Supplementary Information

Nonsense mutation in PMEL is associated with yellowish

plumage colour phenotype in Japanese quail

Satoshi Ishishita^{1†}, Mayuko Takahashi^{2†}, Katsushi Yamaguchi³, Keiji Kinoshita¹, Mikiharu Nakano¹, Mitsuo Nunome¹, Shumpei Kitahara², Shoji Tatsumoto⁴, Yasuhiro Go^{4,5}, Shuji Shigenobu³, Yoichi Matsuda^{1,2*}

¹Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan

²Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan

³Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan ⁴Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan

⁵National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan

⁺ These authors contributed equally to this work

* Corresponding author.

Supplementary note

Analysis of paired-end reads by Stacks

The sequence data were demultiplexed by barcode, cleaned by removing reads of low quality, and shortened to 95 bp (1st run) or 100 bp (2nd and 3rd runs) using the Stacks program 'process_radtags' (-c -q -r --adapter_mm 1 -t 100). The processed reads were aligned to the *Coturnix japonica* 2.0 (GCF_001577835.1) draft genome using the program Bowtie 2 ver. 2.2.8 (Langmead *et al.*, 2009) with default parameters. Only paired reads aligned concordantly to the reference genome at one time were analysed by the Stacks program 'ref_map.pl'.

The 'ref_map.pl' executes several programs: (i) 'pstack', which builds loci according to the alignment position of each read; (ii) 'cstacks', which creates catalogues of all loci for the parents and F_2 offspring; and (iii) 'sstcks', which matches each catalogue of loci of F_2 offspring against catalogues of the parents. The parameters of ref_map.pl were set as the default except for the number of mismatches allowed between sample loci when build the catalog (-n = 3). The minimum depth of coverage to report a stack in pstacks was three (-m = 3). The Stacks program 'genotypes' was executed to export the genotype dataset for the F_2 offspring. The parameters of 'genotype' were set as the default: minimum number of progeny required to print a marker (-r = 1). This outputted a genotype dataset of parents and 196 F_2 offspring, which contained genotypes at a total of 100,613 markers, although genotype data were missing at many sites in the data set.

Procedure for selection of Z-chromosome-linked markers

To select Z chromosome-linked markers, the genotype data were divided by gender after premapping quality control procedures (i) and (ii). In F_1 progeny, the two Z chromosomes in males are derived from both parental strains, and either of these chromosomes is transmitted to F_2 males and females; however, a single Z chromosome in females is derived from the paternal WE strain male and is only transmitted to F_2 males, except for the pseudoautosomal region (PAR) (markers on the PAR were not identified in this study). Therefore, we searched markers showing heterozygosity or homozygosity for the WE strain-type allele in >90% of F_2 males, and those showing either the L or WE strain-type allele in >90% F_2 females.

Generation of a genotype dataset for a case-control association test

SNP markers and individuals used for a case-control association test were selected in the following manner. To eliminate markers located on highly repetitive DNA sequences, those showing more than 1,500 of coverage depth per individual were eliminated. Loci with a minimum coverage (eight in this study) in each individual, which consisted of one or two alleles with a given minimum coverage (three in this study) in each allele, were used for genotyping. This filtering was performed using a custom R script, based on marker depth output by 'sstacks' of the Stacks program. Markers that were not assigned to known chromosomes or linkage groups were eliminated from the genotype data set. The dataset containing genotypes at 10,498 markers were yielded by the filtering.

The genotype data set underwent premapping quality control (van Ooijen and Jansen, 2013), which excluded (i) individuals with a lot of missing data (>70% in this study); (ii) markers with a lot of missing data (>5% in this study); and (iii) markers with highly significant segregation distortion (SD) (P < 0.001 with Bonferroni correction in this study). After excluding markers with highly significant SD, we selected candidate Z-linked markers that were shared between males and females. After these filtering steps, the coverage depth of each genotype in the F_2 offspring was more than 7 and less than 250.

The genotype data set were analysed by the software Lep-MAP2 (LM2), which can construct genetic maps from a large data set (Rastas *et al.*, 2015). Three modules of LM2, SeparateChromosomes, Joinsingles, and OrderMarkers, were used to construct a genetic map. The SeparateChromosomes module assigns markers into LGs by calculating all pair-wise LOD scores

between markers and subsequently joins markers with LOD scores higher than a given parameter 'lodLimit' (LodLimit=20 in this study). The JoinSingles module assigns singular markers into existing LGs by calculating LOD scores between each singlular marker and markers in the existing LGs and joins markers with LOD scores higher than a given parameter (LodLimit=10 in this study). The OrderMarkers module orders markers within each LG as the likelihood of the data becomes maximized. We arranged autosomal markers into 33 LGs using the SeparateChromosomes module. The minimum size of LGs was set as 2 (sizeLimit=2). Two autosomal markers were not assigned into any LGs by the SeparateChromosome module, and these markers were also not assigned into any LGs by the JoinSingles module. Markers within the 33 LGs were ordered using the OrderMarkers module. This module was used with options to set the number of iteration of calculation (numMergeIterations=10) and to calculate sex averaged genetic distances between adjacent markers with the Kosambi mapping function (sexAveraged=1, useKosambi=1). Z-linked markers were analysed by LM2 independently of autosomal markers by the same procedure as that for autosomal markers except for two options in the OrderMarkers module (initRecombination=0.05 0.000000001 learnRecombinationParameters=1 0), which were required for computation of the marker order and distances between markers without recombination in female meiosis. A genetic map consisting of a total of 34 linkage groups was constructed at this step.

Markers with similar or identical genotypes, which were located on an identical position on the genetic map, were eliminated from the genotype dataset. Markers mapped to chromosome 1 were grouped into two different LGs. A similar separation of linkage groups on the same chromosome occurred for markers mapped to chromosome 2 and LGE22. These separated marker groups were joined manually into single groups. To correct the genetic map, we searched for markers showing >5-cM genetic distance between adjacent markers, and then apparently erroneous marker ordering was corrected by rearranging markers or excluding markers with a high frequency of double recombination. After eliminating markers with highly significant SD, the final genetic map was constructed. Distances between markers in the final genotype dataset were recalculated by Map Manager QTX ver. 0.30 (Manly *et al.*, 2001) with the Kosambi mapping function. The genetic map was visualised by a custom R script.

References

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25 (2009).

van Ooijen JW & Jansen J (2013) *Genetic mapping in experimental populations*. (Cambridge University Press, Cambridge, U.K., 2013).

Rastas, P., Calboli, F. C. F., Guo, B., Shikano, T. & Merilä, J. Construction of ultradense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. *Genome Biol. Evol.* **8**, 78–93 (2015).

Manly, K. F., Cudmore, R. H. & Meer, J. M. Map Manager QTX, cross-platform software for genetic mapping. *Mamm. Genome.* **12**, 930–932 (2001).

Table S1. Summary of genetic map.

