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Supplementary Figures

Supplementary Figure 1: Example data query. Our queries to the NCBI GEO and ArrayExpress systems,
selecting mouse single-cell RNA-seq data.
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Supplementary Figure 2: Monthly study count available on GEO and ArrayExpress. Number of
studies released each month in GEO and ArrayExpress.
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Supplementary Figure 3: Distribution of reads in available raw data. Number of RNA-seq reads in
each available series/cell, across all studies.
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Supplementary Figure 4: Neural network training history. Training and validation loss exhibiting
convergence within 100 epochs for the “PT dense 1136 100” model in Figure 3. The weights saved are those
of the first iteration after which validation loss no longer improves.
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Model # Parameters Train set size Mini-batch size Training time
PT dense 1136 100 23,406,245 36,473 256 3 mins 54 secs
PT dense 1136 500 100 23,911,145 36,473 256 3 mins 51 secs
triplet PT ppitf 1136 500 100 3,116,269 72,000 72 31 mins 5 secs
triplet hierarchical GO 1,123,151 72,000 72 1 hr 57 mins
Siamese PT dense 1136 500 100 23,906,600 110,117 256 27 mins 13 secs
Siamese PT ppitf 1136 100 2,611,369 110,117 256 41 mins 18 secs

Supplementary Table 1: Neural network training times. Number of parameters and time to train for
each of the neural network model types from Figure 3. “PT” indicates that the model had been pretrained
using the unsupervised strategy (Supporting Methods). Numbers after the model name indicate the hidden
layer sizes. “hierarchical GO” refers to the GO-based architectures (Supporting Methods). All models were
trained for 100 epochs on a machine with two Intel(R) Xeon(R) E5-2620 v3 @ 2.40GHz CPUs and an Nvidia
GeForce GTX 1080 GPU.
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t-Test: Paired Two Sample for Means

PT dense 1136 100 PCA 100

Mean 0.576379804 0.5440947

Variance 0.207874104 0.18939181

Observations 2330 2330

Pearson Correlation 0.845531936

Hypothesized Mean Difference 0

df 2329

t Stat 6.272445056

P(T<=t) one-tail 2.11189E-10

t Critical one-tail 1.645508148

P(T<=t) two-tail 4.22378E-10

t Critical two-tail 1.960983084

Supplementary Table 2: Paired t-test comparing PT dense 1136 to PCA 100. The tested dataset
is the full set of 2330 cells in our query set. Each observation is the Average Flexible Precision score on a
query cell. We see that our best neural embedding model outperformed PCA 100 (p = 4.224× 10−10.)
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1.0

0.0

# in query 9 42 37 45 250 16

# in database 207 273 50 250 340 161

Architecture 
type Model fibroblast macrophage blastoderm embryo retina liver

weighted 
average 
(lowly rep. 
cell types)

Cell type 
classifier

PT dense 1136 100 1.000 1.000 0.990 0.145 0.909 0.129 0.468

PT dense 1136 500 100 1.000 1.000 0.973 0.091 0.909 0.248 0.460

Triplet

PT (frac active) ppitf 1136 500 100 1.000 0.980 0.541 0.493 0.941 0.385 0.508

PT (val loss) ppitf 1136 500 100 1.000 0.998 0.478 0.640 0.942 0.481 0.512

Siamese

PT dense 1136 500 100 0.991 0.964 0.660 0.258 0.896 0.110 0.791

PT ppitf 1136 100 1.000 0.874 0.730 0.082 0.870 0.158 0.419

N/A

PCA 100 0.832 0.993 0.660 0.167 0.901 0.097 0.454

Original data 0.279 0.826 0.262 0.146 0.797 0.200 0.368

Supplementary Figure 5: Retrieval testing results for lowly represented cell types in our database.
Results presented in a similar manner as Figure 3, except that here we only show the results of those cell
types with less than 1% of total training set population (36,473 cells). The final column is the weighted
average score over all such ”lowly represented” cell types (some not shown in table due to space), and the
weights are the number of such cells in the query set.
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1.0

0.0

# in query 160 45 162 81 45 250 678

# in database 645 481 421 523 250 340 1097

Architecture 
type Model

hematop-
oietic stem 
cell osteocyte neuron neural embryo retina

skin 
epidermis

weighted 
average 
(higly rep. 
cell types)

