

$$\frac{dP2C}{dt} = k_{a,P2C} \cdot PER2 \cdot CRY - k_{d,P2C} \cdot P2C - \frac{v_{PAC} \cdot P2C}{K_{PAC} + P2C} + \frac{v_{PDAC} \cdot NAD \cdot P2C_{ac}}{K_{PDAC} + P2C_{ac}}$$

$$- \frac{v_{dPlC} \cdot P2C}{K_{dPlC} + P2C} - k_{dn} \cdot P2C$$

$$\frac{dP2C_{ac}}{dt} = \frac{v_{PAC} \cdot P2C}{K_{PAC} + P2C} - \frac{v_{PAC} \cdot NAD \cdot P2C_{ac}}{K_{PDAC} + P2C_{ac}} - k_{dn} \cdot P2C_{ac}$$
(S1.6)

(d) Cytosolic/nuclear BMAL1

$$\frac{dBC}{dt} = k_{sB} \cdot M_{B} - k_{im,B} \cdot BC + k_{ex,B} \cdot BN - \frac{v_{dBc} \cdot BC}{K_{dBc} + BC} - k_{dn} \cdot BC$$

$$\frac{dBN}{dt} = k_{im,B} \cdot BC - k_{ex,BC} \cdot BN - \frac{v_{BAC} \cdot BN}{K_{BAC} + BN} + \frac{v_{BDAC} \cdot NAD \cdot BN_{ac}}{K_{BDAC} + B_{Nac}} - \frac{v_{dBN} \cdot BN}{K_{dBN} + BN} - k_{dn} \cdot BN$$
(S1.7)
$$\frac{dBN_{ac}}{dt} = \frac{v_{BAC} \cdot BN}{K_{BAC} + BN} - \frac{v_{BDAC} \cdot NAD \cdot BN_{ac}}{K_{BDAC} + B_{Nac}} - k_{dn} \cdot BN_{ac}$$

(e) Proteins/complexes of ROR/REV-ERB loop

$$\frac{dREV}{dt} = k_{sREV} \cdot M_{Rev} - \frac{v_{dREV} \cdot REV}{K_{dREV} + REV} - k_{dn} \cdot REV$$

$$\frac{dROR}{dt} = k_{sROR} \cdot M_{Ror} - \frac{v_{dROR} \cdot ROR}{K_{dROR} + ROR} - k_{a,RP} \cdot PGC1\alpha \cdot ROR + k_{d,RP} \cdot ROR^* - k_{dn} \cdot ROR$$

$$\frac{dPGC1\alpha}{dt} = v_{0pgc} + \frac{v_{spgc} \cdot NAD}{K_{Apgc} + NAD} - k_{a,RP} \cdot PGC1\alpha \cdot ROR + k_{d,RP} \cdot ROR^*$$

$$- \frac{v_{dpgc} \cdot PGC1\alpha}{K_{dpgc} + PGC1\alpha} - k_{dn} \cdot PGC1\alpha$$

$$\frac{dROR^*}{dt} = k_{a,RP} \cdot ROR \cdot PGC1\alpha - k_{d,RP} \cdot ROR^*$$
(S1.8)

(f) NAMPT/NAD loop

$$\frac{dNAMPT}{dt} = k_{sN} \cdot M_{Nampt} - \frac{v_{dN} \cdot NAMPT}{K_{dN} + NAMPT} - k_{dn} \cdot NAMPT$$

$$\frac{dNAD}{dt} = s_n \cdot NAMPT - \frac{v_{dNAD} \cdot NAD}{K_{dNAD} + NAD} - k_{dn} \cdot NAD$$
(S1.9)

As shown in equations (S1.5) – (S1.9) this mathematical model is characterized by 19 ODEs and
 92 kinetic parameters, which are estimated using the same evolutionary search algorithm as
 previously described . Additional constraints set by relevant experimental observations are

considered in the cost function and summarized in **Table S4**. Among these, a major constraint is related to the dominant effects of REV-ERB within the ROR/REV-ERB loop. Specifically, the model should allow the simulation of increased baseline of *BMAL1* oscillations in the loss-offunction mutation for *BMAL1* as we have previously shown in the study (15). Further data are related to the downregulatory effects of *SIRT1* null mutation (*SIRT1*^{-/-}) on *BMAL1* expression as previously shown (13). The proposed model is calibrated using published data and validated using additional RNA interference technology (RNAi) knockdown experiments.

- 196 Estimation of model parameters. To estimate the unknown parameters, an evolutionary 197 algorithm was performed minimizing a particular cost function using the MATLAB Distributed 198 Computing Toolbox. The cost function is defined as the discrepancy (error) between the output 199 of the model and the data that comes from experiments. Experimental data (i.e. phases) from 200 canonical clock genes and metabolites (4, 6, 16-20) were used. Appropriate parameters are 201 chosen as those that satisfy these criteria (also in Table S4): (i) self-sustained oscillations are due to PER-CRY negative feedback loop; (ii) SIRT1 loss does not result in arrhythmicity (in this 202 model, $SIRT1^{-/-}$ is equivalent to NAD^{-/-}); (iii) simulation of either increased or decreased 203 204 amplitude due to lack of enzymatic (NAD) activity as shown by Nakahata et al. (4) and Asher et 205 al. (13), respectively. This estimation algorithm allows therefore for the generation of two 206 independent parameter sets (referred to here as sets H1 and H2). Set H1 refers to the parameters 207 for which the model simulates increased amplitude phenotype in response to lack of SIRT1 208 (SIRT1 $^{-}$), while set H2 refers to the parameters used in the model to simulate reduced amplitude 209 response. To generate these two parameter sets, we used an "unsupervised" parameter estimation 210 algorithm that utilizes a diverse set of experimental data to calibrate the model; without 211 supervising for the identification of a few parameter combinations that dictate model behavior across the two paradoxical SIRT1^{-/-} phenotypes. Given the prevalence of sloppiness – an 212 213 apparently universal property of systems biology models (21) – many parameters are expected to 214 vary across the two sets H1 and H2. Briefly, sloppiness suggests that collective fits to even large 215 amounts of ideal (experimental) data often leave many parameters poorly constrained. 216 Consequently, the model behavior depends on only a few ("stiff") parameter combinations. 217 Further, the prevalence of sloppiness highlights the power of collective fits and suggests focusing 218 on predictions rather than on parameters. Although a "supervised" approach could plausibly 219 identify fewer more critical parameter combinations, we believe that either approach would 220 ultimately yield similar predictions. Once a certain range of parameter values is captured for 221 which the model produces periodic solutions and relevant phases, its period is scaled using 222 Equation S1 (see supplemental experimental procedures) so as to yield a typical period of an 223 individual (circadian) oscillator close to 24h (i.e. 23.7h) (22, 23).
- 224 Design of in silico knockdown experiments. The performance of the extended circadian-225 enzymatic model (model B) is assessed through its ability to predict experimentally observed phenotypes of various genetic perturbations of circadian clock components. We have devised 226 227 three levels of *in silico* predictions that are consistent with the RNAi validation experiments 228 including: (i) circadian effects of SIRT1 knockdown on circadian oscillations following BMAL1 229 knockdown; (ii) circadian effects of SIRT1 knockdown when expression of CLOCK is inhibited, 230 and (iii) circadian effects of SIRT1 knockdown when PER2, PGC1 α or ROR is knocked down. In 231 order to simulate the effect of a knockdown experiment, the effect of interference could be 232 simulated either at the RNA level by increasing the RNA degradation rate or at the protein level 233 by reducing the translation rate. Both methods give similar results except for the BMAL1 234 knockdown experiment. Increasing the RNA degradation rate of BMAL1 enables the model to 235 robustly predict reduced *BMAL1* expression, consistent with the experimentally observed 236 reduction of endogenous mRNA. Reducing the translation rate enables the model to simulate 237 increased baseline of BMAL1 mRNA. While this is consistent with the effect of BMAL1 238 knockdown on BMAL1 luciferase oscillations, it does not correlate with the cognate mRNA. We

- simulated *BMAL1* knockdown by reducing the translation rate since the measured *BMAL1* luciferase oscillations represent the output of the *BMAL1* promoter (mathematically described by the variable M_B). Reducing the kinetic parameters of acetylation (v_{BAC}) and synthesis rate (s_n) of BMAL1 and NAD respectively simulates the effect of *CLOCK* and *SIRT1* knockdown. Note that both *CLOCK* and *SIRT1* are implicitly considered in this model (constitutive expression) and
- therefore their knockdowns could not be tested *in silico* at the RNA level.
- 245
- 246

