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Highlights
Peripheral biomarker discovery may be
facilitated by leveraging a neu-
roscience-based diagnostic frame-
work such as the addictions
neuroclinical assessment.

The easy and cost-efficient collection
of peripheral tissue samples, which
leverage well-defined genetic, epige-
netic, proteomic, metabolomic, and
related assay platforms, can markedly
improve the discovery of a composite
biomarker for SUDs.

Rapidly evolving statistical methodolo-
Addiction is a brain disease, and current diagnostic criteria for substance use
disorders (SUDs) are qualitative. Nevertheless, scientific advances are begin-
ning to characterize neurobiological domains. Combining multiple units of
measure may provide an opportunity to deconstruct the heterogeneities of a
SUD and define endophenotypes by using peripheral biospecimens. There are
several recent examples of potential biomarker types that can be examined,
together with their categorical applications for SUDs. We propose that, in
conjunction with rapidly advancing statistical and mathematical modeling
techniques, there is now a unique opportunity for the discovery of composite
biomarkers within specific domains of addiction; these may lay the foundation
for future biomarker qualification, with important implications for drug devel-
opment and medical care.
gies – such as Bayesian statistical and
random forest models – may facilitate
and validate biomarker discovery;
these techniques may also provide
new opportunities for an enhanced
understanding of pathophysiologic
and pharmacodynamic aspects of
SUDs.
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Redefining the Diagnosis of Substance Abuse Disorders
Addiction can be defined as a chronic, relapsing brain disease characterized by compulsive
drug-seeking and use despite self-destructive consequences. As a disease, addiction alters
both brain structure and function. Each year more than 90 000 individuals die from drug and
alcohol abuse, and more than 475 000 from tobacco use [1]. Moreover, drug abuse is
estimated to cost the USA more than $740 billion annually, resulting from a wide range of
health (e.g., mental illness, heart disease, cancer) and societal consequences (e.g., crime) [2].

SUDs are currently diagnosed using several psychosocial outcome measures under a single
construct (see Glossary). A SUD is defined as the ‘recurrent use of alcohol and/or drugs that
cause clinically and functionally significant impairment, such as health problems, disability, and
failure to meet major responsibilities at work, school, or home’ and is diagnosed qualitatively as
a ‘mild’, ‘moderate’, or ‘severe’ [3]. Diagnoses are based upon the number of symptomatic
criteria a person exhibits; symptoms include, for example, impaired control, risky use, drug-
seeking, and withdrawal [4].

Whileexistingcriteriaareclinicallyuseful, theyarebasedonself-reportand lackscientificrigor.They
do not incorporate any of the underlying neurobiological or neurobehavioral factors of addiction.
Like most diseases, each SUD is heterogeneous, and factors such as genetics, age and gender
differences, drug or polydrug abuse, stage of addiction, and the presence of a comorbid disorder
such as depression all contribute in varying degrees to a final diagnosis [5]. Unfortunately, these
heterogeneitiesarenot sufficiently captured. Consequently, validated analytical platforms that can
more accurately capture the (phase-specific) varieties of a SUD are needed.

To address these issues, the addictions neuroclinical assessment (ANA) was proposed in 2016
to better understand stage-dependent heterogeneities and redefine addiction nosology (Box
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Glossarya

