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Highlights
Advances in DNA sequencing technol-
ogy and efforts such as the Precision
Medicine Initiative are paving the way
for the implementation of genomics
into clinical medicine.

Variation in CHRNA5, the gene encod-
ing the a5 nicotinic acetylcholine
receptor subunit, and CYP2A6, the
gene encoding the primary enzyme
that metabolizes nicotine, predict
smoking heaviness, delayed smoking
cessation, and risk for smoking-related
diseases.
Clinical medicine of the future is poised to use an individual’s genomic data to
predict disease risk and guide clinical care. The treatment of cigarette smoking
and tobacco use disorder represents a prime area for genomics implementa-
tion. The genes CHRNA5 and CYP2A6 are strong genomic contributors that
alter the risk of heaviness of smoking, tobacco use disorder, and smoking-
related diseases in humans. These biomarkers have proven analytical and
clinical validity, and evidence for their clinical utility continues to grow. We
propose that these biomarkers harbor the potential of enabling the identifica-
tion of elevated disease risk in smokers, personalizing smoking cessation
treatments, and motivating behavioral changes. We must prepare for the
integration of genomic applications into clinical care of patients who smoke.
Despite diverse genomic back-
grounds, the association between
CHRNA5 and CYP2A6 genomic varia-
tion and smoking-related behaviors is
seen in populations of European,
Asian, and African descent.

Evidence is equivocal regarding the use
of CHRNA5 and CYP2A6 to predict
response to pharmacological treatment
for smoking cessation. Adequately
powered, prospective clinical and phar-
macogenetics trials are thus needed.
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Implementing Genomic Medicine – The Next Frontier
The large-scale implementation of genomic knowledge into healthcare represents the next
challenge in clinical medicine. Recent efforts funded by the National Institutes of Health (e.g.,
the Precision Medicine Initiative, https://allofus.nih.gov/), the Centers for Disease Control and
Prevention (e.g., the Public Health Genomics Knowledge Base, https://phgkb.cdc.gov/
PHGKB/phgHome.action?action=home), as well as private companies such as 23andMe
(https://www.23andme.com) are defining the research, practice, and policy backgrounds
for large-scale, affordable genomics implementation. Although the majority of work to date
has focused on using genomic information to identify risk of cancer and congenital diseases,
next phases are expanding to a wider range of diseases and disorders, including aspects of
behavioral medicine. In addition, an increasing focus on pharmacogenomics (see Glossary),
where individual responses to specific drug treatments are tied to genomic variation, is the next
frontier to personalized treatment.

The treatment of cigarette smoking and tobacco use disorder represents an appealing area for
genomics implementation. Genomic variation characterizes a growing class of biomarkers
that objectively measure characteristics that identify biological processes, pathological out-
comes, or pharmacological responses. Genomic variation biomarkers underlie the precision
medicine efforts to personalize approaches to disease prevention and treatment. We are on
the cusp of implementing genomic testing into clinical care related to smoking behaviors given
our knowledge of variation that predicts heaviness of cigarette smoking measured by cigarettes
smoked per day, tobacco use disorder, smoking-related disease outcomes, and potentially,
pharmacogenomic responses to smoking cessation medications.