Supplemental Figures

Fig. S1. Related to Figure 1. (A) Deacetylase rates in the negative loop relative to the positive loop. When H1 mechanism prevails, the rate of SIRT1 deacetylase in the negative loop (v_{PDAC}/K_{PDAC}) is much smaller than in the positive loop (v_{BDAC}/K_{BDAC}) while the opposite occurs when H2 mechanism dominates. For each parameter set (H1 and H2) the deacetylase rates are relative to the rate in the positive loop. (B, C) Rhythmic versus constitutive acetylation of BMAL1. Solid lines represent the wildtype (WT) dynamics of acetylated BMAL1 (BMAL1^{AC}) simulated using the parameter values of Table S1 (set H1). Dashed lines correspond to the SIRT1 null mutant (SIRT1^{-/-}). (**D**) Dynamics of acetylated repressor (PER^{AC}-CRY) under control wildtype (WT) and SIRT1^{-/-} conditions. The model simulates elevated acetylation levels of PER protein in the SIRT1^{-/-} mutant as reported by Asher et al (13) using the H2 parameter set.

Time (hr)

266 Fig. S2. Related to Figure 1. (A, B) Variation in the acetylation rate of repressor leads to dynamic changes 267 in the amplitude response due to lack of SIRT1. Solid lines represent wildtype (WT) dynamics simulated 268 using parameter set H2, while dashed line is simulated using the same parameter values except for the 269 parameter v_{PAC} which is increased by 100% (v_{PAC} + 1.0x). Under this single parametric perturbation, the 270 amplitude in the absence of SIRT1 switches from a reduction (black dashed line, B panel) to an increase 271 (blue dashed line, A panel). (C) Variations of the strength of the positive and enzymatic feedback lead to a 272 rescue of arrhythmicity. Simulated loss of oscillations (red dotted line) caused by a variation of the positive 273 feedback (BMAL1si) are rescued by loss-of-function mutation for SIRT1 (magenta dashed line). The 274 positive feedback is varied by a 55% decrease in the synthesis rate of BMAL1 activator while the synthesis 275 rate (s_n) of NAD which in this model represents SIRT1 is reduced by 50%. Black solid line represent 276 control wildtype (WT) dynamics of PER expression simulated using parameter set H2. Similar responses

- 278 are also simulated using parameter set H1. For reasons of clarity, the simulated *PER* expression in response to *SIRT1si* is omitted (similar to the dynamics illustrated in Figure 1*B*).

279 Fig. S3. Related to Figure 2. (A) Luciferase counts measured in U2-OS PER2::LUC cells transfected with 280 siRNAs targeting BMAL1, SIRT1 or both. (B, C) Luciferase counts measured in 3T3 Bmal1:LUC and 281 Per2::LUC cell-lines respectively, following transfections with siRNAs targeting Sirt1, Bmal1 or both. 282 Data are represented as mean \pm SEM. (D) Experimentally measured mRNA expression levels of NR1D1 283 (REVA) and all three isoforms of ROR under BMAL1si condition normalized to control (NEGsi). Data are 284 represented as mean \pm SD. (E, F) Simulated expression levels of *REV-ERB* and *ROR* under control (solid 285 lines) and BMAL1si conditions (dashed lines) while considering that SIRT1 can deacetylate PER2, BMAL1 286 and PGC1a. (G) Effects of SIRT1 knockdown (SIRT1si) on BMAL1::LUC when all ROR isoforms are 287 knocked down ($ROR(\alpha - c)si$). (H) Simulation results of ROR and SIRT1 knockdown on BMAL1 expression.

Fig. S4. Related to Figure 2. Simulation of the circadian effects of *SIRT1* and *BMAL1* knockdown on
 PER2/BMAL1 oscillations when SIRT1 regulates (A) only PER2, (B) only PGC1α, (C) both PER2 and
 PGC1α, (D) only BMAL1, (E) both BMAL1 and PER2, or (F) both BMAL1 and PGC1α.

Fig. S5. Related to Figure 3. *SIRT1/CLOCK* knockdown effects on oscillations of the 3T3 cells in (A) *Bmal1*::LUC reporter lines and (B) *Per2*::LUC reporter lines. Data are represented as mean ± SEM.
293
294
295
296

Fig. S6. Related to Figure 4. Simulation results of the circadian effects of *SIRT1* and *CLOCK* knockdown
 on *BMAL1*::LUC and *PER2*::LUC oscillations. Simulations are performed when considering SIRT1
 regulates (A) BMAL1 and PGC1α, (B) BMAL1 and PER2, and (C) BMAL1, PER2 and PGC1α.

304 Fig. S7. Related to Figure 5. Circadian effect of PER2 knockdown on BMAL1 and PER2 luciferase 305 oscillations in both human U2-OS and mouse NIH 3T3 cell lines. (A, B) Experimentally measured 306 amplitude and baseline of BMAL1::LUC oscillations from both U2-OS and 3T3 cells transfected with 307 siRNAs targeting PER2 (PER2si), SIRT1 (SIRT1si) or both (SIRT1si+PER2si). Note the naming 308 convention of U2-OS is used here for all data and simulation results. Amplitude and baseline of oscillations 309 are normalized with respect to NEGsi. (C, D) Circadian amplitude and baseline of PER2::LUC oscillations 310 measured under the same conditions as in (A, B). Comparison of model output and experimental RNA data 311 for CRY1 (E) and REV-ERBa (F) under SIRT1si+PER2si condition. Expression (RNA) levels are 312 normalized with respect to control (NEGsi). Data are represented as mean \pm SD. Note that gene names are 313 represented in the uppercase italics naming convention (i.e. for genes of human origin) only for simplifying 314 this figure's representation.

- 315
- 316
- 317

Fig. S8. Related to Figure 5. Circadian effect of PGC1a knockdown on BMAL1 luciferase oscillations in human U2-OS cell line. (A) SIRT1/PGC1 α dual knockdown effects on oscillations of U2-OS BMAL1 reporter line. Data are represented as mean \pm SEM. (B) In silico reproduction of the circadian effects of SIRT1 and PGC1a knockdown on U2-OS BMAL1 expression. Simulations are performed under conditions where SIRT1 does not deacetylate BMAL1 but deacetylates both PER2 and PGC1a. The model predicts the relevant PGC1a knockdown under the assumption that PGC1asi induces an increase (i.e. 2-fold) in the active ROR complex association parameter (k_{a,RP} - Table S7). In the absence of this assumption, model predictions are consistent with the experimental phenotype in 3T3 cells as shown in Figure's 5E and 5F.

BMAL1::LUC and PER2::LUC oscillations. Simulations are per
(A) BMAL1 and PGC1α and (B) BMAL1 and PER2.

341 Supplemental Tables

342

343 Table S1: Estimated values of parameters involved in the SIRT1-dependent regulation of 344 BMAL1 and PER2 (model A)[§]