Chr.	Size of chr. ^a (Mb)	No. of markers	Length (cM)	Average of intermarker distance (cM)	Max. of intermarker distance (cM)	Proximal ^b (Mb)	Distal ^c (Mb)	Proximal– Distal ^d (Mb)	Covered region ^e (%)	cM/Mb ^f	Average of intermarker distance (Mb)
1	175.66	331	316.9	1	30.8	0.25	174.76	174.51	99.3	1.8	0.5
2	134.82	266	253	1	31.6	0.87	134.64	133.76	99.2	1.9	0.5
3	100.94	220	181	0.8	5.8	0.13	100.22	100.09	99.2	1.8	0.5
4	82.19	138	131.9	1	6.5	1.59	81.98	80.39	97.8	1.6	0.6
5	54.02	124	114.8	0.9	4.9	1.22	53.93	52.71	97.6	2.2	0.4
6	31.42	49	62.9	1.3	7	2.04	30.66	28.62	91.1	2.2	0.6
7	33.42	60	79.4	1.3	5.7	0.18	33.27	33.09	99	2.4	0.6
8	26.89	87	61	0.7	2.9	0.11	25.57	25.46	94.7	2.4	0.3
9	21.33	78	63.2	0.8	3.5	0.7	19.83	19.13	89.7	3.3	0.2
10	18.48	66	60.1	0.9	5.3	0.63	17.54	16.91	91.5	3.6	0.3
11	17.8	57	51.7	0.9	5.3	3.32	17.68	14.36	80.7	3.6	0.3
12	17.22	56	62.3	1.1	4.8	0.13	16.89	16.76	97.3	3.7	0.3
13	15.71	52	56.7	1.1	4.6	0.58	15.39	14.81	94.3	3.8	0.3
14	12.83	51	60.6	1.2	6.2	1.55	12.53	10.98	85.6	5.5	0.2
15	11.7	41	48.6	1.2	4.1	1.53	10.6	9.07	77.5	5.4	0.2
16	0.35	2	0.3	0.3	0.3	0.25	0.28	0.03	8.6	10	-
17	8.97	21	53	2.6	14.1	0.35	8.33	7.98	89	6.6	0.4
18	9.55	38	55.7	1.5	12.4	0.1	8.44	8.34	87.3	6.7	0.2
19	8.76	16	36.2	2.4	8.7	0.99	5.04	4.05	46.2	8.9	0.3
20	12.45	42	53.1	1.3	6	0.45	12.35	11.9	95.6	4.5	0.3
21	5.95	25	69.5	2.9	12	0.17	5.56	5.39	90.6	12.9	0.2
22	4.13	15	59	4.2	11.4	0.19	3.96	3.76	91	15.7	0.3
23	5.05	17	48.5	3	13.4	0.71	4.03	3.32	65.7	14.6	0.2
24	5.5	22	52.2	2.5	7.4	0.35	5.47	5.12	93.1	10.2	0.2
25	2.51	13	26	2.2	7.6	0.81	1.89	1.08	43	24.1	0.1
26	4.93	20	54.8	2.9	21.3	0.79	4.49	3.7	75.1	14.8	0.2
27	4.78	13	43	3.6	13	1.66	4.1	2.43	50.8	17.7	0.2
28	4.02	22	55.1	2.6	13.9	0.33	3.95	3.62	90	15.2	0.2
LGE22	1.78	5	55.1	13.8	44.6	0.26	1.31	1.04	58.4	53	0.2
LGE64	0.58	2	0.3	0.3	0.3	0.34	0.37	0.03	5.2	10	-
Z	67	55	87.7	1.6	6.4	0.3	66.44	66.14	98.7	1.3	1.2
Overall	900.74	2004	2353.6	1.2	44.6	-	-	858.58	95.3	2.7	0.4

^a The size of each chromosome or LG in *Coturnix japonica* 2.0.

^b The nearest marker proximal to the start site.

^c The farthest marker distal to the start site.

^d The distance between the most proximal and distal markers.

^e Percentage of distance between the most proximal and distal makers in the total length of each chromosome or LG.

^fRecombination rate.

SNPs	Recombination fractions	LOD scores
295443	0.122	11.48
295438	0.119	11.97
295380	0.093	14.33
g.811370	0.000	26.49
295244	0.159	9.75
295306	0.227	6.01

Table S2. Recombination fractions and LOD scores between the *yw* locus and all markers in LGE22.

Recombination fractions and LOD scores were estimated using genotype data of homozygous mutant individuals of F_2 hybrids.

Table S3. Genes within the causative genomic region.

Gene ID	Symbol	Description	Start_position	End_position	Orientation
107325708	DIP2B	disco interacting protein 2 homolog B	206942	266333	minus
107325712	LARP4	La ribonucleoprotein domain family member 4	266937	284550	minus
107325701	LIMA1	LIM domain and actin binding 1	292071	315762	plus
107325707	LOC107325707	uncharacterized LOC107325707	292278	317246	minus
107325704	CERS5	ceramide synthase 5	317280	335184	plus
107325706	LOC107325706	cytochrome c oxidase assembly protein COX14	336421	338089	minus
107325705	GPD1	glycerol-3-phosphate dehydrogenase 1	338201	342954	minus
107325703	SMARCD1	SWI/SNF related, matrix associated, actin dependent regulator of	343642	350812	minus
107325723	ASIC1	acid sensing ion channel subunit 1	355661	371556	minus
107325722	RACGAP1	Rac GTPase activating protein 1	384141	391976	plus
107325714	HDAC7	histone deacetylase 7	403795	460106	plus
107325715	LOC107325715	twist-related protein 2-like	460865	463774	minus
107325720	SLC48A1	solute carrier family 48 member 1	474347	484037	minus
107325717	RAPGEF3	Rap quanine nucleotide exchange factor 3	494853	509573	plus
107325719	ENDOU	endonuclease, poly(U) specific	511293	517955	plus
107325700	NEUROD4	neuronal differentiation 4	527600	532542	minus
107325698	LOC107325698	protein SUPPRESSOR OF GENE SILENCING 3 homolog	548879	550115	minus
107325693	TESPA1	thymocyte expressed, positive selection associated 1	550109	561401	minus
107325732	PPP1R1A	protein phosphatase 1 regulatory inhibitor subunit 1A	571249	579751	plus
107325730	PDE1B	phosphodiesterase 1B	582550	593872	minus
107325731	NCKAP1L	NCK associated protein 1 like	607006	620937	minus
107325729	GTSF1	gametocyte specific factor 1	621819	630935	plus
107325740	ARF3	ADP ribosylation factor 3	682361	683701	minus
107325739	WNT1	Wnt family member 1	688047	696008	plus
107325757	PRKAG1	protein kinase AMP-activated non-catalytic subunit gamma 1	707820	714298	minus
107325738	KMT2D	lysine methyltransferase 2D	718999	749252	minus
107325761	DHH	desert hedgehog	751775	756381	minus
107325760	LMBR1L	limb development membrane protein 1 like	757266	762451	minus
107325742	LOC107325742	tubulin alpha-1A chain	764872	785403	minus
107325741	LOC107325741	tubulin alpha-1B chain-like	764872	777003	minus
107325734	LOC107325734	tubulin alpha-8 chain pseudogene	770887	772927	minus
107325743	LOC107325743	tubulin alpha-1C chain	789186	793596	plus
107325758	LOC107325758	transmembrane protein 198-like	794116	797862	plus
107325759	PYM1	PYM homolog 1, exon junction complex associated factor	797693	800937	minus
107325737	DGKA	diacylglycerol kinase alpha	801183	807808	plus
107325756	PMEL	premelanosome protein	807870	812723	minus
107325763	CDK2	cyclin dependent kinase 2	814942	817700	plus
107325751	RAB5B	RAB5B, member RAS oncogene family	818929	825469	plus
107325750	SUOX	sulfite oxidase	825526	827907	plus
107325762	IKZF4	IKAROS family zinc finger 4	829130	839186	plus
107325764	RPS26	ribosomal protein S26	841577	843447	plus
107325755	ERBB3	erb-b2 receptor tyrosine kinase 3	846972	858448	plus
107325747	PA2G4	proliferation-associated 2G4	859367	868729	plus
107325749	LOC107325749	uncharacterized LOC107325749	859963	868872	minus
107325748	ZC3H10	zinc finger CCCH-type containing 10	871419	873594	plus
107325736	ESYT1	extended synaptotagmin 1	876755	879154	plus
107325752	SMARCC2	chromatin subfamily c member 2	889385	898653	minus
107325754	RNF41	ring finger protein 41	899656	907901	minus
107325735	NABP2	nucleic acid binding protein 2	907985	909946	plus
107325733	SLC39A5	solute carrier family 39 member 5	911556	918885	plus
107325745	ANKRD52	ankyrin repeat domain 52	922711	941702	minus
107325746	LOC107325746	coenzyme Q-binding protein COQ10 homolog A, mitochondrial-like	942403	944238	plus
107325809	R3HDM2	R3H domain containing 2	944609	965864	minus
107325784	LOC107325784	inhibin beta C chain-like	971817	973972	plus
107325767	LOC107325767	inhibin beta E chain-like	980353	983544	plus
107325822	GLI1	GLI family zinc finger 1	985756	998034	plus
107325810	DNAJC14	DnaJ heat shock protein family (Hsp40) member C14	998591	1001299	plus
107325811	ORMDL2	ORMDL sphingolipid biosynthesis regulator 2	1001476	1003752	minus
107325801	SARNP	SAP domain containing ribonucleoprotein	1003892	1024329	plus
107325827	GDF11	growth differentiation factor 11	1030586	1036964	minus
107325828	INPP1	inositol polyphosphate-1-phosphatase	1037987	1039935	plus
107325768	CD63	CD63 molecule	1039806	1041161	plus
107325819	RDH5	retinol dehydrogenase 5	1041381	1044165	minus
107325769	BLOC1S1	biogenesis of lysosomal organelles complex 1 subunit 1	1044226	1045385	minus
107325796	ITGA7	integrin subunit alpha 7	1047040	1059350	plus
107325799	MCRS1	microspherule protein 1	1059366	1063159	plus
107325798	SPATS2	spermatogenesis associated serine rich 2	1063291	1082406	minus