Combustible cigarette smoking remains one of the foremost causes of preventable death in both
industrialized and developing countries. In the US, >36 million people smoke cigarettes [1], and
worldwide >1 billion use tobacco products (http://www.who.int/gho/tobacco/use/en/). Every
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Glossary
30-hydroxycotinine (3HC): product
of CYP2A6 metabolism of the
primary nicotine metabolite, cotinine.
Analytic validity: refers to how well
a test predicts the presence or
absence of a particular gene or
genetic change.
Biomarker: biological measure
found in blood, other body fluids, or
tissues that is a sign of a normal or
abnormal process, condition, or
disease.
Bupropion: prescription medication
(antidepressant of the aminoketone
class) used to treat smoking by
reducing the severity of craving and
withdrawal symptoms.
CHRNA5: gene coding the a5
subunit of nicotinic AChR subunit.
Clinical utility: refers to whether a
test can provide information about
diagnosis, treatment, or prevention of
a disease that will be helpful to a
consumer.
Clinical validity: refers to how well
a genetic variant being analyzed is
related to the presence, absence, or
risk of a specific disease.
Cotinine: predominant metabolite of
nicotine. Cotinine is used as a
biomarker for exposure to nicotine in
tobacco smoke.
CYP2A6: gene for the cytochrome
P450 enzyme 2A6 that oxidizes
nicotine to its inactive metabolite
COT, and COT to 3HC.
Genome-wide association study:
approach that involves rapidly
scanning markers across complete
sets of DNA/genomes, to find
genomic variations associated with a
particular disease.
Genomic variation: differences in
the DNA sequence rom one person
to the next.
Meta-analysis: quantitative
statistical analysis of several separate
but similar studies in order to test the
pooled data for statistical
significance.
Nicotine metabolism enzymes:
proteins that metabolize nicotine, the
P450 enzyme 2A6 being a
predominant enzyme.
Nicotine metabolite ratio (NMR):
ratio of 3HC to COT, which
correlates with nicotine clearance
from the body and is used as a
biomarker for CYP2A6 activity.
Nicotine replacement therapy:
smoking cessation treatment that
year, >480 000 people die in the US from tobacco-related illnesses [2], and >6 million people
perish worldwide (http://www.who.int/mediacentre/factsheets/fs339/en/). Preventive strategies
that regulate tobacco sales and tax tobacco products have significantly decreased smoking over
thepast50years [3]. Yet, in the US,36million peoplecontinuetosmokeand 68% reportwanting to
quit, but only 7% of smokers successfully stop smoking each year [4]. The high addictiveness of
nicotine and the ongoing large burden of smoking-related health effects motivate efforts to
improve smoking cessation using novel approaches.

Self-reported cigarettes smoked per day is a commonly used and easily collected measure of
combustible cigarette consumption [5]. Clinicians and researchers use self-reported cigarettes
per day integrated over a lifetime history of smoking to estimate health risks for many cancers,
chronic obstructive pulmonary disease, and other smoking-related diseases [6]. In addition to
disease risk, smoking more cigarettes per day is correlated with greater dependence on
nicotine, resulting in more difficulty with smoking cessation [7]. However, the number of
cigarettes smoked does not fully capture the behavior of cigarette smoking; for instance,
for the same number of cigarettes smoked, differences in the number of puffs inhaled per
cigarette as well as the depth of inhalation can be profound [8,9]. It is common knowledge that
for the same number of cigarettes smoked per day, some individuals are able to quit smoking
and others struggle to quit. In addition, the effectiveness of our smoking cessation treatments is
modest at best and ineffective for most people who smoke. Heritability estimates indicate that
genomic variation drives many of these differences in smoking behaviors and smoking cessa-
tion between smokers [10–13]. This backdrop highlights the importance of developing new
genomic biomarker tools to better predict outcomes related to combustible cigarette smoking
and to promote smoking cessation. In this article, we discuss evidence of genomic variation
contributing to smoking behaviors and propose the gaps that need to be filled to implement
genomically informed smoking cessation.

Genomic Contributors to Smoking Behaviors
We focus on two strong genomic contributors that alter the risk of heaviness of smoking and
tobacco use disorder – variation in the genes encoding nicotinic acetylcholine receptor
subunits and nicotine metabolism enzymes. We select these two genomic targets
because of their robust connection with smoking heaviness, lung cancer, and chronic obstruc-
tive pulmonary disease in well-powered genome-wide association studies (GWASs), in
addition to their biological plausibility, as described below. GWAS has unequivocally demon-
strated that variation in CHRNA5, the gene encoding the a5 nicotinic acetylcholine receptor
(AChR) subunit, predicts smoking heaviness, later age of smoking cessation, lung cancer,
chronic obstructive pulmonary disease, and early mortality (Table 1, Key Table) [13–24].
Similarly, variation in CYP2A6, the gene encoding the primary enzyme that metabolizes
nicotine, also predicts heavier cigarette consumption, failed smoking cessation, and smok-
ing-related illnesses, including hypertension and lung cancer (Table 1) [11,25–33]. These
advances in our knowledge of genomic biomarkers associated with cigarette-smoking-related
morbidity and mortality lay the foundation for genomic implementation to reduce smoking.