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Parameter	Description of parameters	Set H1	Set
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	v = (nM/hr)		0.007	H2 0.002
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		v_{0Per} (IIIVI/III)	Basal transcriptional rates of PER CPV and NAMPT expression	0.007	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		v_{0Cry} (mvi/m)	Basar transcriptional rates of <i>TEK</i> , CKT and WAMT T expression	0.414 0.014	0.105
	-	v_{0Nampt} (IIIVI/III)		0.014	0.013
		v_{sPer} (IIIVI/III) v_{sPer} (IIIVI/III)	Maximum transcriptional rates of PER CPV and NAMPT mPNA	0.099	0.217
$\begin{array}{c} \label{eq:constants} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		v_{sCry} (mvi/m)	Waxiniuni transcriptional faces of <i>I EK</i> , CKI and WAMI I InKIVA	0.445	0.131
	-	\mathbf{K}_{sNampt} (mV)		1.864	0.212
$ \begin{array}{c} \mbox{Namer} (nM) & \mbox{expression by acetylated (active) BMAL1} & 2.03 & 1.757 \\ \mbox{Namer} (nM) & \mbox{minimized matrix} (nM) & minimi$		\mathbf{K}_{APer} (mVI) \mathbf{K}_{a} (mM)	Michaelis constants for enhancement of PER, CRY and NAMPT	0.034	0.713
		\mathbf{K}_{Acry} (IIIVI) \mathbf{K}_{Acry} (nM)	expression by acetylated (active) BMAL1	2 203	1 757
	-	$\mathbf{R}_{\text{Anampt}}$ (IIIVI) \mathbf{R}_{a} (nM)		0.921	0.059
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		\mathbf{R}_{per} (mVI) \mathbf{R}_{α} (nM)	Michaelis constants for inhibition of PER, CRY and NAMPT	1 1/8	0.039
Name (IM7)11100.002aHill coefficients for activation (a) and repression (r) of ccgs by1racetylated BMAL1 and PER-CRY respectively3 v_{drer} (nM/hr)Maximum degradation rates of <i>PER, CRY</i> and <i>NAMPT</i> mRNA0.214 v_{dring} (nM/hr)Maximum degradation rates of <i>PER, CRY</i> and <i>NAMPT</i> mRNA0.228 v_{dring} (nM/hr)Michaelis constants for degradation of <i>PER, CRY</i> and <i>NAMPT</i> 0.021 v_{dring} (nM/hr)Michaelis constants for degradation of <i>PER, CRY</i> and <i>NAMPT</i> 0.021 v_{ding} (1/hr)Nonspecific degradation rate constant0.104 v_{and} (1/hr)Nonspecific degradation rate constant0.104 v_{and} (1/hr)Synthesis rate constants of PER, CRY and NAMPT proteins0.448 v_{and} (1/hr)Synthesis rate constants of PER, CRY and NAMPT proteins0.448 v_{and} (1/hr)Association and dissociation rate constants for the formation of the0.037 v_{and} (1/hr)Rate constants for nuclear import of the cytosolic PER-CRY and0.021 v_{and} (1/hr)BMAL10.7320.228 v_{and} (1/hr)BMAL10.7320.228 v_{ander} (1/hr)Rate constants for exit of the nuclear proteins PER-CRY and0.037 v_{ander} (nM/hr)Maximum degradation rates for the cytosolic and nuclear1.2520.082 v_{ander} (nM/hr)Maximum degradation rates for the cytosolic proteins PER, CRY0.4994.8E-4 v_{ander} (nM/hr)Maximum degradation rates for the cytosolic proteins PER, CRY0.4934.8E-4 <td></td> <td>R_{ry} (mv) R_{y} (nM)</td> <td>expression by acetylated (active) PER-CRY complex</td> <td>1.140</td> <td>0.044</td>		R_{ry} (mv) R_{y} (nM)	expression by acetylated (active) PER-CRY complex	1.140	0.044
$ \begin{array}{c} r & acctylated BMAL1 and PER-CRY respectively & 3 & 3 \\ \hline r & acctylated BMAL1 and PER-CRY respectively & 0.214 & 0.09 \\ \hline v_{dCry} (nM/hr) & Maximum degradation rates of PER, CRY and NAMPT mRNA & 0.452 & 0.024 \\ \hline v_{dNamp} (nM) & Michaelis constants for degradation of PER, CRY and NAMPT & 0.228 & 0.228 \\ \hline KdPer (nM) & Michaelis constants for degradation of PER, CRY and NAMPT & 0.001 \\ 1.122 & 0.190 \\ \hline K_{dCry} (nM) & Michaelis constants for degradation of PER, CRY and NAMPT & 0.021 & 0.001 \\ \hline k_{dNamp} (nM) & More constants for degradation rate constant & 0.104 & 0.094 \\ \hline k_{ap} (1/hr) & Nonspecific degradation rate constant & 0.104 & 0.094 \\ \hline k_{ap} (1/hr) & Synthesis rate constants of PER, CRY and NAMPT proteins & 0.448 & 0.201 \\ \hline k_{aR} (1/hr) & Association and dissociation rate constants for the formation of the & 0.037 & 0.192 \\ \hline k_{apc} (1/hr) & Association and dissociation rate constants for the formation of the & 0.367 & 0.233 \\ \hline k_{m,RC} (1/hr) & Rate constants for nuclear import of the cytosolic PER-CRY and & 0.367 & 0.233 \\ \hline k_{ar,B} (1/hr) & BMAL1 & 0.732 & 0.289 \\ \hline k_{ar,C} (nM/hr) & BMAL1 & 1.117 & 0.738 \\ \hline v_{afrex} (nM/hr) & Maximum degradation rates for the cytosolic and nuclear PER- 0.068 & 0.033 \\ \hline v_{dPCN} (nM/hr) & Maximum degradation rates for the cytosolic and nuclear PER- 0.068 & 0.033 \\ \hline v_{dPCN} (nM/hr) & Maximum degradation rates for the cytosolic and nuclear 1.252 & 0.082 \\ \hline K_{dPC} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.127 & 0.012 \\ \hline v_{dN} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.024 & 0.196 \\ \hline K_{dPC} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.493 & 4.8E-4 \\ \hline v_{dC} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.127 & 0.012 \\ \hline v_{dR} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.127 & 0.012 \\ \hline v_{dR} (nM/hr) & Maximum degradation rate for the cytosolic protein BMAL1 & 0.458 $	-	a	Hill coefficients for activation (a) and repression (r) of ccgs by	1.100	1
		a r	acetylated BMAL1 and PER-CRY respectively	3	3
$ \begin{array}{c} \begin{array}{c} \mbox{der} (\mathrm{MV}hr) \\ \mbox{Wacy} (\mathrm{MV}hr) \\ \mbox{Wacy} (\mathrm{MV}hr) \\ \mbox{Wacy} (\mathrm{MM}hr) \\ \mbox{Wacy} (\mathrm{MM}hr) \\ \mbox{Wacy} (\mathrm{MM}hr) \\ \mbox{Wacy} (\mathrm{MM}hr) \\ \mbox{Wacay} ($	-	$\frac{1}{V_{\rm ID}}$ (nM/hr)	activitated DWALT and TER-CRT respectivoly	0.214	0.09
		v_{dPer} (mV/hr)	Maximum degradation rates of PER CRY and NAMPT mRNA	0.217 0.452	0.024
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{transform} \\ \hline tra$		v_{dCry} (mvi/m)	Waxiniani degradation fates of <i>I EK</i> , CKI and WiMI I mixtox	0.452	0.024 0.228
$ \begin{array}{c} \operatorname{Rdery} (\operatorname{IM}) \\ \operatorname{KdCy} (\operatorname{nM}) \\ \operatorname{Kde} (\operatorname{Rd} (\operatorname{nM}) \\ \operatorname{Kde} (\operatorname{Rd} ($	-	$K_{\rm in}$ (nM)		0.021	0.001
$\begin{array}{c cccc} \mbox{Max} (nM) & mRNA & 0.569 & 1.937 \\ \hline Max} (nM) & 0.569 & 0.253 \\ \hline Max} (nM) & 0.561 & 0.448 & 0.201 \\ \hline Max} (nM) & 0.849 & 0.160 \\ \hline Max} (nM) & 0.849 & 0.160 \\ \hline Max} (nM) & 0.849 & 0.160 \\ \hline Max} (nM) & 0.367 & 0.233 \\ \hline Max} (nM) & 0.752 & 0.289 \\ \hline Max} (nM) & 0.752 & 0.288 \\ \hline Max} (nM) & 0.752 & 0.278 \\ \hline Max} (nM) & 0.752 & 0.288 \\ \hline Max$		K_{dPer} (mV)	Michaelis constants for degradation of PER, CRY and NAMPT	1 122	0.001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K_{aCry} (mV)	mRNA	0 569	1 937
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	k_1 (1/hr)	Nonspecific degradation rate constant	0.104	0.094
$\begin{array}{cccc} hlip & hlip &$	-	k_{an} (1/hr)		1 269	0.0253
$\begin{array}{c} \mbox{k}_{sN}(1/hr) & \mbox{Diff} \$		$k_{sp} (1/hr)$	Synthesis rate constants of PER CRY and NAMPT proteins	0.448	0.201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		k_{sv} (1/hr)	Synthesis fue constants of LER, erer and rentifier r proteins	0.849	0.160
$\begin{array}{cccc} \mathbf{k}_{d,PC} (1/hr) & \mathbf{k}_{d,PC} (1/hr) &$	-	$k_{\rm spc} (1/hr)$	Association and dissociation rate constants for the formation of the	0.037	0.192
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$k_{d,PC}$ (1/hr)	cytosolic PER-CRY complex	0.034	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	$k_{im PC}$ (1/hr)	Rate constants for nuclear import of the cytosolic PER-CRY and	0.367	0.233