Cell type 
classifier

PT dense 1136 100 0.241 0.984 0.942 0.811 0.246 0.903 0.629 0.649

PT dense 1136 500 100 0.196 0.990 0.935 0.526 0.242 0.914 0.480 0.534

Siamese

PT dense 1136 500 100 0.125 0.883 0.846 0.666 0.233 0.895 0.499 0.543

PT ppitf 1136 100 0.053 0.695 0.242 0.672 0.267 0.828 0.307 0.335

N/A

PCA 100 0.369 0.959 0.701 0.747 0.184 0.904 0.485 0.504

Original data 0.130 0.974 0.539 0.824 0.146 0.797 0.062 0.122

Supplementary Figure 6: Retrieval testing results for reprocessed data only. Retrieval testing results
of various architectures, as well as PCA and the original (unreduced) expression data, trained on only the
data that we processed ourselves. “PT” indicates that the model had been pretrained using the unsupervised
strategy (Supporting Methods). Numbers after the model name indicate the hidden layer sizes. For example,
“dense 1136 500 100” is an architecture with three hidden layers. The final column is the weighted average
score over those cell types with at least 1000 cells in the database (some not shown in table), and the weights
are the number of such cells in the query set.
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Supplementary Figure 7: t-SNE visualizations of mouse brain query cells. (a) Two component t-
distributed stochastic neighbor embedding (t-SNE) of the query cells from their original 20,499 dimensions
(genes), colored by disease status. (b) Two component t-SNE of the query cells from the 100 dimensional
neural embedding via the “PT dense 1136 100” model.
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Supplementary Figure 8: Gene expression within mouse neurodegeneration dataset, late response
cells. This figure is a crop from a screenshot of an scQuery session. logRPKM expression of the macrophage-
specific genes (Methods) within a cluster of late-stage (6 weeks after p25 induction) neurodegenerative cells
enriched for “macrophage” labeling by our retrieval server. The leftmost column is the average logRPKM
among our database macrophage cells. Genes highlighted in magenta were also found to be up-regulated in
the original study [1]. Genes highlighted in yellow are additional genes related to immune response that are
up-regulated in the query cells. Genes highlighted in yellow in order of top to bottom: Cd53, Ccl6, Cd52,
Ccl9, Cd14, H2-ab1, Cd48, Ccl2
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Supplementary Figure 9: Marker gene expression in mouse brain immune cells. Expression
(log2(RPKM)) of marker genes [2] for macrophages and microglial cells for all cells we classified as
“macrophage” or “myeloid” cell.
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Algorithm 1: Cell type-specific gene list construction algorithm. The outermost loop of the
algorithm is over different cell types. If there exists multiple studies of significant size (> m) that
have profiled a particular cell type, then there is an inner loop that does a differential expression
analysis for each such study. Otherwise, the algorithm will try to do a single differential expression
analysis by pooling the cells of this type from the various studies. If there were multiple studies,
then the final list of DE genes for a cell type is created from a meta-analysis of the DE genes from
each study (Supporting Methods).

input : D = matrix of gene expression values (preprocessed as described in Supporting Methods)
m = minimum cells in a DE experiment
DEModule(goup1, group2) = Differential Expression analysis module

output: CellTypeGenes = Lists of cell type-specific differentially expressed genes

CellTypeGenes ← {∅}
foreach cell type C ∈ D do

DEResults ← {∅}
D′ ← only cells of type C from D
S ← set of studies in D′

if ∃ a study s ∈ S that contains at least m cells of type C then
foreach study s that satisfies the above condition do

a← SampleXFromY(m, D′s)
b← SampleXFromY(m, D)

DEResults ← DEResults ∪ DEModule(a, b)
end

else if |D′| >= m then
(If there doesn’t exist at least one study for C with at least m cells, then
we try to combine all of C’s studies into a single group)
a← SampleXFromY(m, D′)
b← SampleXFromY(m, D)

DEResults ← DEResults ∪ DEModule(a, b)
else

continue
end

CellTypeGenes ← CellTypeGenes ∪ MetaAnalysis(DEResults)
end
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Number of Queries Linear Scan (secs) NMSLib (secs) Accuracy
100 0.457 0.001967 0.9819
500 2.417 0.005926 0.9543
1000 4.447 0.013977 0.9459