Table S4. Plumage colour phenotypes and genotypes at the site of the candidate mutation in F ₂ offspring.

Individual ID	Phenotype	Genotype	Individual ID	Phenotype	Genotype	Individual ID	Phenotype	Genotype
419	Yellowish	L	3812	Wild type	H	3001	Wild type	W
421	Yellowish	L	3813	Yellowish	L	3002	Wild type	W
423	Wild type	W	3816	Wild type	W	3006	Wild type	Н
425	Wild type	н	3817	Wild type	W	3007	Wild type	Н
427	Wild type	Н	3822	Wild type	Н	3008	Wild type	W
430	Wild type	W	3824	Wild type	Н	3013	Wild type	W
2982	Wild type	Н	4010	Wild type	Н	3195	Wild type	Н
2984	Wild type	W	4011	Wild type	Н	3196	Wild type	Н
2986	Yellowish	L	4014	Wild type	W	3198	Yellowish	L
2988	Wild type	Н	4015	Wild type	W	3200	Yellowish	L
2989	Wild type	W	4017	Wild type	Н	3201	Yellowish	L
2990	Yellowish	L	4019	Yellowish	L	3209	Yellowish	L
2991	Wild type	Н	4023	Yellowish	L	3211	Wild type	Н
2996	Yellowish	L	4024	Wild type	Н	3385	Wild type	W
3003	Wild type	Н	4025	Wild type	Н	3389	Yellowish	L
3004	Wild type	W	4031	Wild type	Н	3392	Yellowish	L
3005	Wild type	W	4032	Wild type	W	3394	Wild type	W
3009	Wild type	W	4033	Wild type	W	3395	Wild type	Н
3010	Yellowish	L	4037	Wild type	Н	3396	Wild type	W
3012	Yellowish	L	4038	Wild type	W	3397	Wild type	Н
3193	Wild type	W	4168	Yellowish	L	3398	Wild type	Н
3194	Wild type	Н	4169	Wild type	Н	3400	Wild type	Н
3197	Wild type	W	4170	Wild type	Н	3402	Wild type	Н
3199	Wild type	Н	4171	Wild type	W	3403	Wild type	Н
3203	Yellowish	L	4173	Yellowish	L	3404	Yellowish	L
3204	Wild type	Н	4174	Wild type	Н	3407	Yellowish	L
3206	Yellowish	L	4175	Wild type	Н	3408	Wild type	Н
3207	Yellowish	L	4176	Wild type	Н	3409	Yellowish	L
3210	Wild type	Н	4179	Yellowish	L	3411	Wild type	Н
3213	Yellowish	L	4180	Yellowish	L	3412	Wild type	Н
3214	Wild type	Н	4181	Wild type	W	3414	Wild type	Н
3215	Yellowish	L	4182	Wild type	Н	3415	Wild type	Н
3216	Wild type	W	4185	Wild type	Н	3530	Wild type	Н
3217	Wild type	Н	9999	Yellowish	L	3532	Wild type	W
3219	Wild type	Н	499	Wild type	Н	3535	Wild type	Н
3221	Wild type	W	500	Yellowish	L	3538	Yellowish	L
3388	Wild type	Н	530	Wild type	Н	3542	Wild type	Н
3390	Wild type	Н	537	Wild type	Н	3551	Wild type	W
3393	Yellowish	L	539	Yellowish	L	3800	Wild type	Н
3401	Wild type	W	545	Wild type	Н	3804	Yellowish	L
3405	Wild type	W	2733	Wild type	Н	3805	Yellowish	L
3406	Wild type	Н	2734	Wild type	Н	3808	Wild type	Н
3413	Wild type	Н	2744	Wild type	Н	3811	Wild type	Н
3531	Wild type	Н	2748	Wild type	Н	3814	Yellowish	L
3533	Yellowish	L	2750	Wild type	Н	3815	Wild type	W
3534	Wild type	W	2753	Wild type	Н	3818	Wild type	Н
3536	Wild type	Н	2754	Wild type	W	3820	Wild type	Н
3539	Wild type	Н	2755	Wild type	H	3821	Wild type	Н
3540	Wild type	Н	2756	Yellowish	L	3823	Wild type	Н
3541	Wild type	н	2757	Wild type	н	4012	Wild type	н
3543	Wild type	H	2758	Wild type	Н	4013	Wild type	Н
3544	Yellowish	L	2759	Wild type	Н	4018	Wild type	VV
3545	Yellowish	L	2761	Wild type	VV	4022	Wild type	W
3546	Wild type	VV	2762	Wild type	VV	4027	Wild type	H
3547	Wild type	VV	2763	Wild type	H	4028	Yellowish	L
3548	Wild type	W	2764	Yellowish	L	4030	Wild type	W
3549	vviid type	vv	2981	vvild type	VV	4034	wild type	vv
3550	vviia type	H	2987	vviid type	vv	4036	Yellowish	L
3552	wild type	H	2992	vvild type	H	4039	wild type	VV
3554	Yellowish	L	2993	Yellowish	L	4040	wild type	vv
3798	wild type	н	2994	vviid type	н	4041	wild type	н
3799	vviid type	H	2995	Yellowish	L	41/2		н
3801			2997		H	41//		H
3802		VV	2990		VV	4183	vviid type	н
3000			2999					
3010	vviia type	п	2000	vviia type	VV			

L, L/L; W, +/+; H, Heterozygotes.

Table S5.	Summary of samples.