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$k_{im,R}$ (1/hr)	BMAL1	0.732	0.289
$\begin{array}{c c} k_{ex,B}(1/hr) & BMAL1 & 1.117 & 0.738 \\ \hline k_{ex,B}(1/hr) & Maximum degradation rates for the cytosolic and nuclear PER- 0.068 & 0.033 \\ \hline v_{dPCN}(nM/hr) & CRY complex & 0.039 & 0.183 \\ \hline k_{dPCN}(nM/hr) & CRY complex & 0.039 & 0.183 \\ \hline k_{dPCN}(nM/hr) & Michaelis constants for degradation of the cytosolic and nuclear 1.252 & 0.082 \\ \hline k_{dPCN}(nM/hr) & PER-CRY complex & 1.024 & 0.196 \\ \hline v_{dP}(nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.493 & 4.8E-4 \\ \hline v_{dC}(nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.127 & 0.012 \\ \hline v_{dN}(nM/hr) & Michaelis constants for degradation of the cytosolic proteins PER, CRY & 0.493 & 4.8E-4 \\ \hline v_{dC}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY & 0.127 & 0.012 \\ \hline k_{dP}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, & 1.551 & 0.019 \\ \hline k_{dC}(nM) & CRY and NAMPT & 1.549 & 2.052 \\ \hline k_{sB}(nM/hr) & Synthesis rate for constitutive BMAL1 expression & 1.610 & 0.659 \\ \hline v_{dBC}(nM) & Michaelis constant for degradation of the cytosolic protein BMAL1 & 0.458 & 0.148 \\ \hline k_{dBC}(nM) & Michaelis constant for degradation of the cytosolic protein BMAL1 & 0.302 & 0.036 \\ \hline v_{dBN}(nM/hr) & Maximum degradation rate for nuclear BMAL1 & 0.207 & 0.015 \\ \hline \end{array}$	-	$k_{\text{av PC}}(1/hr)$	Rate constants for exit of the nuclear proteins PER-CRY and	0.020	0.046
$\begin{array}{c c} \hline v_{dPCC}(nM/hr) & Maximum degradation rates for the cytosolic and nuclear PER- 0.068 0.033 \\ \hline v_{dPCN}(nM/hr) & CRY complex 0.039 0.183 \\ \hline K_{dPCC}(nM/hr) & Michaelis constants for degradation of the cytosolic and nuclear 1.252 0.082 \\ \hline K_{dPCN}(nM/hr) & PER-CRY complex 1.024 0.196 \\ \hline v_{dP}(nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY 0.493 4.8E-4 \\ \hline v_{dC}(nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY 0.929 0.228 \\ \hline K_{dP}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 0.929 0.228 \\ \hline K_{dP}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 0.493 4.8E-4 \\ \hline v_{dC}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 0.493 \\ \hline K_{dP}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 0.127 0.012 \\ \hline k_{dR}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 1.551 0.019 \\ \hline K_{dR}(nM) & Michaelis constants for degradation of the cytosolic proteins PER, CRY 0.493 \\ \hline k_{gB}(nM/hr) & Synthesis rate for constitutive BMAL1 expression 1.610 0.659 \\ \hline v_{dBC}(nM) & Michaelis constant for degradation of the cytosolic protein BMAL1 0.458 0.148 \\ \hline K_{dBC}(nM) & Michaelis constant for degradation of the cytosolic protein BMAL1 0.302 0.036 \\ \hline v_{dBN}(nM/hr) & Maximum degradation rate for nuclear BMAL1 0.207 0.015 \\ \hline \end{array}$		$k_{ex,B}(1/hr)$	BMAL1	1.117	0.738
$\begin{array}{c cccc} \hline v_{dPCN} (nM/hr) & CRY complex & 0.039 & 0.183 \\ \hline V_{dPCN} (nM/hr) & Michaelis constants for degradation of the cytosolic and nuclear & 1.252 & 0.082 \\ \hline K_{dPCN} (nM/hr) & PER-CRY complex & 1.024 & 0.196 \\ \hline v_{dP} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.493 & 4.8E-4 \\ \hline v_{dC} (nM/hr) & Maximum degradation rates for the cytosolic proteins PER, CRY & 0.493 & 4.8E-4 \\ \hline 0.127 & 0.012 \\ \hline 0.929 & 0.228 \\ \hline K_{dP} (nM) & Michaelis constants for degradation of the cytosolic proteins PER, \\ K_{dP} (nM) & Michaelis constants for degradation of the cytosolic proteins PER, \\ K_{dP} (nM) & CRY and NAMPT & 1.551 & 0.019 \\ \hline K_{dC} (nM) & CRY and NAMPT & 1.549 & 2.052 \\ \hline k_{sB} (nM/hr) & Synthesis rate for constitutive BMAL1 expression & 1.610 & 0.659 \\ \hline v_{dBC} (nM/hr) & Maximum degradation rate for the cytosolic protein BMAL1 & 0.458 & 0.148 \\ \hline K_{dBC} (nM) & Michaelis constant for degradation of the cytosolic protein BMAL1 & 0.302 & 0.036 \\ \hline v_{dBN} (nM/hr) & Maximum degradation rate for nuclear BMAL1 & 0.207 & 0.015 \\ \hline \end{array}$	1	v_{dPCC} (nM/hr)	Maximum degradation rates for the cytosolic and nuclear PER-	0.068	0.033
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		v_{dPCN} (nM/hr)	CRY complex	0.039	0.183
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K_{dPCC} (nM/hr)	Michaelis constants for degradation of the cytosolic and nuclear	1.252	0.082
$ \begin{array}{c c} v_{dP} (nM/hr) \\ v_{dC} (nM/hr) \\ v_{dC} (nM/hr) \\ w_{dN} (nM/hr) \\ \hline v_{dN} (nM/hr) \\ \hline w_{dN} (nM/hr) \\ \hline w_{dN} (nM/hr) \\ \hline w_{dN} (nM) \\ \hline w_{dC} (nM) \\ \hline w_{dR} (nM/hr) \\ \hline w_{dR} (nM/hr) \\ \hline w_{dR} (nM/hr) \\ \hline w_{dRC} (nM/hr) \\ \hline w_{dRC} (nM) \\ \hline w_{dR} (nM/hr) \\ \hline w_{dR} (nM/h$		K_{dPCN} (nM/hr)	PER-CRY complex	1.024	0.196
Waximum degradation rates for the cytosolic proteins PER, CRY and NAMPT0.127 0.012 0.9290.012 0.228 V_{dC} (nM) K_{dC} (nM)Michaelis constants for degradation of the cytosolic proteins PER, CRY and NAMPT1.551 1.7140.019 1.714 K_{dC} (nM) K_{dC} (nM)Michaelis constants for degradation of the cytosolic proteins PER, CRY and NAMPT1.551 1.5490.012 0.929 k_{sB} (nM/hr)Synthesis rate for constitutive BMAL1 expression1.610 1.6100.659 v_{dBC} (nM/hr)Maximum degradation rate for the cytosolic protein BMAL1 0.4580.148 0.148 K_{dBC} (nM)Michaelis constant for degradation of the cytosolic protein BMAL1 0.3020.036 0.036	-	v_{dP} (nM/hr)		0.493	4.8E-4
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		v_{dC} (nM/hr)	Maximum degradation rates for the cytosolic proteins PER, CRY	0.127	0.012
$ \begin{array}{c c} \hline K_{dP} \ (nM) \\ \hline K_{dC} \ (nM) \\ \hline K_{dN} \ (nM) \\ \hline K_{sB} \ (nM/hr) \\ \hline V_{dBC} \ (nM/hr) \\ \hline Maximum \ degradation \ rate \ for \ the \ cytosolic \ protein \ BMAL1 \\ \hline 0.458 \\ \hline 0.148 \\ \hline K_{dBC} \ (nM) \\ \hline M_{dBN} \ (nM/hr) \\ \hline Maximum \ degradation \ rate \ for \ nuclear \ BMAL1 \\ \hline 0.207 $		v_{dN} (nM/hr)	and NAMP1	0.929	0.228
K_{dC} (nM)Michaelis constants for degradation of the cytosolic proteins PER, CRY and NAMPT1.7140.041 K_{dN} (nM)1.5492.052 k_{sB} (nM/hr)Synthesis rate for constitutive BMAL1 expression1.6100.659 v_{dBC} (nM/hr)Maximum degradation rate for the cytosolic protein BMAL10.4580.148 K_{dBC} (nM)Michaelis constant for degradation of the cytosolic protein BMAL10.3020.036 v_{dBN} (nM/hr)Maximum degradation rate for nuclear BMAL10.2070.015	-	$K_{dP}(nM)$		1.551	0.019
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		K_{dC} (nM)	Michaelis constants for degradation of the cytosolic proteins PER,	1.714	0.041
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		K_{dN} (nM)	CK I and NAMPI	1.549	2.052
v_{dBC} (nM/hr)Maximum degradation rate for the cytosolic protein BMAL10.4580.148 K_{dBC} (nM)Michaelis constant for degradation of the cytosolic protein BMAL10.3020.036 v_{dBN} (nM/hr)Maximum degradation rate for nuclear BMAL10.2070.015		k _{sB} (nM/hr)	Synthesis rate for constitutive BMAL1 expression	1.610	0.659
K_{dBC} (nM)Michaelis constant for degradation of the cytosolic protein BMAL10.3020.036v_{dBN} (nM/hr)Maximum degradation rate for nuclear BMAL10.2070.015	-	v _{dBC} (nM/hr)	Maximum degradation rate for the cytosolic protein BMAL1	0.458	0.148
v_{dBN} (nM/hr)Maximum degradation rate for nuclear BMAL10.2070.015		K_{dBC} (nM)	Michaelis constant for degradation of the cytosolic protein BMAL1	0.302	0.036
	-	v _{dBN} (nM/hr)	Maximum degradation rate for nuclear BMAL1	0.207	0.015