(a) NMSLB

Number of Queries Linear Scan (secs) ANNoY (secs) Accuracy
100 0.457 0.028205 0.9673
500 2.417 0.137404 0.97726
1000 4.447 0.278778 0.94861

(b) ANNoY

Number of Queries Optimal Number of probes Linear Scan (secs) FALCONN (secs) Accuracy
100 16 0.457 0.028205 0.9673
500 31 2.417 0.137404 0.97726
1000 346 4.447 0.278778 0.94861

(c) FALCONN

Supplementary Table 3: Approximate nearest neighbor search method comparison. Nearest neigh-
bor search benchmarking results for (a) NMSLB, (b) ANNoY, and (c) FALCONN.
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Supplementary Methods

Labeling of single cell experiments using Cell Ontology terms

We use all available labels in the Cell Ontology to assign each single cell experiment to a set of ontology
terms. We consider all cell labels and synonyms, and adjust each label/synonym before performing text
matching against single cell experiment metadata. We strip the “ cell” or “ cells” suffixes, if present and
if the cell descriptor consists of two or more characters without those suffixes. For example, “b cell” is
used as-is, but “brain cell” is converted to “brain” before performing text searching. We build a regular
expression for each adjusted label/synonym, replacing “{term}” with the appropriate label/synonym:

(-|\b)({term})(s?)(-|\b)

This allows every term, with or without a “s” suffix, to be matched with adjoining word boundaries or “-”
characters.

We use the ‘source,’ ‘cell type,’ and ‘cell ID’ fields in GEO and ArrayExpress to assign a set of Cell
Ontology terms to each single cell experiment. We collect all unique values in these fields across all sin-
gle cell experiments, and test whether each value matches the regular expression for each ontology term
name/synonym. We then reduce the set of terms for each experiment, removing any term that is an ancestor
of another. For example, the cell label “Bone marrow cells” is assigned the following terms:

• CL:0000000 cell

• CL:0000137 osteocyte

• CL:0001035 bone cell

• CL:0002092 bone marrow cell

• UBERON:0001474 bone element

• UBERON:0002371 bone marrow

• UBERON:0002481 bone tissue

Removing redundant terms leaves only “CL:0000137 osteocyte” and “CL:0002092 bone marrow cell”.

Triplet architectures trained with batch-hard loss

Following the same motivations as siamese networks, triplet networks also seek to learn an optimal embedding
but do so by looking at three samples at a time instead of just two as in a siamese network. The triplet loss
used by Schroff et al. considers an point (anchor), a second point of the same class as the anchor (positive),
and a third point of a different class (negative) [3].

Triplet Loss =

T∑
i=1

[
(Di

a,p)2 − (Di
a,n)2 + α

]
+

(1)

Where:

T is the set of all training examples (triplets of data points)

Da,p,Da,n are the Euclidean distances computed by the network between the

embeddings of the anchor point and the positive point, and the

embeddings of the anchor point and the negative point, respectively

α is a margin hyperparameter
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Supplementary Figure 10: Siamese neural network configuration. Weights are shared between the
yellow and the purple subnetworks. Data is fed in pairs with one item in the pair going through the yellow
subnetwork, and the other through the purple subnetwork. Triplet networks operate in a similar manner,
except that three points are fed through three subnetworks (again, shared weights).

When training a siamese or triplet network, it is very important to select pairs/triplets that are difficult
enough so that the network learns and converges [3] . A straightforward approach to mine hard examples
would involve periodically pausing training, embedding all data points using the current weights, calculating
pairwise distances among all of these points in the embedded space, and selecting new examples based on
this. This is computationally expensive and is prone to selecting pairs that are too difficult (outliers), so here
we have opted to mine challenging pairs in an online fashion by selecting from points within a mini-batch [3,
4]. Specifically, we use Hermans et al.’s “batch hard” loss, shown in Equation 2 [4]. The loss is calculated
over a mini-batch, which is constructed by first sampling P cell types (labels) and then sampling K cells of
each type.