Individual ID	Sequence sample	Generation	n Gender	Plumage	Run	Individual ID	Sequence sample	Generation	Gender	Plumage	Run	Individual ID	Sequence	Generation Gende	Plumage	Run
8358	idx1_Y01_8358P	Р	Female	Yellowish	1	8358	idx01_Y01_P8358	P	Female	Yellowish	2	499	idx01_Y01_01	I F ₂ Female	Wild type	3
7388	idx2_Y02_7388P	P	Male	Wild type	1	7388	idx01_Y02_P7388	P F	Male	Wild type	2	500	idx01_Y02_02	2 F ₂ Female	Yellowish	3
419 421	idx3_Y03_419M	F ₂	Male	Yellowish	1	2982	idx01_Y03_3M idx01_Y04_4M	F ₂ F ₂	Male	Wild type Wild type	2	530 537	idx01_Y03_03	5 F₂ Female F₂ Female	Wild type	3
423	idx5_Y05_423M	F ₂	Male	Wild type	1	2986	idx01_Y05_5M	F ₂	Male	Yellowish	2	539	idx01_Y05_05	5 F ₂ Female	Yellowish	3
425	idx6_Y06_425F	F ₂	Female	Wild type	1	2988	idx01_Y06_6M	F ₂	Male	Wild type	2	545	idx01_Y06_06	6 F ₂ Female	Wild type	3
427	idx7_107_427F	F ₂	Female	Wild type	1	2989	idx01_107_7M	F ₂ F ₂	Male	Yellowish	2	2733	idx01_Y07_07	F ₂ Female B F ₂ Female	Wild type	3
						2991	idx01_Y09_9M	F ₂	Male	Wild type	2	2744	idx01_Y09_09	F ₂ Female	Wild type	3
						2996	idx01_Y10_10M	F ₂	Male	Yellowish Wild type	2	2748	idx01_Y10_10) F ₂ Female	Wild type	3
						3004	idx01_Y17_12M	F ₂	Male	Wild type Wild type	2	2753	idx01_115_11	2 F ₂ Female	Wild type Wild type	3
						3005	idx01_Y18_13M	F ₂	Male	Wild type	2	2754	idx01_Y18_13	B F ₂ Female	Wild type	3
						3009	idx01_Y19_14M	F ₂	Male	Wild type	2	2755	idx01_Y19_14	F ₂ Female	Wild type	3
						3012	idx01_Y29_16M	F ₂	Female	Yellowish	2	2757	idx01_120_10	F_2 Female	Wild type	3
						3193	idx05_Y01_17M	F ₂	Male	Wild type	2	2758	idx05_Y01_17	F ₂ Female	Wild type	3
						3194	idx05_Y02_18M	F ₂	Male	Wild type	2	2759	idx05_Y02_18	F_2 Female F_2 Female	Wild type	3
						3199	idx05_Y04_20M	F ₂	Male	Wild type	2	2762*	idx05_Y04_20) F ₂ Female	Wild type	3
						3203	idx05_Y05_21M	F ₂	Male	Yellowish Wild type	2	2763	idx05_Y05_21	I F ₂ Female	Wild type	3
						3204	idx05_Y06_22M	F ₂	Male	Yellowish	2	2764	idx05_106_22	F ₂ Female	Wild type	3
						3207	idx05_Y08_24M	F ₂	Male	Yellowish	2	2987	idx05_Y08_24	F ₂ Female	Wild type	3
						3210	idx05_Y09_25M	F ₂	Male	Wild type	2	2992	idx05_Y09_25	5 F ₂ Female	Wild type	3
						3213	idx05_Y13_27M	F ₂	Male	Wild type	2	2994*	idx05_Y13_27	F ₂ Female	Wild type	3
						3215	idx05_Y17_28M	F ₂	Male	Yellowish	2	2995	idx05_Y17_28	B F ₂ Female	Yellowish	3
						3216 3217	idx05_Y18_29M idx05_Y19_30M	F ₂	Male Male	Wild type Wild type	2	2997 2998	idx05_Y18_29	 F₂ Female F₂ Female 	Wild type Wild type	3
						3219	idx05_Y28_31M	F ₂	Male	Wild type	2	2999	idx05_Y28_31	F ₂ Female	Wild type	3
						3221*	idx05_Y29_32M	F ₂	Male	Wild type	2	3000	idx05_Y29_32	F ₂ Female	Wild type	3
						3388 3390	idx06_Y01_33M idx06_Y02_34M	F ₂	Male Male	wild type Wild type	2	3001 3002	idx06_Y01_33	F₂ Female F₂ Female	Wild type Wild type	3
						3393	idx06_Y03_35M	F ₂	Male	Yellowish	2	3006*	idx06_Y03_35	5 F ₂ Female	Wild type	3
						3401	idx06_Y04_36M	F ₂	Male	Wild type	2	3007	idx06_Y04_36	6 F ₂ Female	Wild type	3
						3405	idx06_Y05_37M	F ₂ F ₂	Male	Wild type	2	3008	idx06_Y05_37	F_2 Female B F_2 Female	Wild type	3
						3413	idx06_Y07_39M	F ₂	Male	Wild type	2	3195	idx06_Y07_39	F ₂ Female	Wild type	3
						3531	idx06_Y08_40M	F ₂	Male	Wild type	2	3196	idx06_Y08_40) F ₂ Female	Wild type	3
						3533	idx06_Y109_41M	F ₂	Male	Wild type	2	3198	idx06_Y10_41	2 F ₂ Female	Yellowish	3
						3536	idx06_Y13_43M	F ₂	Male	Wild type	2	3201	idx06_Y13_43	B F ₂ Female	Yellowish	3
						3539	idx06_Y17_44M	F ₂	Male	Wild type	2	3209	idx06_Y17_44	F ₂ Female	 Yellowish Wild type 	3
						3541	idx06_Y19_46M	F ₂	Male	Wild type	2	3385	idx06_Y19_46	5 F ₂ Female	Wild type	3
						3543	idx06_Y28_47M	F ₂	Male	Wild type	2	3389	idx06_Y28_47	F ₂ Female	Yellowish	3
						3544	idx06_Y29_48M	F ₂	Male	Yellowish	2	3392 3394	idx06_Y29_48	B F ₂ Female E F2 Female	 Yellowish Wild type 	3
						3546	idx08_Y02_50M	F ₂	Male	Wild type	2	3395	idx08_Y02_50) F_2 Female	Wild type	3
						3547	idx08_Y03_51M	F ₂	Male	Wild type	2	3396	idx08_Y03_51	F ₂ Female	Wild type	3
						3548	idx08_Y04_52M	F ₂	Male	Wild type Wild type	2	3397	idx08_Y04_52	$P_2 \rightarrow P_2$ Female $F_2 \rightarrow Female$	Wild type	3
						3550	idx08_Y06_54M	F ₂	Male	Wild type	2	3400	idx08_Y06_54	F ₂ Female	Wild type	3
						3552	idx08_Y07_55M	F ₂	Male	Wild type	2	3402	idx08_Y07_55	5 F ₂ Female	Wild type	3
						3554*	idx08_Y08_56M	F ₂ F ₂	Male	Wild type	2	3403	idx08_Y08_56	F_2 Female F_2 Female	Yviid type Yellowish	3
						3799	idx08_Y10_58M	F ₂	Male	Wild type	2	3407	idx08_Y10_58	B F ₂ Female	Yellowish	3
						3801	idx08_Y13_59M	F ₂	Male	Yellowish Wild type	2	3408	idx08_Y13_59	F ₂ Female	Wild type	3
						3802	idx08_Y18_61M	F ₂	Male	Wild type	2	3409	idx08_Y18_61	F ₂ Female	Wild type	3
						3810	idx08_Y19_62M	F ₂	Male	Wild type	2	3412	idx08_Y19_62	2 F ₂ Female	Wild type	3
						3812 3813	idx08_Y28_63M idx08_Y29_64M	F ₂	Male	Wild type Yellowish	2	3414 3415	idx08_Y28_63	F ₂ Female	Wild type	3
						3816	idx11_Y01_65M	F ₂	Male	Wild type	2	3530	idx11_Y01_65	5 F ₂ Female	Wild type	3
						3817	idx11_Y02_66M	F ₂	Male	Wild type	2	3532	idx11_Y02_66	F ₂ Female	Wild type	3
						3822	idx11_Y03_67M idx11_Y04_68M	F ₂	Male	Wild type	2	3535	idx11_Y03_67	F ₂ Female B F ₂ Female	Yellowish	3
						4010	idx11_Y05_69M	F ₂	Male	Wild type	2	3542	idx11_Y05_69	F ₂ Female	Wild type	3
						4011*	idx11_Y06_70M	F ₂	Male	Wild type	2	3551	idx11_Y06_70) F ₂ Female	Wild type	3
						4014	idx11_Y07_71M idx11_Y08_72M	F ₂	Male	Wild type	2	3800	idx11_Y08_72	Premale Premale Premale	Yellowish	3
						4017	idx11_Y09_73M	F ₂	Male	Wild type	2	3805	idx11_Y09_73	B F ₂ Female	Yellowish	3
						4019	idx11_Y10_74M	F2	Male	Yellowish	2	3808	idx11_Y10_74	F ₂ Female	Wild type	3
						4023	idx11_Y17_76M	F ₂	Male	Wild type	2	3814	idx11_Y17_76	F ₂ Female	Yellowish	3
						4025	idx11_Y18_77M	F ₂	Male	Wild type	2	3815	idx11_Y18_77	F ₂ Female	Wild type	3
						4031	idx11_Y19_78M	F ₂	Male	Wild type	2	3818	idx11_Y19_78	B F ₂ Female	Wild type	3
						4032	idx11_128_79M	F ₂	Male	Wild type	2	3820	idx11_128_79	F_2 Female) F_2 Female	Wild type	3
						4037*	idx12_Y01_81M	F ₂	Male	Wild type	2	3823	idx12_Y01_81	F ₂ Female	Wild type	3
						4038*	idx12_Y02_82M	F ₂	Male	Wild type	2	4012	idx12_Y02_82	2 F ₂ Female 3 F ₂ Female	Wild type	3
						4169	idx12_Y04_84M	F ₂	Male	Wild type	2	4018	idx12_Y04_84	F ₂ Female	Wild type	3
						4170	idx12_Y05_85M	F ₂	Male	Wild type	2	4022	idx12_Y05_85	5 F ₂ Female	Wild type	3
						4171	idx12_Y06_86M idx12_Y07_87M	F ₂	Male Male	Wild type Yellowish	2	4027	idx12_Y06_86	i F ₂ Female 7 F ₂ Female	Wild type Yellowish	3
						4174	idx12_Y08_88M	F ₂	Male	Wild type	2	4030	idx12_Y08_88	B F ₂ Female	Wild type	3
						4175	idx12_Y09_89M	F ₂	Male	Wild type	2	4034	idx12_Y09_89	F ₂ Female	Wild type	3
						4176	idx12_Y10_90M idx12_Y13_91M	F ₂	male Male	Yellowish	2	4036	idx12_Y10_90 idx12_Y13_91	, г ₂ Female I F ₂ Female	Wild type	3
						4180	idx12_Y17_92M	F ₂	Male	Yellowish	2	4040	idx12_Y17_92	2 F ₂ Female	: Wild type	3
						4181	idx12_Y18_93M	F ₂	Male	Wild type	2	4041	idx12_Y18_93	F ₂ Female	Wild type	3
						4185	idx12_119_94M	F ₂	Male	Wild type	2	4172	idx12_119_94	F ₂ Female	Wild type	3
						0000	idv12 V20 06M	E.	Male	Vellowish	2	4193	idy12 V20 06	E. Female	Wild type	3