K _{dBN} (nM/hr)	Michaelis constant for degradation of nuclear BMAL1	1.838	1.788
v _{PAC} (nM/hr)	Maximum acetulation rates for nuclear proteins PER-CRY and	0.604	0.258
v _{BAC} (nM/hr)	BMAL1	0.997	0.293
v _{PDAC} (nM/hr)	Maximum departulation notes for nuclear DED CDV and DMAL 1	0.121	0.248
v _{BDAC} (nM/hr)	Maximum deacetyration rates for nuclear PER-CRT and DMALT	0.659	0.275
K_{PAC} (nM)	Michaelis constants for protein acetylation of PER-CRY and	0.145	0.028
$K_{BAC}(nM)$	BMAL1	3.488	0.169
K _{PDAC} (nM)	Michaelis constants for protein deacetylation of PER-CRY and	1.934	0.012
$K_{BDAC}(nM)$	BMAL1 by NAD	3.221	0.035
s _n (nM/hr)	Synthesis rate constant of cellular NAD levels	0.524	0.126
v _{dNAD} (nM/hr)	Maximum degradation rate for intracellular NAD	0.284	0.200
K _{dNAD} (nM)	Michaelis constant for NAD degradation	1.530	1.150
8-			

[§]Rate parameters of sets H1 and H2 are scaled giving rise to wild type circadian oscillations

346 (period ~23.7hr). While parameter set H1 reproduces the increased amplitude phenotype due to

347 lack of *SIRT1* as shown by (4), parameter set H2 reproduces the reduced amplitude phenotype as

348 reported by (13).

siRNA	Parameter symbol	Control value	siRNA value
BMAL1si	k _{sB}	1.073	0.429
	V _{dPer2}	0.302	0.423
PER2si	V _{dCrv}	0.285	0.214
	V _{dREV}	0.361	0.271
CLOCKsi	V _{BAC}	0.317	0.152
RORsi	V _{mRor}	0.309	0.463
SIRT1si	s _n	0.351	0.0187
PGC1asi	V _{dpgc}	0.388	0.775

351 Table S2: Model parameters used to simulate siRNA experiments^{\dagger}

[†]Note the control values for all model parameters are summarized in **Table S7**.

siRNA used		Catalo	og#	Company	Cat	alog#	Company
Gene	Mouse				Human		
BMAL1	F G	lexitube S11865	Mouse	Qiagen	S	see (15) for Seque	nce
CLOCK	F. G	lexitube S1275	Mouse	Qiagen	S	see (15) for Seque	nce
RORA	F. G	lexitube S19883	Mouse	Qiagen	S	see (15) for Seque	nce
RORB	F. G	lexitube S22599	Mouse	Qiagen	S	see (15) for Seque	nce
RORC	F G	lexitube S19885	Mouse	Qiagen	S	see (15) for Seque	nce
PER2	F. G	lexitube S18627	Mouse	Qiagen	Flexitube	Human GS8864	Qiagen
SIRT1	F. G	lexitube S93759	Mouse	Qiagen	Flexitube GS23411	Human	Qiagen
Primers		Catalog#		Company		Catalog#	Company
used f	or	Culuiog#		Company		Culuiogn	Company
QPCR	01						
Gene			Mo	use			Human
BMAL1		Mm005002	26_m1	ABI/Lifetec	hnologies	Hs00154147_m	1 ABI/Lifetechnologies
CLOCK		Mm004559	50_m1	ABI/Lifetec	hnologies	Hs00231857_m	1 ABI/Lifetechnologies
CRY1		Mm005143	92_m1	ABI/Lifetec	hnologies	Hs00172734_m	1 ABI/Lifetechnologies
CRY2		Mm005460	62_m1	ABI/Lifetec	hnologies	Hs00323654_m	1 ABI/Lifetechnologies
DBP		Mm004975	39_m1	ABI/Lifetec	hnologies	Hs00609747_m	1 ABI/Lifetechnologies
NR1D1		Mm005207	08_m1	ABI/Lifetec	hnologies	Hs00253876_m	1 ABI/Lifetechnologies
NR1D2		Mm004417	30_m1	ABI/Lifetec	hnologies	Hs00233309_m	1 ABI/Lifetechnologies
PER1		Mm005618	13_m1	ABI/Lifetec	hnologies	Hs00242988_m	1 ABI/Lifetechnologies
PER2		Mm004781	13_m1	ABI/Lifetec	hnologies	Hs00256143_m	1 ABI/Lifetechnologies
PGCla		Mm001208	835_m1	ABI/Lifetec	hnologies	Hs01016719_m	1* ABI/Lifetechnologies
RORA		Mm.PT.58.	32675621	IDT		Hs00536545_m	1 ABI/Lifetechnologies
RORB		Mm.PT.58.	9944191	IDT		Hs00199445_m	1 ABI/Lifetechnologies
RORC		Mm.PT.58.	8455991	IDT		Hs01076112_m	1 ABI/Lifetechnologies

355 Table S3: siRNA and Primers used for QPCR (experimental section)

357 Note that gene names are represented in the uppercase italics naming convention (i.e. for genes of human

358 origin) only for simplifying this table's representation.

359

356

Table S4: Data/phenotypes used for the development and validation of model A and model B