Batch Hard Loss =

P∑
i

K∑
a

m+ max
p=1,...,K

D
(
f(xia), f(xip)

)
− min

j=1,...,P ;j 6=i
n=1,...,K

D
(
f(xia), f(xjn)

)
+

(2)

Where:

f is the neural network (an embedding function)

xt
c is the cth cell of type t in the mini-batch

D(a, b) is the Euclidean distance between vectors a and b

m is a margin hyperparameter

For each anchor point a in the mini-batch, the max term in Equation 2 finds the hardest positive pair,
while the min term finds the hardest negative pair.

Unsupervised neural network pretraining

While all of our neural embedding models are trained in a supervised fashion (for cell-type classification
or embedding optimization), we also used unsupervised training to initialize the weights for these models,
and this was shown to improve performance (Results, Figure 3). We have shown in prior work that using
a denoising autoencoder (DAE) for unsupervised pretraining can improve performance [5]. Here we extend
this to using stacks of DAEs, which are each individually trained in a process called “greedy layer-wise
pretraining” to pretrain each layer of our neural network architectures [6, 7].
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Supplementary Figure 11: Illustration of one stage of greedy layer-wise unsupervised pretraining
of a neural network. W1,W2, and W3 are weight matrices. (A) A supervised neural network with two
hidden layers to be pretrained. (B) An unsupervised DAE that has the the supervised network’s first hidden
layer as its middle layer. This DAE is trained to minimize the mean squared error between its reconstruction
and the original input data (prior to corruption with noise). After training this DAE, its weights can be
used as initial values for the weights in the supervised network.

Here we illustrate the process with an example of how we would pretrain a neural network with an input
layer, two hidden layers, and an output layer (Supplementary Figure 11a). Supplementary Figure 11b shows
how the first hidden layer is pretrained. The first hidden layer becomes the hidden layer in a DAE, with
a “reconstruction” layer of the same dimensionality as the input added on top. Gaussian noise is added to
each sample and fed through this DAE, and the training objective is to minimize the mean squared error
between the reconstructed output and the clean, uncorrupted samples. After training this DAE, the weights
can be used to initialize the first hidden layer in our supervised neural network. This process is repeated
for the other hidden layers, where all weights below the layer of interest are fixed, and the input is first fed
forward through these fixed weights to get a new representation, and then the corrupting noise is added to
this new representation for training the DAE of the current layer.

Cell-type similarity calculation

Rather than rely on distances based on the ontology graph structure, we computed cell type similarities with
a data driven approach by using term co-occurrences in PubMed. For each pair of cell types in our ontology,
we queried PubMed for articles which had both of the terms in the title or abstract texts.

We then define Si as the number of articles in which term i occurred in, and Pi,j as the number of
articles in which terms i and j co-occurred in. We additionally define a binary matrix M of shape (number
of ontology terms, number of documents), where Mi,j = 1 if term j occurred in document i.

The similarity between two terms can then be computed as a cosine similarity:
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Di,j = cos(Mi,Mj)

=
Mi ·Mj

|Mi||Mj |

=
Pi,j√
SiSj

The above measure is not symmetric, and a symmetric version can be defined as:

Di,j =
Pi,j/Si + Pi,j/Sj

2
For our neural embedding models that rely on computing distances between cell types (siamese archi-

tectures), we use the symmetric version of the cell type similarities. We use the non-symmetric version to
evaluate all of our neural embedding models (i.e. to compute the MAFP values in our retrieval analysis).

Mean average flexible precision

We employ a modified version of mean average precision (MAP) called mean average flexible precision
(MAFP) in order to evaluate the retrieval performance of our dimensionality reduction models. Traditional
average precision operates on ranked lists (e.g. a list of nearest neighbor cells in a retrieval database) by
calculating the precision at exact-match cutoffs in the list, and then taking the mean of these. This require-
ment is too restrictive for proper evaluation here, as a binary hit or miss criterion would not allow a list
containing similar cell types to be valued higher than lists with less relevant cell types. Instead, average
flexible precision is computed by summing the cell-type similarities between the query cell and each retrieved
result and dividing by the length of the list at a particular depth, and finally taking the average of these
values across all depths in the list.

Missing data imputation

Our uniform preprocessing pipeline requires the raw reads data for each study. For certain studies, this is not
available, and only the RPKM values processed by the authors of the original study are present. We would
still like to integrate this data into our database, which requires us to impute the values of the expression of
missing genes.