The first large genome-wide analysis of tobacco use disorder was conducted in 2007 and
identified the CHRNA5 single nucleotide polymorphism (SNP), rs16969968, as being
associated with an increasing risk for heaviness of smoking and tobacco use disorder
[14,15]. Multiple independent groups subsequently confirmed the association between this
variant and smoking-related phenotypes at a genome-wide significance level [16,20,34].
Research consortia performed a genome-wide association meta-analysis that included
>73 000 subjects, and rs16969968 exhibited a highly significant association with cigarettes
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supplies a controlled amount of
nicotine, but excludes other
dangerous chemicals found in
cigarettes.
Nicotinic acetylcholine receptor:
receptor proteins that respond to the
neurotransmitter acetylcholine.
Nicotinic receptors also respond to
drugs, including nicotine. They are
found in the central and peripheral
nervous system, muscle, and many
other tissues.
Pharmacogenomics: study of
inherited genetic differences in drug
metabolic pathways which affect
individual responses to drugs, both
in terms of therapeutic effects and
adverse effects.
Precision medicine: emerging
approach for disease prevention and
treatment that takes into account
individual variability in genes,
environment, and lifestyle for each
person.
Risk stratification: tool to identify
and predict which patients are likely
to be at high risk and tailoring the
management of their care in order to
prevent worse outcomes.
Single nucleotide polymorphism:
variation in a single base pair in a
DNA sequence.
Varenicline: prescription medication
used to treat smoking. It is a
nicotinic receptor partial agonist – it
stimulates nicotine receptors more
weakly than nicotine itself.

Key Table

Table 1. Diagnostic Biomarkers of Tobacco Use Disorders

Biomarker Predictive ability Risk Limitations Refs

CHRNA5 Smoking heaviness
Later age of smoking
cessation

Predictive of lung
cancer, COPDa,
early morality

rs16969968 low frequency in
African and Asian ancestry
Linkage disequilibrium structure
differs across world populations

[13–24]

CYP2A6 Smoking heaviness
Later age of smoking
cessation

Predictive of lung
cancer, COPD,
hypertension

Difficult to genotype because of
complex genetic architecture
Linkage disequilibrium structure
differs across world populations

[11,25–30,33]

NMRa Nicotine metabolism
Later age of smoking
cessation
Smoking cessation with
specific pharmacologic
therapy

Requires recent smoking [65–67]

aAbbreviations: NMR, nicotine metabolite ratio; COPD, chronic obstructive pulmonary disease.
smoked per day (P = 5.57 � 10�72) [22]. Although the majority of this genomic research has
been conducted with populations of European ancestry, additional studies have demonstrated
that CHRNA5 variation is associated with risk for heavy smoking in European, African, and
Asian populations [35–37]. Across world populations, variation in CHRNA5 is associated with
altered susceptibility to tobacco use disorder.

Experimental studies have shown how this genomic variation functionally alters biological
responses. The a5 nicotinic AChR combines with other nicotinic subunits to form a pentameric
receptor that binds nicotine [38]. The rs16969968 variant causes an amino acid change from
aspartic acid to asparagine in the a5 AChR subunit [39]. This amino acid change alters receptor
function in vitro; functional studies indicate reduced receptor response to nicotinic agonists in
cells expressing the rs16969968 asparagine coding variant versus the aspartic acid coding
variant [40,41].