362

В	
	Model A: Modeling the SIRT1-dependent regulation of BMAL1 and PER2
	PER-CRY negative feedback loop: essential for generating oscillations
	The transcriptional/translational PER-CRY loop gives rise to oscillations, while the
	metabolic feedback loop regulates the circadian amplitude
	Phase optimization for mRNA of clock controlled genes (ccgs)
t	Phases for mRNA of clock controlled genes (i.e., PER, CRY, NAMPT) are optimized
nen)	including also the phases of metabolic signaling components (NAMPT, NAD ⁺)
n u On	Amplitude optimization: Although the model is mostly calibrated using phase data,
elo	relevant amplitudes for the NAD signaling components are considered but they are not
eve	weighted highly in the cost function
el d ost	Metabolic null mutation (i.e. SIRT1 ^{-/-}): Negligible period variance (±1h) while
ode (cc	capturing significant amplitude sensitivity
Md	Under conditions of metabolic null mutation, the cost function is customized such that
	the amplitude of CCGs significantly varies with respect to WT by $\pm 20\%$. The
	directionality of the amplitude (up- or down-regulation) is optimized based on the
	following experimental studies:
	(4): Increased circadian amplitude (SIRT1 ^{-/-}) (parameter set H1)
	(13): Reduced circadian amplitude $(SIRT1^{-})$ (parameter set H2)
	PER protein: rate-limiting component of PER-CRY negative limb
	As the rate-limiting factor, the protein PER dictates the rhythmic formation of PER-CRY
	repressor
	Predict phase relationships of CCGs and NAD' signaling components
on (We test if the simulated phase of PER protein (rate-limiting component of negative limb)
ati lata	is ~4-8h later vs. its respective mRNA dynamics
lid e d	Further, the predicted phase of acetylated BMAL1 (not optimized) is compared with that
va	of its regulator (NAD)
del era	BMAL1 : Predict no oscillations & reduced constitutive expression of ccgs
Jo (lit	BMALI is an essential clock component of the positive limb (activator) and therefore
	cell extracts deficient in <i>BMAL1</i> display arrhythmias while NAMP1 or NAD levels are
	reduced compared to the W I
	CRY : Predict no oscillations & increased constitutive of ccgs
	CRY1/CRY2 are essential components (repressors) of the negative limb of the core
	clock machinery. Double KO of CRY1/CRY2 accounts for loss of rhythmicity and
	increased NAMP1 expression and/or NAD levels
	Madal D. Madaling the SIDTL day and ant upon lation of DMALL DED2 and DCCL.
	Model B. Modeling the SIRT1-dependent regulation of BMAL1, PER2 and PGC10.
	The transprintional DED/CDV loop gives rise to sustained oscillations while the corre-
nt	alock continues to oscillate in the absence of <i>PEVEPP</i> or <i>POP</i> genes
) nei	DEV EDD negotive loops not accential for accillations but arusial for Dmall
ior	KEV-EKB negative loop: not essential for oscillations but crucial for Binall
velo	Phase entimization
de t fu	The phases for mPNA of clock games (i.e. DEP CDV NAMDT) are optimized
iel - sost	including also the phases of NAMDT protein and NAD metabolite. While the phase
lod	difference between REV ERB and ROP mDNA is not optimized the entirhance
Z	relationship between RMAI and PER mPNA is considered in the cost function
	Amplitude ontimization: Although the model is mostly calibrated using phase data
	Ampheude optimization. Atmough the model is mostly canorated using phase data,

	relevant amplitudes for the metabolic NAD loop and ROR/REVERB module are						
	considered but they are not weighted highly in the cost function						
	vietabolic null mutation (i.e. SIKIII): Keduced baseline/amplitude for RORE						
	genes						
	In the absence of SIRTI expression, the cost function is customized such that the						
	mRNA baseline of RORE genes (i.e. ROR and BMALI) are significantly reduced						
	when compared to WT						
	Loss-of-function mutation for <i>BMAL1</i> using RNAi experiment (Bmal1si):						
	Increased baseline of <i>BMAL11</i> promoter but reduced amplitude						
	Given the opposing activities of ROR and REV-ERB proteins at the BMAL1						
	promoter, model parameters are set to consider REV-ERB as the dominant force						
	within the ROR/REV-ERB loop. This in turn allows the model to capture the						
	increased baseline of <i>BMAL1</i> expression in the Bmal1si mutant due to reduction in						
	<i>REV-ERB</i> expression.						
	Loss-of-function mutation for SIRT1 and BMAL1 (Sirt1+Bmal1si)						
ts)	SIRT1 knockdown lowers baseline and amplitude of circadian gene expression when						
n	BMAL1 is also knocked down						
rin rin	Logg of function mutation for CLOCK (Clashei)						
ida (pe	LOSS-01-IUNCUON MULTION IOF CLOCK (CIOCKSI)						
val i e>	cLOCK knockdown increases the baseline of <i>BMALI</i> inkinA but lowers the						
el , VA	amplitude similar to the Dinarisi mutant						
R	Loss-ol-lunction mutation for SIRIT and CLOCK (SIFUSI+Clocksi)						
ain M	Similar responses to Dinarisi+Sirtisi						
Ű.	Loss-oi-iuncuon mutation for SIRII and PER2 (Siriisi+Per2si)						
	The dual knockdown of <i>PER2</i> and <i>SIRTI</i> compromises the amplitude of <i>PER2</i>						
	promoter gene expression.						

Model components	Experimental phase, hr (peak expression)	Simulated phase, hr (set H1)	Simulated phase, hr (set H2)
PER expression	Per1: [10-16] Per2: [14-18]	~14	~14
CRY expression	Cry1: [14-18] Cry2: [8-12]	~14	~14
NAMPT expression	~14	~13	~13
NAMPT (protein)	[14-22]	~15	~17
NAD ⁺ (cofactor)	[14-22]	~18	~20

368 **Table S5: Experimental and simulated phases**[†]

369 [†]Experimental phases are compiled from literature evidence (6, 4, 16-20,) using peripheral (metabolically active) tissues including data derived from liver. The experimental phase 370 371 range for PER and CRY mRNA is derived from the studies (6, 18-20) and it is defined as 372 the average circadian time (CT) at peak expression. For example, PER mRNA levels peak on average at CT13 and fall at CT0 during the beginning of the subjective day (18). 373 374 According to the study (16) the gene transcript of NAMPT also peaks early in the evening (approximately at CT14) while its protein (NAMPT) peaks later together with the circadian 375 NAD+ levels which are in phase with the rhythmic SIRT1 activity. 376 377