We conduct missing value imputation with a k-nearest neighbors-based approach, similar to procedures
in prior work [5, 8]. We ignore cells which have more than 20% of our gene set missing. After filtering those
cells out, we impute the remaining values for each study independently. For each study, in order to compute
nearest neighbor genes within the study we first fill the missing values with the median expression value
in each cell. We then calculate the euclidean distance matrix of the genes in the study (where each gene
is represented by a vector of its expression values in each cell). Finally, the value of each missing gene is
imputed with the average expression of its 10 nearest neighbor genes within each cell.

Preprocessing strategies for differential expression analysis

Prior to conducting differential expression analysis, we filter out low-quality genes and cells. To filter out
lowly-expressed genes, we first calculate the average reads of each gene within each cell type. We then
calculate an overall average for each gene by taking the average of its cell-type specific average expressions.
We then only keep genes that have an overall average value that is above a cutoff of 50. This resulted in the
removal of 4180 out of 20499 genes.

To filter out cells, we remove cells with fewer than 1.8×103 detected genes, which is the default procedure
in the tool we have chosen to use for DE analysis, SCDE [9]. This resulted in the removal 732 cells out of
23982 cells. We note that the 23982 cells are a subset of our total database, as we only conduct DE analysis
for cell types with a minimum of 75 cells.
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Meta-analysis of differential expression experiments

For cell types that have data from multiple studies, we conduct separate DE analysis for each of those studies,
and then combine the results to obtain a single list of differentially expressed genes with their p-values. To
do this, we take the maximum FDR adjusted p-value for each gene across the studies as its final p-value.
Our list of significant DE genes for a particular cell type is then taken as the set of genes with final p-values
below a threshold of 0.05.

Additionally, we only keep the DE genes that had a consistent sign (positive or negative) log2 fold-change
across the multiple DE analysis that were done for the particular cell type.

Gene Ontology enrichment analysis

We took the output of Supplementary Algorithm 1 (a list of differentially expressed genes for each cell type)
and filtered to keep the top 50 most significant (by FDR adjusted p-value) up-regulated genes. We then used
this ordered set of genes as our query for GO enrichment analysis using g:Profiler [10]. We specified that
g:Profiler should take the order of the query list into account (more significantly up-regulated genes are more
informative) [11]. Other parameters of our analysis were organism=“mmusculus”, that Benjamini-Hochberg
multiple testing correction be used, and that “GO: Biological Process” should be used as the term source.
We also supplied a list of 16968 genes to be used as statistical background. These background genes are the
subset of our 20499 genes that remain after we filtered out lowly expressed genes in the preprocessing step.

Cell Type retina
Term ID UBERON:0000966
# of experiments 2

GO ID Name p-value
GO:0050877 nervous system process 7.63e-09
GO:0050953 sensory perception of light stimulus 7.63e-09
GO:0007601 visual perception 7.63e-09
GO:0007423 sensory organ development 8.69e-09
GO:0060041 retina development in camera-type eye 8.69e-09
GO:0007600 sensory perception 4.09e-08
GO:0001654 eye development 3.96e-07
GO:0003008 system process 6.67e-07
GO:0009584 detection of visible light 6.86e-07
GO:0043010 camera-type eye development 1.23e-06

(a) SCDE

Cell Type retina
Term ID UBERON:0000966
# of experiments 2

GO ID Name p-value
GO:0045721 negative regulation of gluconeogenesis 3.03e-02
GO:0032379 positive regulation of intracellular lipid tr... 3.03e-02
GO:0032385 positive regulation of intracellular choleste... 3.03e-02
GO:0061179 negative regulation of insulin secretion invo... 3.03e-02
GO:1905600 regulation of receptor-mediated endocytosis i... 3.03e-02
GO:0010888 negative regulation of lipid storage 3.03e-02
GO:0032382 positive regulation of intracellular sterol t... 3.03e-02
GO:1905602 positive regulation of receptor-mediated endo... 3.03e-02
GO:0045475 locomotor rhythm 3.03e-02
GO:0090118 receptor-mediated endocytosis involved in cho... 3.34e-02

(b) limma-voom

Supplementary Table 4: Comparison of SCDE (a) and limma-voom (b) when used as “DEModule”
in Supplementary Algorithm 1. We conducted the same process as for Table 1 to produce the above two
panels: We used GO: Biological Process as the source term set, and used the top 50 up-regulated differentially
expressed genes from our cell type-specific gene lists for retina. The top 10 GO terms are shown, sorted by
FDR adjusted p-values.