*Samples that are not used for construction of the genetic map and in a case-control association test.

Table S6. Sequences of P1 and P2 adaptors.

P1 adaptor	Nucleotide sequence
GCATG_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATG 3'
AACCA_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACCA 3'
CGATC_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATC 3'
TCGAT_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGAT 3'
TGCAT_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCAT 3'
CAACC_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAACC 3'
GGTTG_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTG 3'
AAGGA_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGGA 3'
AGCTA_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTA 3'
ACACA_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTACACA 3'
ACTGG_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGG 3'
ATTAC_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTAC 3'
CATAT_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATAT 3'
CGAAT_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAAT 3'
GACAC_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACAC 3'
GAGAT_EcoRI_P1.1	5' ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGAT 3'
GCATG_EcoRI_P1.2	5' Phos-AATTCATGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
AACCA_EcoRI_P1.2	5' Phos-AATTTGGTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
CGATC_EcoRI_P1.2	5' Phos-AATTGATCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
TCGAT_EcoRI_P1.2	5' Phos-AATTATCGAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
TGCAT_EcoRI_P1.2	5' Phos-AATTATGCAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
CAACC_EcoRI_P1.2	5' Phos-AATTGGTTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
GGTTG_EcoRI_P1.2	5' Phos-AATTCAACCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
AAGGA_EcoRI_P1.2	5' Phos-AATTTCCTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
AGCTA_EcoRI_P1.2	5' Phos-AATTTAGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
ACACA_EcoRI_P1.2	5' Phos-AATTTGTGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
ACTGG_EcoRI_P1.2	5' Phos-AATTCCAGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
ATTAC_EcoRI_P1.2	5' Phos-AATTGTAATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
CATAT_EcoRI_P1.2	5' Phos-AATTATATGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
CGAAT_EcoRI_P1.2	5' Phos-AATTATTCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
GACAC_EcoRI_P1.2	5' Phos-AATTGTGTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'
GAGAT_EcoRI_P1.2	5' Phos-AATTATCTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 3'

P2 adaptor	Sequence
MseI_P2.1	5' GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 3'
MseI_P2.2	5' Phos-TAAGATCGGAAGAGCGAGAACAA 3'

Phos, phosphorylated.

Table S7. Sequences of PCR primers for ddRAD-seq.

Name	Nucleotide sequence
PCR1	5' AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG 3'
PCR2_Idx_1_ATCACG	5' CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGC 3'
PCR2_Idx_5_ACAGTG	5' CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGC 3'
PCR2_Idx_6_GCCAAT	5' CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGC 3'
PCR2_Idx_8_ACTTGA	5' CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGC 3
PCR2_Idx_11_GGCTAC	5' CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGC 3
PCR2_Idx_12_CTTGTA	5' CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGC 3

PCR1 contains a sequence complimentary to P1 adaptor sequences and the others to P2 adaptor sequences. The last six chacacters in the names of PCR2 primers show nucleotide sequences of PCR indexs.

Table S8. Sequences of primers used for direct sequencing, PCR-RFLP, and real time PCR.