In parallel to this work, genomic variation in CYP2A6, the gene that encodes the primary
enzyme cytochrome P450 2A6 (CYP2A6) that metabolizes nicotine, plays a role in heaviness of
smoking and smoking-related illnesses [25,29,42,43]. Nicotine, the key addictive compound in
tobacco, is metabolically inactivated by the hepatic enzyme, CYP2A6 to form cotinine (COT)
and cotinine is further metabolized to 30-hydroxycotinine (3HC) exclusively by CYP2A6
[44,45]. CYP2A6 is highly polymorphic and these genomic differences in turn lead to a large
variation in rates of nicotine metabolism (from essentially inactive to very rapid) [27,46,47]. This
interindividual variation in rates of metabolism of nicotine can contribute to differential addictive
risk associated with nicotine intake [48]. Genetically fast metabolizers of nicotine are more likely
to smoke more cigarettes per day, be dependent on nicotine, fail smoking cessation, and have
a higher risk for smoking-related illnesses such as lung cancer [29,43,49–51].

This gene has complex genomic architecture with duplications and deletions, which challenges
current genomic testing. Another measure of nicotine metabolism, the ratio of 3HC to COT,
referred to as the nicotine metabolite ratio (NMR), has been developed as a validated
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indicator of genomic variation in CYP2A6, representing enzymatic activity in daily smokers
(Table 1) [47,52,53]; it is also highly correlated to total nicotine clearance [47]. This measure was
created in part to overcome the difficulty in testing genomic variation in CYP2A6 due to
numerous structural variants and high homology with adjacent genes CYP2A7 and CYP2A13
[47]. In addition, the NMR captures both genomic variation in CYP2A6 as well as environmental
factors such as other medication use (for example estrogen-containing hormonal therapy) that
might influence nicotine metabolism [46]. Thus, genetic variation in both CYP2A6 and CHRNA5
create biologically plausible sources of variation in smoking behaviors; CYP2A6 may alter the
levels of nicotine for any given dose, and variation in the nicotinic receptor may alter the impact
of the nicotine dose on downstream effects.

Smoking Cessation
One of the strongest predictors of failed smoking cessation is the level of dependence on
nicotine [7,54–56]. Genomic variation in CHRNA5 and CYP2A6 are among the strongest risk
factors for heaviness of smoking and tobacco use disorder, and in turn, both of these genes are
related to failed smoking cessation [11,13,51,57]. Variation in CHRNA5 predicts a later age of
smoking cessation at a population-based level, as well as failed smoking cessation during
pregnancy [13,57]. Similarly, variation in CYP2A6 is associated with differential success rates in
smoking cessation [11,51].

Growing evidence indicates that CHRNA5 variation is associated with responses to pharma-
cological treatment and success of pharmacotherapy for smoking cessation [10,58–61].
Pharmacogenomics is the use of genomic variation to predict the likelihood that a patient will
successfully respond to pharmacological treatments. In the case of smoking cessation, there
are three FDA-approved medications: nicotine replacement therapy, varenicline, and
bupropion. Some studies report a genotype-by-treatment interaction, whereby those with
high-risk genomic variants of CHRNA5 are more predisposed to having difficulty quitting
without treatment, and this genetic risk can be ameliorated by pharmacological treatment
[10,12]. However, other studies have found no evidence of an association of variation in
CHRNA5 with smoking cessation, nor of a genotype-by-treatment interaction [62,63]. A
Cochrane review of 18 smoking cessation trials investigated whether abstinence rates varied
by genetically informed biomarkers (including CHRNA5) within pharmacotherapy treatment
arms compared to placebo. The authors tentatively concluded that there may be a gene by
treatment interaction for rs16969968, although there is notable heterogeneity between studies
[64].

Further studies have examined the role that nicotine metabolism plays in smoking cessation. In
general, smokers who are slower metabolizers identified by NMR, present greater quit rates in
clinical trials in the placebo arm (consistent with increased spontaneous quitting seen in some
studies), and under treatment with the nicotine patch [65,66]. Faster metabolizers exhibit better
treatment responses on varenicline than with the nicotine patch (compared to slow metab-
olizers), with a more favorable side effect profile [67]. To date, only one prospectively genomi-
cally informed randomized clinical trial has been performed; randomization by NMR (and
oversampling slow metabolizers) indicated that faster metabolizers exhibited better quit rates
on varenicline versus patch, relative to slow metabolizers; slow metabolizers also presented a
worsened side-effect profile for varenicline than faster metabolizers [67]. A key issue in the
experimental design for these pharmacogenomics studies is the placebo or behavioral
counseling treatment arm, as both genes have an influence on the cessation rate in the
absence of pharmacotherapy, which can alter the interpretation of the intervention arm
[51]. Further well-designed pharmacogenomics studies comprise a ripe area for investigation
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moving forward, including conducting adequately powered, prospective clinical, pharmaco-
genetic smoking cessation trials. With high-quality, valid biomarkers, we may accelerate
progress in personalizing treatment for smoking cessation.