PPI/TF architectures

Since our set of input genes is different, the architectures discussed in Lin et al. could not be used directly
here. We used the same transcription factor data as Lin et al. [12]. For our protein-protein interaction
data, we use a protein-protein interaction network which integrates known and predicted interactions from
multiple databases [13].

Gene Ontology based architectures

We also tested another method to group genes based on the Gene Ontology (GO) [14]. GO is a directed
acyclic graph (DAG) whose nodes are gene products (RNA or protein) and whose edges are relationships
between these gene products. Along with this graph, there exist curated annotations which associate genes
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Supplementary Figure 12: PPI/TF neural network architecture. Our Protein-protein/protein-DNA
(PPI/TF) based neural network architecture, showing sparsely connected layers based on prior biological
knowledge.

from specific organisms with each node in the graph. Here we propose that GO’s hierarchical structure will
enable our models to recognize complicated relationships that most likely exist between genes.

To construct a hierarchical neural network architecture that mirrors the structure of the GO DAG, we
first use the published GO annotations for M. musculus [15, 16] to associate each of our input genes with a
node in GO. Specifically, we choose a particular depth d (distance from a root node) and first associate the
genes with only the nodes at this depth in the GO graph. Multiple genes can be associated with the same
node. Then we use this grouping of the input genes as the first hidden layer of a neural network. Each node
in this hidden layer represents a GO node at depth d with its associated input genes connected to it. The
nodes in the next hidden layer will be constructed from GO nodes that have depth d-1. A node in a layer is
connected to a node in the layer above if a path exists between their corresponding nodes in the GO graph.
We continue this process until the last hidden layer has the desired number of nodes (the size of our reduced
dimension). The final result is the network depicted in Supplementary Figure 13.

A key point is that the connections in the network are sparse: a node is only connected to a subset of the
nodes in the layer below. This is analogous to the idea of convolutional neural networks (CNNs), in which
neurons in a given layer are only connected to a subset of neurons in the layer below (the neuron’s “receptive
field”) [17].
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Supplementary Figure 13: Our Gene Ontology-based neural network architecture. The connections
between the input layer and the first hidden layer, as well a the connections between hidden layers, are sparse
and follow connections in the GO DAG. The final hidden layer is fully connected (dense) to the output layer.

21



Supplementary References

1. Mathys, H. et al. Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Res-
olution. Cell reports 21, 366–380 (2017).

2. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nature neuroscience
16, 1896 (2013).

3. Schroff, F., Kalenichenko, D. & Philbin, J. Facenet: A unified embedding for face recognition and clus-
tering in Proceedings of the IEEE conference on computer vision and pattern recognition (2015), 815–
823.

4. Hermans, A., Beyer, L. & Leibe, B. In defense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737 (2017).

5. Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the dimensions of
single-cell RNA-Seq data. Nucleic Acids Research 45, e156 (2017).

6. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. Journal of Machine
Learning Research 11, 3371–3408 (2010).

7. Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise training of deep networks in
Advances in neural information processing systems (2007), 153–160.

8. Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17,
520–525 (2001).

9. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential ex-
pression analysis. Nature methods 11, 740 (2014).

10. Reimand, J. et al. g: Profiler—a web server for functional interpretation of gene lists (2016 update).
Nucleic acids research 44, W83–W89 (2016).

11. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization
of enriched GO terms in ranked gene lists. BMC bioinformatics 10, 48 (2009).

12. Schulz, M. H. et al. DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-
series expression data. BMC systems biology 6, 104 (2012).

13. Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life.
Nucleic acids research 43, D447–D452 (2014).

14. Consortium, G. O. et al. Expansion of the Gene Ontology knowledgebase and resources. Nucleic acids
research 45, D331–D338 (2017).

15. Smith, C. L. et al. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse.
Nucleic acids research 46, D836–D842 (2017).

16. Mouse Genome Informatics, T. J. L. Mouse Genome Database (MGD) http://www.informatics.

jax.org (2017).

17. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE 86, 2278–2324 (1998).

22

http://www.informatics.jax.org
http://www.informatics.jax.org