Addiction nosology: a classification
scheme within addiction medicine
that delineates the components of a
substance use disorder (SUD).
Biomarker: a defined characteristic
measured as an indicator of normal
biological processes, pathogenic
processes, or responses to an
exposure or intervention, including
therapeutic interventions. Molecular,
histologic, radiographic, and
physiologic characteristics are types
of biomarkers. A biomarker is not an
assessment of how an individual
feels, functions, or survives.
Categories of biomarkers include
indicators of susceptibility/risk and
diagnostic, monitoring, prognostic,
predictive, pharmacodynamic, and/or
safety indicators.
Composite biomarker
(biosignature): a composite
biomarker consists of several
individual biomarkers that are
combined in a stated algorithm to
reach a single interpretive readout.
Construct: the assemblage of
neurologically defined elements such
as working memory, long-term
memory, executive control, social/
emotional processing, attention, and
perception.
Delayed discounting: the cognitive
process that evaluates the selection
of a smaller, more immediate reward
over a larger, more delayed reward
[9].
Dorsal anterior cingulate cortex
(dACC)–striatal coupling:
neurocircuitry which may be used to
distinguish responses during reward
anticipation versus reward receipt.
Executive function: processes
related to attention, perception,
response inhibition, behavioral
flexibility, planning, cognitive control,
working memory, and the valuation
of future events [6].
Incentive salience: a type of
motivation created in the brain by an
association between a stimulus and
reward. In response to a cue
associated with the reward, the
individual is compelled to act [6].
Negative emotionality: processes
related to anger, irritability, contempt,
disgust, guilt, fear, dysphoria, and
hypohedonia.
Point-of-care device: a device that
is designed to be used at or near
where the patient is located.

Box 1. Useful Definitions for SUD Investigations

Assessment: the interpretation or the evaluation of the measurement.

Biomarker applications: a biomarker(s) can be used in a variety of settings, including basic research, drug devel-
opment, and/or clinical practice.

Clinical outcome assessments: a clinical assessment of how a patient feels, functions, or survives.

Context of use (CoU): a CoU is a statement that fully and clearly describes the purpose of use of a biomarker.

Endpoint (correlative): a precisely defined variable that is intended to reflect an outcome of interest that is statistically
analyzed to address a particular research question. A precise definition of an endpoint typically specifies the type of
assessments made, the timing of those assessments, the assessment tools used, and possibly other applicable details
such as how multiple assessments within an individual are to be combined.

Need statement: a concise and coherent description of the knowledge gap or drug development need (e.g., improved
diagnostic tool) that a biomarker program plans to address. It lays out the evidence that defines the potential CoU and
the cognate risk–benefit ratio. This in turn prioritizes a potential biomarker for future (development) qualification.

Types of biomarkers: physiologic, genomic, metabolic, immunologic, histologic, or radiographic assessments are
types of biomarkers.
1). This assessment tool is broken down into three domains: (i) incentive salience, (ii)
negative emotionality, and (iii) executive function [6]. Each domain is further subdivided
to incorporate various stages of addiction based upon both preclinical and clinical findings. For
example, the negative emotionality domain can incorporate the physical dependence stage of
the disease, whereas the incentive salience domain would incorporate the binge/intoxication
stage of the disease [6,7]. Subunits of measure, such as molecular (e.g., dopamine, DA) or
cellular (e.g., ventral tegmental area DA cells) measures, can then be used to subcharacterize a
stage of addiction such as binge/intoxication [8]. If one or more of these objective submeasures
can be assigned to domain-specific circuitry and/or other clinical outcomes such as self-report,
neurobehavior (e.g., delayed discounting [9]), and/or psychosocial symptoms, heterogene-
ities within each stage of addiction could then be significantly deconstructed and endophe-
notypes defined. We posit that this may not only lead to the elucidation of mechanism(s) of
action for SUDs but might also lay the groundwork for future discovery and qualification of an
objective measure – or biomarker – to endophenotypically diagnose substages of addiction (e.
g., relapse, withdrawal).