Introducing Genomic Evidence to Address Smoking
For genomic applications to enter clinical medicine, key questions should be answered to
evaluate components of analytic validity, clinical validity, clinical utility, and ethical, legal,
and social implications of a test.

Analytic Validity
Genomic testing for low frequency (0.5–5%) and common (>5%) variants produces highly
reproducible results, indicating strong analytic validity; indeed, variation in CHRNA5 can be
measured accurately and reliably [68]. Direct genomic testing remains troublesome for variation
in CYP2A6 due to hybrid and copy number variants and high homology to CYP2A7, a
pseudogene, although newer methods, including next-generation sequencing, and SNPs
identified from GWASs of the NMR, appear to be alleviating this problem [69–72]. Thus, both
these genomic regions qualify for analytic validity, if these methods are conducted properly.

The NMR, which captures enzymatic function of CYP2A6, has been extensively tested,
demonstrating accuracy and reliability [53,73]. The relatively long half-life of COT and of
3HC enhance stability over time for COT and 3HC, as well as the resulting NMR, in daily
smokers; this stability is evident in both heavy and light cigarette smokers and over different
sampling time of day (reviewed in [53]). There is minimal variation in NMR over a 7-day period for
daily smokers, and it remains stable over a 44-week range in regular daily smokers and in
smokers who are reducing their smoking levels with the help of nicotine replacement therapy
(NRT). Moreover, the NMR is robust to different analytical approaches [53].

Clinical Validity
High-risk genomic variation in these two regions contributes to disease risk across populations,
and multiple phenotypic/genotypic relationships have been established as genetic variation in
CHRNA5 and CYP2A6 has been associated with increased risk of heavy smoking, increased
intensity of smoking, as well as smoking-related disease, and mortality [16,20,22,24,28,29,74].
Examples of the additive effect of these two genes together on heaviness of smoking,
dependence and lung cancer are described in further detail in [11] and [29].

Evidence for efficacy testing to improve smoking cessation is less strong, as most has relied on
retrospective analyses of trials not adequately powered for pharmacogenomic assessment. As
previously mentioned, one prospective controlled trial tested smoking cessation pharmaco-
therapy response based on nicotine metabolism and showed differential responses to phar-
macological treatment between varenicline and nicotine patch based on nicotine metabolism
rate; faster metabolizers presented better outcomes on varenicline than the patch, relative to
slower metabolizers who presented greater side effects on varenicline [67]. This work will need
to be replicated and extended to different ethnicities and types of smokers (including, for
example, populations of light smokers, pregnant smokers, e-cigarette users, and individuals
with comorbid psychiatric disorders). Nonetheless, the overall body of knowledge about
disease risk suggests that testing of both of these genomic regions may have clinical validity.

Clinical Utility
The existing evidence for clinical utility is more modest. The gold standard of clinical utility is the
evaluation of results from prospective trials that randomize participants to genomic testing or no
Trends in Molecular Medicine, February 2018, Vol. 24, No. 2 191



genomic testing to compare genomically informed treatments with usual care [75]. Genomic
risk scores are stable over a lifetime, but one significant limitation for the use of NMR is the
requirement of recent smoking (cotinine levels need to be in steady state). Pragmatic trials,
which undertake a practical approach to test genomically informed interventions for smoking
cessation integrated into routine medical care, will provide the greatest information about
clinical utility [76,77]. The costs, economic benefits, and extent to which the probabilities of
smoking-related behaviors and diseases generated from genomic test results are actionable
and changeable in clinical and community settings remains uncertain. We deem clinical utility
for these genomic applications targeted on smoking cessation to be unknown, and future
research should focus on robustly addressing questions of clinical utility.