		U2-OS	3T3	U2-OS	3T3
BMAL 1		BMA	AL1si	SIR	T1si+BMAL1si
	Mean	0.403	0.521	0.420	0.483
	SD	0.169	0.137	0.141	0.102
	Ν	11	8	10	8
SIRT1	Mean			0.195	0.206
	SD			0.063	0.046
	Ν			13	12
CLOC K		CLO	OCKsi	SIR	T1si+CLOCKsi
	Mean	0.481	0.261	0.262	0.232
	SD	0.340	0.094	0.096	0.08
	Ν	10	8	10	8
SIRT1	Mean			0.163	0.182
	SD			0.042	0.06
	Ν			10	8
PER2		PE	R2si	SII	RT1si+PER2si
	Mean	0.437	0.466	0.336	0.290
	SD	0.224	0.167	0.119	0.153
	Ν	9	8	9	8
SIRT1	Mean			0.186	0.215
	SD			0.058	0.077
	Ν			9	8
PGC1a		PGC	Clasi	SIR	T1si+PGC1asi
	Mean	0.440	0.226	0.518	0.302
	SD	0.190	0.092	0.272	0.087
	n	6	8	4	7
SIRT1	Mean			0.518	0.302
		-		0.070	0.007
	SD			0.272	0.087
	SD N	-		4	7
RORa	SD N	ROR	(a-c)si	4 SIRT	7 7 <i>T1si+ROR(a-c)si</i>
RORa	SD N Mean	ROR 0.756	(a-c)si 0.131	0.272 4 SIR1 1.267	0.087 7 Γ1si+ROR(α-c)si 0.192
RORa	SD N Mean SD	ROR 0.756 0.734	(a-c)si 0.131 0.025	0.272 4 SIR1 1.267 1.501	0.087 7 TIsi+ROR(a-c)si 0.192 0.161
RORa	SD N Mean SD n	ROR 0.756 0.734 6	(<i>a-c)si</i> 0.131 0.025 9	0.272 4 SIR1 1.267 1.501 6	0.087 7 TIsi+ROR(a-c)si 0.192 0.161 9
RORa RORb	SD N Mean SD n Mean	<i>ROR</i> 0.756 0.734 6 0.272	(a-c)si 0.131 0.025 9 U.D.	0.272 4 SIR1 1.267 1.501 6 1.842	0.087 7 <i>TIsi+ROR(α-c)si</i> 0.192 0.161 9 U.D.
RORa RORb	SD N Mean SD n Mean SD	ROR 0.756 0.734 6 0.272 0.160	(a-c)si 0.131 0.025 9 U.D. U.D.	0.272 4 SIR1 1.267 1.501 6 1.842 2.295	0.087 7 Tisi+ROR(a-c)si 0.192 0.161 9 U.D. U.D. U.D.
RORa RORb	SD N Mean SD n Mean SD N	ROR 0.756 0.734 6 0.272 0.160 5	(a-c)si 0.131 0.025 9 U.D. U.D. >3	0.272 4 SIR1 1.267 1.501 6 1.842 2.295 6	0.087 7 7 7 1si+ROR(a-c)si 0.192 0.161 9 U.D. U.D. U.D. >3
RORa RORb RORc	SD N Mean SD n Mean SD N Mean	ROR 0.756 0.734 6 0.272 0.160 5 0.272	(<i>a-c</i>)si 0.131 0.025 9 U.D. U.D. >3 U.D.	0.272 4 SIR1 1.267 1.501 6 1.842 2.295 6 0.296	$\begin{array}{c c} 0.087 \\ \hline 7 \\ \hline Tisi+ROR(\alpha-c)si \\ 0.192 \\ \hline 0.161 \\ 9 \\ \hline U.D. \\ \hline U.D. \\ \hline S3 \\ \hline U.D. \\ \hline U.D. \\ \hline \end{array}$
RORa RORb RORc	SD N Mean SD n Mean SD N Mean SD	ROR 0.756 0.734 6 0.272 0.160 5 0.272 0.156	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. U.D.	0.272 4 SIR1 1.267 1.501 6 1.842 2.295 6 0.296 0.197	0.087 7 TIsi+ROR(a-c)si 0.192 0.161 9 U.D. U.D. >3 U.D. U.D. U.D. U.D. U.D. U.D. U.D. U.D.
RORa RORb RORc	SD N Mean SD n Mean SD N Mean SD N	ROR 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 U.D. >3	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5	0.087 7 7 7.1si+ROR(a-c)si 0.192 0.161 9 U.D. U.D. >3 U.D. >3 V.D. >3
RORa RORb RORc SIRT1	SD N Mean SD n Mean SD N Mean SD N	ROR 0.756 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. V.D. >3	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191	0.087 7 7 7.1si+ROR(a-c)si 0.192 0.161 9 U.D. U.D. V.D. V.D. >3 U.D. >3 0.175
RORa RORb RORc SIRT1	SD N Mean SD N Mean SD N Mean SD N	ROR 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 V.D. V.D. >3	0.272 4 SIR1 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191 0.043	$\begin{array}{c c} 0.087 \\ \hline 7 \\ \hline Tisi+ROR(\alpha-c)si \\ 0.192 \\ 0.161 \\ 9 \\ U.D. \\ U.D. \\ V.D. \\ \hline S3 \\ U.D. \\ U.D. \\ S3 \\ 0.175 \\ 0.046 \\ \end{array}$
RORa RORb RORc SIRT1	SD N Mean SD n Mean SD N Mean SD N	ROR 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 V.D. V.D.	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191 0.043 7	$\begin{array}{c c} 0.087 \\ \hline 7 \\ \hline Tsi+ROR(\alpha-c)si \\ \hline 0.192 \\ \hline 0.161 \\ 9 \\ \hline U.D. \\ \hline 0.175 \\ \hline 0.046 \\ \hline 9 \end{array}$
RORa RORb RORc SIRT1	SD N Mean SD n Mean SD N Mean SD N	ROR 0.756 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4 SIR	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 T1si	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191 0.043 7	0.087 7 7.1si+ROR(a-c)si 0.192 0.161 9 U.D. U.D. V.D. U.D. 0.175 0.046 9
RORa RORb RORc SIRT1 SIRT1	SD N Mean SD n Mean SD N Mean SD N Mean Mean	ROR 0.756 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4 SIR 0.195	(<i>a-c</i>)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 <i>U.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V.D.</i> <i>V</i>	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191 0.043 7	0.087 7 7Isi+ROR(a-c)si 0.192 0.161 9 U.D. U.D. V.D. V.D. 0.175 0.046 9
RORa RORb RORc SIRT1 SIRT1	SD N Mean SD N Mean SD N N Mean SD N Mean SD	ROR 0.756 0.756 0.734 6 0.272 0.160 5 0.272 0.156 4 SIR 0.195 0.063	(a-c)si 0.131 0.025 9 U.D. U.D. >3 U.D. U.D. >3 271si 0.206 0.046	0.272 4 1.267 1.501 6 1.842 2.295 6 0.296 0.197 5 0.191 0.043 7	$\begin{array}{c c} 0.087 \\ \hline 7 \\ \hline Tisi+ROR(\alpha-c)si \\ 0.192 \\ 0.161 \\ 9 \\ U.D. \\ U.D. \\ \hline 0.100 \\ V.D. \\ U.D. \\ \hline 0.010 \\ V.D. \\ \hline 0.046 \\ 9 \\ \hline \end{array}$

379 Table S6: Averaged U2-OS and 3T3 QPCR data for all knockdowns[†]

- [†]All gene expressions are fold change over control cells treated with scrambled siRNA. SD =
 Standard deviation. U.D = Undetermined. Note that gene names are represented in the uppercase
 italics naming convention (i.e. for genes of human origin) only for simplifying this table's
- 383 representation.

Parameter	Description of parameters	Value
v _{0Per(1/2)} (nM/hr)		0.026
v _{0Cry} (nM/hr)		0.270
v _{0Nampt} (nM/hr)	Basal transcriptional rates of PER(1/2), CRY, NAMPT, REVERB,	0.251
v _{0Rev} (nM/hr)	ROR and BMAL1 expression	0.040
$v_{0Ror} (nM/hr)$		0.178
v_{0B} (nM/hr)		0.405
$v_{sPer(1/2)}$ (nM/hr)		1.144
v _{sCry} (nM/hr)		0.072
v _{sNampt} (nM/hr)	Maximum transcriptional rates of <i>PER(1/2)</i> . <i>CRY</i> . <i>NAMPT</i> .	1.485
v_{sRev} (nM/hr)	REVERB, ROR and BMAL1 expression	0.901
v_{s1Ror} (nM/hr)		0.744
V_{s2Ror} (nM/nr)		0.052
$V_{\rm sB}$ (IIIVI/III)		1.150
$\mathbf{K}_{\text{APer}(1/2)}$ (IIIVI) \mathbf{K}_{APer} (nM)		0.291
K_{ACry} (mv1) K_{AVr} (nM)	Michaelis constants for enhancement of PER(1/2), CRY, NAMPT,	1 844
K_{ANampt} (IIII) K_{AD} (nM)	<i>REVERB</i> and <i>ROR</i> expression by acetylated (active) BMAL1	4 755
$K_{A1Por}(nM)$		2.483
$\frac{R_{Per(1/2)}(nM)}{R_{Per(1/2)}(nM)}$		0.960
$R_{Crv}(nM)$	Michaelis constants for inhibition of $PER(1/2)$, CRY, NAMPT,	0.675
$R_{\text{Nampt}}(nM)$	<i>REVERB</i> Michaelis constants for inhibition of $PER(1/2)$, CRY,	1.074
$R_{Rev}(nM)$	<i>NAMP1, REVERB</i> and <i>ROR</i> expression by PERI-CRY complex and <i>ROB</i> expression by PEB1 CDV complex	1.506
$R_{1ror}(nM)$	and NON expression by PERT-CRT complex	0.970
$R_{Per(1/2)}(nM)$		0.160
$R_{Cry}(nM)$	Michaelis constants for inhibition of $PER(1/2)$, CRY, NAMPT,	0.112
$R_{Nampt}(nM)$	<i>REVERB</i> and <i>ROR</i> expression by acetylated PER2 ^{AC} -CRY	0.179
R _{Rev}	complex	0.251
K _{1Ror}		0.162
\mathbf{K}_{AB} (nM)	Michaelis constants for enhancement of <i>BMAL1</i> and <i>ROR</i> automatical bulgeting DOD^*	1.468
$\mathbf{K}_{\text{A2Ror}}$ (IIIVI)	Michaelic constants for inhibition of <i>BMAL1</i> and <i>BOB</i> expression	7.244
к _в R _{ap}	by REV-ERB	2 55
a a a a a a a a a a a a a a a a a a a	Hill coefficients for activation (a) and representation (r) of case by	2.33
r	acetylated BMAI 1 and PER-CRV respectively	4
h	Hill coefficients for activation (b) and repression (c) of DODE by	2
c	active ROR [*] and REV-ERB respectively	3
$v_{dPer(1/2)}$ (nM/hr)	k v	0.302
v _{dCry} (nM/hr)		0.285
v _{dNampt} (nM/hr)	Maximum degradation rates of PER(1/2), CRY, NAMPT, REVERB,	0.594
v_{dRev} (nM/hr)	ROR and BMAL1 expression	0.361
$v_{dRor}(nM/hr)$		0.309
v_{dB} (nM/hr)		0.473
$K_{dPer(1/2)}$ (nM)		0.047
K _{dCry} (nM)	Michaelis constants for degradation of $PER(1/2)$, CRY	0.371
K_{dNampt} (nM)		0.99
$K_{dRev}(nM)$	Michaelis constants for degradation of NAMPT, REVERB, ROR	0.691