Name of primer or primer pair	Name of oligonucleotide	Purpose	Nucleotide sequence	Length (nt)	Tm	Ta	Product length (bp)
nmal 1	pmel_1_24Fw	Amplification of cDNA	5' CTTTGCCTCTCTCGGAGTCGGAG 3	23	63.1	60	1 260
piner_1	pmel_1_1368Rv	and direct sequencing	5' CATCCACTTCCACATCTGCAGCA 3	24	61.3		1,509
	pmel_2_1024Fw	Amplification of cDNA	5' CTCCTTGGGACCTACAGCTACAC 3	23	61.3	60	1 472
pmei_2	pmel_2_2353Rv	and direct sequencing	5' AGTCTTTATTAGCAGCCAGTACAC	25	56.3	60	1,472
-	pmel-seq_176Rv	Direct sequencing	5' CCGTCCCCTCCTTCCACG 3'	18	61.7	-	-
_	pmel_3_1683Fw	Direct sequencing	5' CTGTATCGCTATGGCTCCTTCTC 3'	23	59.6	-	-
and DEID	pmel_RFLP-F	DCD DELD	5' CAAAGCCACCTTCTCCATCTCTC 3'	23	60.9		445
pmel_KFLP	pmel_RFLP-R	PCK-KFLP	5' CATCCGTCCCTACTGTCAGCTTC 3'	3' 23 62.6		33	445
and a DNA DT DCD5	pmel_mRNA_RT-PCR5_Fw	Deal time DCD	5' ATCAGCAACGACGCTCCCA 3'	19	57.3	60	120
pmel_mkNA_k1-PCK3	pmel_mRNA_RT-PCR5_Rv	Real time PCR	CCATGTGGGTGCCGTTAACG 3' 20		59.5	60	139
abials anth	chick-actb_Fw	Deal time DCD	5' GCTACAGCTTCACCACCACA 3'	23	59.6	60	00
CHICK-ACTD	chick-actb Rv	Real time PCR	5' TCTCCTGCTCGAAATCCAGT 3'	23	57.8		90

Tm, melting temprature (°C); Ta, annealing temprature (°C). Thermocycling for amplification of *PMEL* cDNA: 2 min at 94°C and 45 cycles of (10 sec at 98°C, 30 sec at 60°C and 30 sec/kb at 68°C). Thermocycling for amplification for PCR-RFLP: 5 min at 95°C and 40 cycles of (30 sec at 95°C, 30 sec at 55°C, and 60 sec at 72°C).

Thermocycling for real time PCR:10 min at 95°C, 40 cycles of (15 sec at 95°C and 1 min at 60°C), 15 sec at 95°C, 1 min at 60°C, and 15 sec at 95°C.

Figure S1. Distribution of average coverage depth of SNP markers. Yellow bars represent two parent samples that were analysed in both the first and second sequencing, and six samples of F_2 offspring that were analysed in the first sequencing. Grey bars represent 190 samples of F_2 offspring that were analysed in either the second or third sequencing. The median of the average coverage depth is 108.8× in samples represented by yellow bars and 23.1× in samples represented by grey bars.

Figure S2. Genetic map constructed with 2,004 SNP markers. The horizontal axis represents chromosomes or linkage groups. The vertical axis represents genetic distance (cM). Each coloured line represents a SNP marker. Numerical values in parenthesis at the bottom indicate the total number of SNP markers in each chromosome or linkage group.

Figure S3. Distribution of intermarker distance in the genetic map. Histogram shows the frequency of each intermarker distance. Dots show the cumulative relative frequency of each intermarker distance.

	10	20 • • • • • • • •	30 • • • • • • • •	40	50	60 • • • • • • • •	70 • • • • • • • •	80 • • • • • • • •	90 • • • • • • • •	100	110 • • • • • • • •	120 • • • • • • • •	130
WE	ATGCGGTTACACGGG	GCCATCGTGC	TGCTGGCGGC	ACTGCTGGCC	CTGACCACGO	CACAGCAGC	GAGGCGGCGG	CGGAACCGC	GGTGCCGTTC	AGGGTCCGCT	TGGGGTGGCC	GCCCGACGCC	GTTCA
г		•••••	•••••		•••••	•••••	• • • • • • • • • • • •	•••••	• • • • • • • • • • • •		••••••	• • • • • • • • • • • •	• • • • •
	140	150	160	170	180	190	200	210	220	230	240	250	260
WE	GGAGCTGGGATGCGA	CCCGGTACCG	CCCGTGGAAG	GAGGGGACGG	CCCAGCAAAG	CGACTGCTG	GCGAGGAGGC	GATGTCACCT	TCGACATCAG	CAACGACGCT	CCACCATGGC	CGGAGCCAAA	GCCAC
L		. T	•••••	· · · · · · · · · · ·	.G	•••••	••••••	•••••	•••••	•••••		••••••	
	270	280	200	20.0	210	220	220	240	250	260	270	200	200
					· · · · · · · ·	· · · · · · · ·			• • • • • • • •	• • • • • • • •	· · · · · · · ·		· · · · I
WE	TTTCTCCATCGCTCT	GCGCTTCCCC	AGCACTCAGA	GGGCGCTGCC	CGACGGCCGG	GTGGTCTGG	AAGCAGAACT	GCACCGTTAA	CGGCACCCGC	ATGGTGCAGG	GGACCCGGTG	TTCCCGGAG	AGCTG
Б							•••••		· · · · · · · · · · · · · · · · · · ·				
	400	410	420	430	440	450	460	470	480	490	500	510	520
WE	GTTGAAGGTTCCGAT	GGCGTCTTCC	CCGACGGGCA	GCCCTTCCCC	CGCAGCTCCT	GGGGCAAAC	GAGGCAGATT	GTCTATGTC	TGGTGGACTT	GGGGGGCATTA	TGGCAGGTGG	TGGATGGGGG	GGCAT
L			•••••			A	••••••••	•••••	•••••	•••••	•••••	••••••	••••
	520	5.40		5.60	5.20	500	500	600	<i>c</i> 10	620	630	640	650
					· · · · · · · ·		• • • • • • • •		• • • • • • • •	• • • • • • • •			
WE	CGAAGCTGACAGTGG	GGACGGATGG	GGTGGCCCTG	GGCTCCTAC	CCATGGAGG	GGTGGTTTA	ICATTACCGT(GCCGCCAGA	AGTTCATCCC	CATCGGCCAC	GCCAGCACGCA	GTTCAGCATC	ACAGA
-													
	660	670	680	690	700	710	720	730	740	750	760	770	780
WE	CCAGGTGCCCATTGC	AGTGGATGTG	ACACAGCTGG	AAGTGGCAAC	AGGGGACGG	GGGCGCTTC	TACTCAACC	ACCCCGTGGC	CTTCAACGTG	AGGCTGCACG	ACCCCAGCCAT	TACCTGCGTG	ATGCT
L		•••••	•••••	••••••••		•••••	•••••		•••••	•••••	• • • • • • • • • • • • •	••••••	
	700	800	010	820	020	840	850	860	870	000	800	000	010
					· · · · · · · ·				• • • • • • • •	• • • • • • • •			
WE T.	GACATCTCCTATTCG	TGGGATTTTG C	GGGACCAGAG	TGGGACGCTC	ATCTCCCGC	GCCCCACCG	CACCCACAC	TACCTGCAG	GCTGGTTCCT	TTGCTGCCCG	CTGGTGCTGC	AGGCAGCCAT	CCCAC
-													
	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040
WE	TCGGCTCCTGCGGCA	CCTCTGCAGC	CCCTGTTGTG	GATCCCACCA	CGGGGTCAG	GCCCTCCTT	GGACCCACA	GCTACAGAGC	CTGTGGGTCC	CACTGGATCC	GCACTGCTGC	AGCATCCAGO	ACTCC
L			•••••		C.G.	•••••	т	c	•••••	•••••			c
	1050	1060	1070	1080	1000	1100	1110	1120	1120	1140	1150	1160	1170
WE	CACAGCACCCGGAAC	CACTGCAGCA	CCCGCAGCCT	CTGGAGCACC	AGCAGAACCO	ACGGGGGGTC	CAGTGGTTG	IGCCTTCAGA	CAGCGCTGCC	ACTGAGCCCA	CCCTGACCCG	GTGCTCAGCA	CTGGT
-								A					
	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
WE	GCAGCAGCCAATACA	GACCCCACTG	CAGACCCCCA	GTCCCCCACC	TCAGTGTCC	CAGGTGGGG	ATGCTCCGGGG	CACTGTGGAC	CCCACAGCAG	TGGAAGGAAG	GTGGCAGCAG	GTGTGGGGGG	AGCCA
L	G			•••••	•••••	•••••	т	•••••		G	A	••••••	
	1 21 0	1220	1220	1240	1250	1260	1270	1200	1200	1400	1410	1420	1420
									• • • • • • • •	• • • • • • • •			
WE T.	CCCCTGGAGCCACTG	CTGCAGATGT	GGAAGTGGAT	GCAGCTGGAC	CCACAGCTGO	GAGCCACAGC	IGGAACCATG	GCAGATTCCA	CAGCTGGAAT	AATGGCAGAT	GCCACGGCTGG	AGCCACAGCI	CAATC
-													
	1440	1450	1460	1470	1480	1490	1500	1510	1520	1530	1540	1550	1560
WE	CATGGCAGAAGCCAC	AGCTGGAGC-			CACAGC	GGAGCTATA	GCAGATCCCA	CAGCTGGAGC	CACAGCTGGA	G <mark>CTAT</mark> AGCAG	TCCCACAGCT	GGAG <mark>CT</mark> ATAG	CAGAT
L	G	т	ATAGCAGATC	CCACAGCTGG	GAGC	•••••	•••••	· · · · · · · · · · · · · · · ·	T.TTA.AT	с.с.ст.	GAG	•••••••	• • • • •
	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1680	1690
													· · · · I
WE L	CCCACAGCTGGATCC	ACAGCAGAGC	CACTGCTGCT	GGTGAAGCGC	CAGGCACCCO	AGTCCGAGC	CACCGGCTG	C	UGCTATGGCT	COTTOTCCAC!	rGAGCTCAACG	TCGTCCAGGG	CATCG
	1700	1710	1720	1730	1740	1750	1760	1770	1780	1790	1800	1810	1820
WE	AGAACGTGGCCATTG	TGCAGGTGGT	GCCCGCAGCA	CCTGAGGGC	GCGGGAACAG	CGTGGAGCT	GACGGTGACA	GCGAGGGGA	GCCTTCCCGA	GGAGGTTTGC	ACCGTGGTGGC	AGACGCCGAG	TGCCG
L	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••		••••
	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930	1940	1950
						••••							
WE L	CACAGCGCAGATGCA	GACGTGCTCA	GCCGTGGCTC	CAGCACCGGG	GCTGCCAGCTG	GTGCTACGG	CAGGACTTCA	ACCAGTCCGG	FCTCTACTGC	CTCAATGTCTC	GTTGGCCAAC	GGCAATGGC1	TGGCT
	1960	1970	1980	1990	2000	2010	2020	2030	2040	2050	2060	2070	2080 • • • •
WE	GTGGCCAGCACACGT	GTGGCTGTCG	GAGGAGCATC	CCCAGCTGC	GGTGGCACC	CGCTCACAG	TGGGG <mark>CTGCT</mark>	GCTCATCGTT	GCAGCACTGG	GCACTGCTGC	TACACCTACC	GCCGTGTGAA	GTACA
L	•••••	•••••	••••••	•••••	•••••	.A	•••••	•••••	•••••	•••••	•••••	••••••	•••••
	2090	2100	2110	2120	2130	2140	2150	2160	2170	2180	2190	2200	2210
												()	
WE L	GCCCACTGCTGCCCA	CAGCCCCCCA	GGTATCCCGG	CCCCACAGC	GGCTGCCCC	CGGTGCTGC	CTACGTCTG	TTGCTACGTC	AGGCTTTTGG	GGGGGCTCCC	AGTGGGGAAAG	CAGCCCCCTG	CTGCG
	2220												
WE	TGCCAACGCTGTCTA	A											
L													