Ethical, Legal, and Social Implications (ELSI)
Genomic testing raises ethical, legal, and social concerns regarding stigmatization, discrimi-
nation, and confidentiality. Insufficient work to date has been undertaken to address these
important issues when conducting individual genomic tests related to smoking behaviors.

Applications of Genomic Testing for Smoking
Significantadvances in understanding thegenomicvariation that underlies smoking behavior have
been made, including, as discussed, the well-validated association of CHRNA5 and CYP2A6
genomic variation with heavy smoking and smoking-related diseases. Ultimately, this consider-
able body of evidence should be translated into practical genomic applications that can be
integrated routinely in clinical and community settings. We envision at least three applications in
which the field of behavioral medicine could apply genomics-informed testing to address smoking
behaviors and smoking-related diseases based on CHRNA5 and CYP2A6 genomic variation.

Risk Stratification in Individuals Who Smoke
Although all individuals who smoke are at increased risk for smoking-related diseases, genomic
variation in CHRNA5 and CYP2A6 alters this risk beyond the measurement of cigarettes
smoked per day [78,79]. Risk stratification, a goal of precision medicine, incorporates
genomic information at an individual level to predict risk for lung cancer, chronic obstructive
pulmonary disease, and early mortality [24,80–82]. Incorporating this genomic information in
patient care may prioritize treatment efforts such as more intensive interventions for smoking
cessation as well as disease screening (e.g., lung cancer screening). Delivering personalized
genomic health information directly to individuals is important in its own right to empower
personal health-related decision making. This effort is well aligned with patient-centered
approaches to healthcare and participant-centered research initiatives such as All of Us
(https://allofus.nih.gov/), the NIH effort to accelerate research and improve health by taking
into account individual differences in lifestyle, environment, and genomics. We posit that testing
of CHRNA5 and CYP2A6 genomic variation to predict heaviness of smoking and augment risk
stratification for lung cancer and other smoking-related lung diseases constitutes the strongest
evidence base and carries the highest readiness for implementation.

Precision Treatment for Smoking Cessation
Using CHRNA5 and CYP2A6 results to identify individuals at higher risk of difficulty with
smoking cessation and to potentially guide smoking cessation interventions is a promising
area for further investigation. The clinical use of genomic results to inform and optimize smoking
cessation pharmacotherapy will reflect an important application in the context of precision
medicine. Genomic information on CHRNA5 and CYP2A6 can predict an elevated risk of
unsuccessful smoking cessation and an increased need for pharmacotherapy (i.e., nicotine
replacement therapy, varenicline, and bupropion) as well as counseling [10,11,51,58].
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Outstanding Questions
Does providing genomic risk results for
CHRNA5 and CYP2A6 to individuals
who smoke cigarettes motivate smok-
ing cessation?

Will providing genomic risk results for
CHRNA5 and CYP2A6 motivate the
prescription of pharmacotherapy for
smoking cessation by health care
providers?

Will providing genomic risk results
CHRNA5 and CYP2A6 motivate the
use of pharmacotherapy for smoking
cessation by individuals who smoke?

Can genomic variation in CHRNA5 and
CYP2A6 predict responses to smoking
cessation pharmacotherapy?

How do we address issues of stigma-
tization, discrimination, privacy, and
confidentiality associated with geno-
mic testing for smoking behaviors?

What are the economic and time costs
associated with integrating genomic
applications for smoking cessation into
routine medical care?
Genomic variation in these two genes may inform the differential selection of smoking cessation
pharmacotherapy to yield maximal effectiveness, while limiting excessive adverse events and
unnecessary costs. The strongest evidence supporting this rationale relies on findings reporting
differing rates of nicotine metabolism that can prospectively predict differential pharmacologic
responses [67]. Further research is needed to clarify the potential utility of genomic results on
effectiveness for smoking cessation as well as determining the possible side effects to smoking
cessation medications. Another area of needed research is the development of biomarkers to
predict who may relapse back to smoking after quitting.