386Table S7: Estimated values of parameters involved in the development of the extended387circadian model (model B)

K _{dRor} (nM)	and BMAL1 mRNA	3.659
$K_{dB}(nM)$		0.135
k _{dn} (1/hr)	Nonspecific degradation rate constant	0.077
$k_{sP1} (1/hr)$		1.009
k _{sP2} (1/hr)		0.727
k_{sc} (1/hr)		1.407
k_{sN} (1/hr)	Synthesis rate constants of PER(1/2), CRY, NAMPT, REV-ERB,	1.295
k_{sRFV} (1/hr)	ROR and BMAL1 proteins	0.167
k_{sROR} (1/hr)		0.320
k_{sB} (1/hr)		1.073
$k_{a P1C}$ (1/hr)		0.006
k_{dP1C} (1/hr)	Association and dissociation rate constants for the formation of	0.006
$k_{a,P2C}$ (1/hr)	PER1-CRY and PER2-CRY complex	0.088
$k_{4,P2C}$ (1/hr)		0.192
$\frac{1}{1}$ (1/hr)		0.792
$\kappa_{im,B}$ (1/III)	Rate constants for nuclear import and export of the cytosolic	0.785
1- (1/l)	BMAL1	0 (17
$K_{ex,B}$ (1/fir)		0.017
v _{dP1C} (nM/hr)	Maximum degradation rates for PER1-CRY and PER2-CRY	0.069
v _{dP2C} (nM/hr)	complexes	0.243
K _{dP1C} (nM/hr)	Michaelis constants for degradation of PER1-CRY and PER2-	0.575
K _{dP2C} (nM/hr)	CRY complexes	0.575
v _{dP1} (nM/hr)		1.285
v _{dP2} (nM/hr)		0.698
v _{dC} (nM/hr)	Maximum degradation rates for the protains $\text{DEP}(1/2)$ CPV	0.265
v _{dN} (nM/hr)	NAMPT REV ERB ROR and RMAL1	1.211
$v_{dREV}(nM/hr)$	NAMI 1, KEV-EKD, KOK and DMAET	0.387
v _{dROR} (nM/hr)		0.179
v _{dBc} (nM/hr)		0.104
$K_{dP}(nM)$		0.478
$K_{dC}(nM)$		1.247
$K_{dN}(nM)$	Michaelis constants for degradation of the proteins PER(1/2),	0.917
$K_{dREV}(nM)$	CRY, NAMPT, REV-ERB, ROR and BMAL1	0.796
$K_{dROR}(nM)$		4.893
$K_{dBc}(nM)$		0.135
v _{dBN} (nM/hr)	Maximum degradation rate for nuclear BMAL1	2.212
K _{dBN} (nM/hr)	Michaelis constant for degradation of nuclear BMAL1	3.392
v _{PAC} (nM/hr)		0.254
v _{BAC} (nM/hr)	Maximum acetylation rates for proteins PER2-CRY and BMAL1	0.318
v _{PDAC} (nM/hr)		0.233
v_{BDAC} (nM/hr)	Maximum deacetylation rates for PER2-CRY and BMALI	0.0024
K _{PAC} (nM)	Michaelis constants for protein acetylation of PER2-CRY and	8.149
$K_{BAC}(nM)$	BMAL1	0.497
K _{PDAC} (nM)	Michaelis constants for protein deacetylation of PER2-CRY and	4.998
K _{BDAC} (nM)	BMAL1 by NAD	4.016
s _n (nM/hr)	Synthesis rate constant of cellular NAD levels	0.351
v _{dNAD} (nM/hr)	Maximum degradation rate for intracellular NAD	0.881
K_{dNAD} (nM)	Michaelis constant for NAD degradation	1.650
$v_{0pgc}(nM)$	Basal activation rate of PGC1a	0.046

v _{spgc} (nM)	Maximum activation rate by NAD	0.0142
$K_{Apgc}(nM)$	Michaelis activation constant for PGC1a	7.578
$v_{dpgc}(nM)$	Maximum degradation rate for PGC1α activity	0.388
$K_{dpgc}(nM)$	Michaelis constant for degradation of active PGC1a	3.299
$k_{a,RP}(1/hr)$	Association and dissociation rate constants for the formation of	0.621
k _{d,RP} (1/hr)	active ROR [*] complex	0.329

390 **References**

391 1. Price TS, Baggs JE, Curtis AM, Fitzgerald GA, & Hogenesch JB (2008) WAVECLOCK: 392 wavelet analysis of circadian oscillation. Bioinformatics 24(23):2794-2795. 393 2. Yamamoto Y, Yagita K, & Okamura H (2005) Role of cyclic mPer2 expression in the mammalian cellular clock. Mol Cell Biol 25(5):1912-1921. 394 395 3. Liu AC, et al. (2008) Redundant function of REV-ERBalpha and beta and non-essential 396 role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. 397 PLoS Genet 4(2):e1000023. 398 4. Nakahata Y, et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-399 mediated chromatin remodeling and circadian control. Cell 134(2):329-340. 5. Yagita K, Tamanini F, van Der Horst GT, & Okamura H (2001) Molecular mechanisms of 400 the biological clock in cultured fibroblasts. Science 292(5515):278-281. 401 402 6. Lee C, Etchegaray JP, Cagampang FRA, Loudon ASI, & Reppert SM (2001) 403 Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855-404 867. 405 7. Bellet MM & Sassone-Corsi P (2010) Mammalian circadian clock and metabolism - the 406 epigenetic link. J Cell Sci 123(Pt 22):3837-3848. 8. Becker-Weimann S, Wolf J, Herzel H, & Kramer A (2004) Modeling feedback loops of 407 408 the mammalian circadian oscillator. Biophys J 87(5):3023-3034. 409 9. Ueda HR, Hagiwara M, & Kitano H (2001) Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J Theor Biol 210(4):401-406. 410 411 10. Bernard S, Gonze D, Cajavec B, Herzel H, & Kramer A (2007) Synchronization-induced 412 rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 413 3(4):e68. 414 11. Chen R, et al. (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36(3):417-430. 415 12. D'Alessandro M, et al. (2015) A tunable artificial circadian clock in clock-defective mice. 416 417 Nat Commun 6:8587. 418 13. Asher G, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 419 deacetylation. Cell 134(2):317-328. 420 14. Liu C, Li S, Liu T, Borjigin J, & Lin JD (2007) Transcriptional coactivator PGC-1alpha 421 integrates the mammalian clock and energy metabolism. Nature 447(7143):477-481. 422 15. Baggs JE, et al. (2009) Network features of the mammalian circadian clock. PLoS Biol 423 7(3):e52. 424 16. Ramsey KM, et al. (2009) Circadian Clock Feedback Cycle Through NAMPT-Mediated 425 NAD(+) Biosynthesis. Science 324(5927):651-654. 426 17. Naimi M, Arous C, & Van Obberghen E (2010) Energetic cell sensors: a key to metabolic 427 homeostasis. Trends Endocrinol Metab 21(2):75-82. 428 18. Yamamoto T, et al. (2004) Transcriptional oscillation of canonical clock genes in mouse 429 peripheral tissues. BMC Mol Biol 5:18. 430 19. Ueda HR, et al. (2002) A transcription factor response element for gene expression during circadian night. Nature 418(6897):534-539. 431 20. Ripperger JA, Jud C, & Albrecht U (2011) The daily rhythm of mice. FEBS Lett 432 433 585(10):1384-1392 21. Gutenkunst RN, et al. (2007) Universally sloppy parameter sensitivities in systems 434 biology models. PLoS Comput Biol 3(10):1871-1878. 435 22. Belden WJ & Dunlap JC (2008) SIRT1 is a circadian deacetylase for core clock 436 437 components. Cell 134(2):212-214. 438 23. Fuller PM, Lu J, & Saper CB (2008) Differential rescue of light- and food-entrainable circadian rhythms. Science 320(5879):1074-1077. 439