Current SUD Biomarkers
Current SUD Biomarkers are used to detect a drug and/or its metabolite(s). These measures
can determine when and how much drug an individual may have recently consumed (minutes
to days) and are based upon pharmacokinetic (PK) differences. Substances can be measured
in urine, blood, saliva, breath, or hair samples. These recency-of-use biomarkers have four
main uses [10–14]. First, the quantitative assessment of a drug within a specified time-range
can serve as a toxicity biomarker to legally determine, for example, accidental death due to
opioid-related overdose. Second, a recency-of-use measure can be used to differentiate
frequent versus occasional drug use in non-chronic users [13]. Third, a recency-of-use
measure can be used to evaluate the level of intoxication due to binge drug use. This would
be especially important if a point-of-care device for workplace or roadside testing could be
developed to assess marijuana-induced impairment. Finally, a recency-of-use biomarker can
serve in a monitoring capacity. For instance, when measured serially, blood concentrations of
an addictive drug may be used to assess abstinence and compliance [15]. As an example, an
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Prodromal marker: a biomarker
that could be used to detect the
initial symptoms before the full
development of a SUD.
Qualification: this term has different
scientific and regulatory meanings.
Generally, qualification is an
evidentiary process of linking a
biomarker with biological processes
and clinical endpoints that is
intended to establish whether the
biomarker is fit for a specific
purpose. For example, the use of a
prognostic imaging biomarker might
be used to distinguish patients that
are more likely to exhibit to exhibit a
clinical response, thereby decreasing
the heterogeneities found within a
study population and increasing the
power and efficiency of a clinical trial.
Recency of use: time transpired
since last use (substance).

aGlossary adapted from [[30],[33],
[34]].
absence of the cocaine metabolite benzoylecgonine in human blood or urine over time can be
used to indicate abstinence [16]. Because all potential SUD therapeutics must first demonstrate
abstinence to receive FDA regulatory approval, a recency-of-use biomarker in this category can
serve as a lynchpin for the development of putative novel treatments.

Additional biomarkers are needed beyond measures of recent drug exposure. There is an
urgent need for biomarkers that can, for example, diagnose the severity of drug dependence,
monitor therapeutic efficacy, or predict treatment response. In addition, because small-mole-
cule therapies for central nervous system (CNS) disorders have a success rate of only �7%,
and require 35% longer than non-CNS drugs to receive US regulatory approval [17], the
discovery of a biomarker, of almost any category, could indispensably enhance the develop-
ment of desperately needed, safe, and effective therapeutics for SUDs. Perhaps most signifi-
cantly, the discovery of a prodromal marker might be used to prevent the development of
addiction (risk, prognostic) or delay the onset or relapse (prognostic), although this has yet to be
determined.

The Time Is Right for Peripheral Biomarkers
Current CNS markers, although powerful, are costly (e.g., magnetic resonance imaging, MRI;
positron-emission tomography, PET) and/or invasive (e.g., cerebrospinal fluid analyses). PET
imaging may require the codevelopment of novel radioligands, a bottleneck for the study of
disease-related changes in the brain. Moreover, access to postmortem brain tissue is limited,
and conducting standardized assays of postmortem samples is difficult because tissue
collection and processing vary widely [18]. Overall, issues with assay standardization and
generalizability, as well as small sample sizes, all hinder the discovery of biomarkers via direct
CNS measures.

By comparison, peripheral tissue samples (e.g., blood, saliva, urine) are easily harvested, less
invasive, inexpensive, and are more suitable for banking. Accordingly, this would allow the
collection of samples taken across multiple tissues and at several timepoints from large
numbers of unique patient populations. Assays of peripheral biospecimens also lend them-
selves to standardized collection, processing, measurements, and analysis, all necessary
features of biomarker development. Perhaps most significantly, however, there is growing
evidence that peripheral markers of several types (e.g., miRNAs, metabolites) [19–22] or neural
cells derived from human induced pluripotent stem cells (iPSCs) [23] may reflect CNS patho-
physiology. For example, evidence now indicates that miRNAs found in peripheral blood can
differentiate patients with mild cognitive disorder from patients with Alzheimer’s disease [24].
Taken together, applications of advanced technologies and methodologies using peripheral
samples may enable biomarker discovery, elucidate the pathophysiological networks underly-
ing separate stages of addiction, and define specific SUD endophenotypes, especially where
units of measure can be collectively evaluated within the ANA framework (Table 1).