Figure S4. *PMEL* coding sequences of the WE and L strains. A total of 47 base substitutions, including G>A at the 446th nucleotide, and a single 24-bp insertion/deletion at the 1455–1478th nucleotides are present.

Figure S5. ABI chromatograms of nucleotide sequences around the 446th nucleotide (squared frame) in the coding sequence of *PMEL*. The 446th nucleotide is guanine in the WE strain and adenine in the L strain.

40 50 10 20 30 60 MRLHGATVLLAALLALTTAQQRGGGRNRGAVQGPLWGGRPTPFRSWDATRYRPWKEGTAQ WE. ь 90 100 110 70 80 120 WE OSDCWRGGDVTFDISNDAPTMAGAKATESIALREPSTORALPDGRVVWKONCTVNGTRMV ь 130 140 150 160 170 180 QGDPVFPEQLVEGSDGVFPDGQPFPRSSWGKRGRFVYVWWTWGHYWQVVDGAASKLTVGT WE ь * 190 200 210 220 230 240 DGVALGSYTMEVVVYHYRGRQKFIPIGHASTQFSITDQVPIAVDVTQLEVATGDGGRFVL WE ь 250 260 270 280 290 300 WE NHPVAFNVRLHDPSHYLRDADISYSWDFGDQSGTLISRSPTVTHTYLQAGSFAARLVLQA ь 320 330 310 340 350 360 WE AIPLGSCGTSAAPVVDPTTGSVPSLGPTATEPVGPTGSGTAAASSTPTAPGTTAAPAASG ь 370 380 390 400 410 420 APAEPTGVSVVVPSDSAATEPIPDPVLSTGAAANTDPTADPQSPTSVSSGGDAPGTVDPT WE ь 430 440 450 460 470 480 | | | | | | | | | | | . AVEGSVAAGVGAATPGATAADVEVDAAGPTAGATAGTMADSTAGIMADATAGATAOSMAE WE ь 490 500 510 520 530 540 ATAGATAGAIADPTAGAIADPTAGAIADPTAGAIADPTAGSTAEPLLLVKRQAPESEPTGCVLY WF. ь 560 570 580 550 590 600 RYGSFSTELNVVQGIENVAIVQVVPAAPEGSGNSVELTVTCEGSLPEEVCTVVADAECRT WE ь 610 620 630 640 650 660 WE AQMQTCSAVAPAPGCQLVLRQDFNQSGLYCLNVSLANGNGLAVASTRVAVGGASPAAGGT ь 720 WE TLTVGLLLIVAALGTAAYTYRRVKYSPLLPTAPQVSRPHSWLPPGAALRLLLRQAFGGAP ь 730 | | SGESSPLLRANAV* WE ь

Figure S6. Amino acid sequences of PMEL in the WE and L strains. A premature stop codon is present at the position of the 149th amino acid in the L strain. The truncated form of PMEL contains two amino acid substitutions, Ala91Ser and Arg118His.