Motivating Behavior Change
The return of genomic test results for CHRNA5 and CYP2A6 variation directly to the consumer,
or in coordination with a health care provider, is potentially a motivator for smoking cessation.
As a tangible example, personalized genomic profiles that communicate disease risk for lung
cancer and other lung diseases, based on smoking histories as well as CHRNA5 and CYP2A6
genomic results, could be given to individuals who smoke [83]. The majority of individuals report
interest in receiving personal genomic risk results for many diseases and recognize the
importance of both behavioral and genomic factors that contribute to illness [84,85]. Studies
that have examined the return of genomic information to alter smoking behaviors have not
shown increased smoking cessation [86,87]. However, these studies have not tested genomic
variation that is directly related to smoking behaviors and pharmacological response to
treatment such as variation in CHRNA5 and CYP2A6 [86,88]. Only one small study has
returned genomic information about CHRNA5 variation and smoking risks and this study
did find increased cessation among smokers [83]. The future of precision medicine will include
the return of genomic information to individuals. Although this specific use of genomic
information clearly has the weakest supporting evidence base to change smoking behavior,
it nevertheless, deserves further investigation as our knowledge regarding genomic contribu-
tions to smoking behaviors and smoking-related diseases grows.

Concluding Remarks
Genomic variations in CHRNA5 and CYP2A6 are currently the only genomic targets nearing
entry into clinical medicine for smoking, particularly in the tailoring of smoking cessation.
Variation in these genes causes differences in smoking behaviors across world populations.
Despite diverse genomic backgrounds, the association between CHRNA5 and CYP2A6
genomic variation and smoking-related behaviors is seen in populations of European, Asian,
and African ancestry [35–37]. These genomic biomarkers have analytical validity – as they can
be accurately and reliably measured, as well as clinical validity – as they have been unequivo-
cally associated with heaviness of smoking and risk of smoking-related diseases [13,16,18–
20,22,25,28,30,37,43,89]. Evidence of clinical utility continues to grow [64,67,83]; these
biomarkers can be used to predict smoking cessation difficulty and potential response to
smoking cessation pharmacotherapy, and initial evidence suggests that return of these
genomic results may motivate smoking cessation [84,85]. However, the need remains to
better define the potential utility of integrating genomic advances to change smoking behavior
and reduce cigarette smoking (see Outstanding Questions and Box 1). The ethical, legal, and
social implications of genomic testing for smoking behaviors remain undefined. Large research
consortia such as GSCAN (https://gscan.sph.umich.edu/), the GWAS & Sequencing Consor-
tium of Alcohol and Nicotine Use, will define many more genomic regions associated with
smoking behaviors in the upcoming year [90]. At this point, we argue that we must continue to
test these two (and other yet-to-be defined) genes in relation to clinical utility for smoking-
related outcomes to increase the state of readiness for the implementation of genomic
applications to smoking behaviors.
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Box 1. Clinician’s Corner

Although clinicians use self-reported cigarettes smoked per day integrated over a lifetime history of smoking to estimate
health risks for many smoking-related illnesses, number of cigarettes smoked does not fully capture the behavior of
cigarette smoking. For the same number of cigarettes smoked, differences in the number of puffs inhaled per cigarette
as well as the depth of inhalation can be profound. These differences lead to differential risk for smoking-related
diseases such as lung cancer.

Genomic variation in two genes that are associated with smoking behaviors (CHRNA5 and CYP2A6) alters risk for
smoking-related diseases beyond the measurement of cigarettes smoked per day. This genomic information may be
used to prioritize care management efforts such as increased efforts at smoking cessation as well as disease screening
(e.g., for lung cancer).

There are three FDA-approved medications for smoking cessation: nicotine replacement therapy, varenicline, and
bupropion. In the future, it might be possible to use genomic variation in two key genes, CHRNA5 and CYP2A6, to
predict which patients will be more successful at stopping smoking with these medications.

With the advent of direct-to-consumer genotyping services such as 23andMe, individuals have access to their genetic
health information. It is only a matter of time before genomic information may become routinely used in clinical care.
Physicians need to prepare for this change and consider the best practices for incorporating genomic information into
clinical settings and for sharing genetic results with patients.
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