Improved Statistical/Data Analytical Methodologies
How can we assemble all these data? Quantitative systems pharmacology (QSP) holds great
promise in this regard. QSP combines systems biology with PK/pharmacodynamic modeling to
integrate complex multivariate data (e.g., genetic, metabolic, physiologic, or pharmacologic),
and iterative computations may greatly enable biomarker discovery [25]. QSP-related
approaches can also be used to analyze transitions between disease states (e.g., Boolean
methods) or to evaluate timecourse relationships between variables (e.g., ordinary differential
equations) [26]. In terms of SUDs, these methodologies will be especially valuable for existing
tobacco-related datasets. For example, when the genetic CHRNA5 and CYP2A6 allelic variants
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Table 1. Biomarker Summary Table for SUDsa

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

Alcohol [35–37]

Acetaldehyde-
induced DNA adduct
N2-ethyl-dG

Diagnostic,
monitoring,
prognostic

Epigenetic Blood, epithelial
cells (digestive
tract or lung)

MS IC/NE AUDIT, AUDIT-C (i) AUD patient identification
(ii) Qualitative diagnostic marker of
dependence
(iii) Prognostic marker to identify
potential for relapse in patients with
AUD

Aldehyde-induced
DNA adduct 8-OH-
dG

Safety, PD Epigenetic Blood ELISA EF AUDIT, AUDIT-C, radiological
scan

(i) Estimate toxicity associated with
alcohol consumption
(ii) Assess DNA damage after alcohol
consumption

Aldehyde-induced
protein adducts

Diagnostic,
monitoring,
prognostic, PD

Proteomic Blood tissue MS, ELISA IC/NE/EF Radiological scan, biopsy,
neurological screening

(i) Diagnostic nose-tissue specific
alcohol-induced complications
(ii) Monitor alcohol use
(iii) May be used as an endpoint to
assess AUD-treatment efficacy and
optimize dosing

ALDH2 Susceptibility/
risk

Genetic Any (genetic) Sequencing NE/EF Alcohol challenge or patch
test

Variants of the ALDH2 gene
(ALDH2*1, ALDH2*2) can be used to
determine susceptibility/risk of
acetaldehyde-induced
carcinogenesis for patients with AUD

Liver enzymesb,
MCV, and CDT

Susceptibility/
risk, diagnostic

Serum Blood Metabolic panel,
blood count

EF AUDIT, AUDIT-C, radiological
scan

Traditional biomarkers used to
support phenotypic assay results

Blunted HPA Susceptibility/
risk

Metabolic Saliva ELISA IC/NE (i) DSM-V for dependence
(ii) Behavioral tests for IS,
NEM, EC (e.g., DD)
(iii) Self-report measures for
sadness or anger

(i) A blunted (qualitative) salivary
alpha-amylase
PLUS
(ii) Blunted Cortisol level in saliva
(males)
Can indicate a greater risk for
developing AUD (may be correlated
with rsFC of hypoactivated DMN)

HRV Diagnostic Physiologic ECG HRV IC/NE/EF Drug craving, anxiety test A decreased HRV can indicate an
AUD and could be used to stratify
patients
(may also be correlated with rsFC of
hypoactivated DMN)

MOR genotype PD Genetic (SNP) Blood PCR genotyping IC/NE/EF % Heavy drinking days and
abstinence in patients treated
with naltrexone or placebo

rs1799971 G-carriers may be used to
assess the efficacy of opioid receptor
antagonists (e.g., naltrexone) versus
placebo [38]

Diagnostic Epigenetic Blood 450 K array NA DSM-V for AUD
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Table 1. (continued)

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

DNA methylation of
POMC

Increased DNAmethylation at two CG
dinucleotides in the POMC locus may
indicate the presence of an AUD and
be used to stratify patients for study
[39]