		Sig	nal sequence					
Quail (WE)	1	MRLHGAIV	LLAALLALTT	AOORGGGRNR	GAVQGPLWGG	R PTP FRSWDA	TRYRPWKEGT	58
Chicken	1	MRLHGAIV	LLAALLALVT	AQQRGGGRSR	GGVKGSAWGG	RPAPFRSWDT	ARYRPWQEGT	58
Human	1	MDLVLKRCLL	HLAVIGALLA	VGATKVPR NQ	DWLGVS	RQLRTKAWNR	QLYPEWTE	54
Quail (WE)	59	AQQSDCWRGG	DVTFDISNDA	PTMAGAKATF	SIALRFPSTQ	RALPDGRVVW	KQNCTVNGTR	118
Chicken	59	ARQNDCWRGG	DVTFDISNDA	PTLVGARATE	SIALRFPGTQ	TVLPDGRVVW	SQNCTVNGTR	118
Human	55	AQRLDCWRGG	QVSLKVSNDG	PTLIGANASF	SIALNFPGSQ	KVLPDGQVIW	VNNTIINGSQ	114
Quail (WE)	119	MVQGDPVFPE	QLVEGSDGVF	P D GQPFP R SS	WGKRGRFVYV	WWTWGHYWQV	VDGAASKLTV	178
Chicken	119	MLQGDPVYPE	QLAEGSDGVF	P D GQP F P R SA	WGKRGRFVYV	WWTWGRYWQV	VDGATSQLTV	178
Human	115	VWGGQPVYPQ	ETDDACIF	PDGGPCPSGS	WSQKRSFVYV	WKTWGQYWQV	LGGPVSGLSI	172
Quail (WE)	179	GTDGVALGSY	TMEVVVYHYR	GRQKFIPIGH	ASTQFSITDQ	VPIAVDVTQL	EVATGDGGRF	238
Chicken	179	GTDGVALGSY	TMEVVVYHYR	GRORFIPIGH	ASTQFSITDQ	VPIAVDVTQL	EVAAGDGGSF	238
Human	173	GTGRAMLGTH	TMEVTVYHRR	GSRSYVPLAH	SSSAFTITDQ	VPFSVSVSQL	RALDGGNKHF	232
				PKD dor	main			
Quail (WE)	239	VLNHPVAFNV	RLHDPSHYLR	DADISYSWDF	GDOSGTLISR	SPTVTHTYLO	AGSFAARLVL	298
Chicken	239	VRNRPVAFNV	RLHD PS HYLR	DADISYSWDF	GD QS G TLIS R	SPTVTHTYLQ	AGSFAARLVL	298
Human	233	LRNQPLTFAL	QLHDPSGYLA	EADLSYTWDF	GDSSGTLISR	ALVVTHTYLE	PGPVTAQVVL	292
Quail (WE)	299	OAAIPL GSCG	TSAAPVVDPT	TGSVPSLGPT	ATEPVGPTGS	GTAAASS	TPTAPGT	352
Chicken	299	QAAIPLSSCG	TSAPPVVD PT	TGPVPSLGPT	ATQPVGPTGS	GTATAPSNLT	GSGTAAAPGT	358
Human	293	QAAIPLTSCG	SSPV	PGTTDGHRPT	AEAPN	TTAGQVP	TTEVVGT	335
Quail (WE)	353	TAAPAASGAP	AEPTGVSVVV	PSDSAATEPI	PDPVLSTG	-AAANTDPTA	DPQSPTSVSS	409
Chicken	359	TAAPRASGAP	AEPTGVSVAV	LSDSAATEPL	PDPVLSTAVA	DAAAGTDPTA	DPLPPTSVSS	418
Human	336	TPGQAPTAEP	SGTTSVQVPT	TEVI	S	TA	PVQMPTAEST	372
Quail (WE)	410	GGDA PG TVD P	TAVEGSVAAG	VGAA	TPGATAADVE	VDAAG	PTAGATA	455
Chicken	419	GGDAPGTVAP	TAVEGSVAAG	VGTAEDVAAA	TPGATAADVA	VDTAGATDGD	AVGPTAAATA	478
Human	373	G-MTPEKVPV	SEVMGTTLAE	$MS{}TP{\bf E}$	ATGMTPAEVS	IVVLS		411
			Repeat 1		Re	epeat 2		
Quail (WE)	456	GTMADS TAGI	MADATAGATA	QSMAEATAGA	TAGAIADPTA	GATAGAIADP	TAGAIADP	513
Chicken	479	ESIADPTAGA	TDGDAVGATA	ESIADPTAGA	TDGDAVGPTA	AATAESIADP	TAGATAVSSG	538
Human	411	GTTAAQV	TTTEWVETTA	RELPIPEPEG	PDASSIMSTE	SITG	SLGPLLDG	460
Ouail (WE)	513	TAGSTAEP		SEPTOCVLYR	VGSESTELNV	VOGTENVATV	OVVPAAPECS	571
Chicken	539	SATAGATAEP	I.I.I.VKROAPE	AEPTGCVLYR	YGTESTELNT	VOGTESVATV	OVVPAAPEGS	598
Human	460	TAT	LRLVKRQVP-	LDCVLYR	YGSFSVTLDI	VQGIESAEIL	QAVPSGE	506
Ouail (WE)	572	GNSVELTVTC	EGSLPEEVCT	VVADAECETA	OMOTCSAVAP	APGCOLVIRO	DENO-SGLYC	630
Chicken	599	CNSVELTVTC	EGSLPEEVCT	VVADAECETA	OMOTCSAVAP	APGCOLVLRO	DENO-SCLVC	657
Human	507	CDAFELTVSC	OCCLPKEACM	EISSPECOPP	AORLCOPVLP	SPACOLVLHO	TLKGGSGTYC	566
Indinan	507	GDATELITV5C	QGGHFREACH	T	ransmembrane	e domain	THREESETTC	500
Quail (WE)	631	LNVSLANGNG	LAVASTRVAV	GGASPAAGGT	TLTVGLL	LIVAALGTAA	YTYRRVKYSE	687
Chicken	658	LNVSLANGNG	LAVASTHVAV	GGASPAASGT	TLTVGLLWAP	LMAAALGTAA	YTYRRVKYSP	717
Human	567	LNVSLADTNS		PGQEAGLGQV	PLIVGIL	LVLMAVVLAS	LIYRRR	619
0	<u> </u>	T T DIEL DOTICE	Cytoplasmic (Jomain	010000000			
Quaii (WE)	688	LLPTAPOVSR	PHSWLPPGAA	LRLLLROAFG	GAPSGESSPL	LRANAV /33		
Chicken	/18	LLPTAPTAPR	PHSWLPPGAT	LRLLLRQAFG	GAPSGESSPL	LRANAV /63		
Human	620	LMKQDFSVPQ	LPHSSS	HWLRLPRIFC	SCPIGENSPL	LSGQQV 661		

Figure S7. Predicted protein domains of quail PMEL. Amino acid sequences of PMEL in the WE strain of quail, chicken (NP_990443.2), and human (NP_001186983.1) are aligned. Protein motifs, except for the polycystic kidney disease (PKD) domain, were predicted based on amino acid sequence homology between quail and chicken PMEL (Kerje et al. 2004). The PKD domain was predicted using Pfam 31.0 (http://pfam.xfam.org/) [The Pfam protein families database: towards a more sustainable future (doi: 10.1093/nar/gkv1344)].

А

Styl recognition sequence:

Figure S8. Schematic representation of PCR-RFLP analysis to determine genotypes at the site of the candidate mutation. (A) Schematic diagram of Styl recognition sequence. (B) Schematic diagram of PCR product and restriction fragments. Site 1 is a 6-bp sequence that contains the site of the candidate mutation for the *yw* phenotype, which is shown by red-colored G and A in the table. Site 1 is recognized by Styl in the maternal genome, but not in the paternal genome. Site 2 is recognized by Styl in both parents. Restriction enzyme digestion of a 445-bp PCR product yields two DNA fragments (fragments 1 and 2) from the paternal DNA, three DNA fragments (fragments 2–4) from the maternal DNA, and four DNA fragments (fragments 1–4) from heterozygotes. (C) Representative result of PCR-RFLP analysis, which indicates genotypes of six F_2 individuals (F_2) and parents (L and WE) at the site of the candidate mutation. The left image shows banding patterns of PCR products before digestion and the right image shows those after digestion. The original image for these gel images is shown in Fig. S10.