MOR binding Monitoring Receptor
binding

Brain PET scan [11C]-
carfentanil

IC DSM-V for AUD, alcohol
dependence scale

Elevated MOR availability in ventral
striatum may be used to assess the
severity of craving following 5 weeks
of abstinence

MOR and DOR
binding

Diagnostic Receptor
binding

Brain PET scan [11C]-
carfentanil
and [11C]-methyl-
naltrindole

IC DSM-V for AUD, alcohol
dependence scale

Elevated MOR availability can be used
to identify patients with an AUD

MOR PET scan and
MOR expression

Diagnostic,
predictive

Receptor
binding and gene
expression

Brain [11C]-carfentanil PET
scan plus qPCR plus
receptor
autoradiograph

IC/NE DSM-V for AUD, OCDS,
structured assessment of the
genetics of alcoholism

Low MOR-binding can be used to
quantitatively diagnose the severity
may be used to predict the lack of
efficacy for an opioid antagonist (e.g.,
naltrexone) in AUD patients [40]

(i) Basal cortisol
response
PLUS
(ii) Stress-induced
cortisol

PD Physiologic plus
metabolites

ECG, blood
[cortisol]
(RIA)

Response to stress IC/NE Negative mood, anxiety, and
drug craving tests

(i) A restoration of previously reduced
basal cortisol response
PLUS
(ii) Increased stress-induced cortisol
response
May be used to assess the efficacy of
a1 adrenergic antagonists (e.g.,
doxazosin, prazosin)

Disrupted tonic/
phasic
VmPFC
activation

Diagnostic Neural Brain fMRI IC/EF Neurobehavioral tests for
working memory, response
inhibition

(i) VmPFC hyperactivation in the
neutral state
PLUS
(ii) VmPFC hypoactivation during
stress
May be used to indicate the likelihood
of relapse in AUD during abstinence

Cannabis [41]

D9-THC Safety/toxicity Metabolites Blood, Saliva GC/MS, LC–MS/MS EC (i) Impaired operation of an
automobile
(ii) Accidents in the home or
workplace

May be used to assess the level of
impairment resulting from THC
exposure/intoxication

(i) D9 �THC
(ii) Cannabinol
(iii) Cannabidiol

Monitoring Metabolites Blood GC/MS, LC–MS/MS IC/EC (i) DSM-V for CUD
(ii) Neurobehavioral tests for
working memory, delayed
discounting, craving

Repeated blood concentrations of
THC, cannabinol, and cannabidiol
over time can be used to identify and
monitor the development of a CUD
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Table 1. (continued)

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

(iii) Self-report test for recent
drug use

(i) D9-THC
(ii) Cannabinol
(iii) Cannabidiol

PD Metabolites Blood GC/MS, LC-MS/MS IC/EC/NE Self-report test for recent
drug use (e.g., alcohol,
smoking, and substance
involvement screening test)

Absence of THC, cannabinol,
cannabidiol detected in the blood can
be used to assess therapeutic efficacy
by abstinence (and compliance with
treatment)

Cocaine [36,37]

(i) HR
(ii) HF-HRV response
(iii) Benzoylecgonine

PD, Monitoring Physiologic,
metabolites

ECG, Urine HF-HRV, HRV; GC-
MS/MS or
immunoassay

IC/EN/EF DSM-V for dependence;
behavioral tests for IS, NE,
EC (e.g., DD); reduced
cocaine usage (self-report)

(i) Restoration of normal HR and HF-
HRV response
PLUS
(ii) Improved abstinence measures (e.
g., urine benzoylecgonine absence)
Can indicate a1-adrenergic
antagonist therapeutic efficacy (e.g.,
doxazosin)

(i) N-methyl-
serotonin
(ii) Guanine
PLUS
(iii) Hypoxanthine
(iv) Anthranilate
(v) Xanthine

Diagnostic Metabolites Human Plasma LC-EC array platform IC/NE/EF DSM-V for dependence;
behavioral tests for IS, NE,
EC (e.g., DD)

(i) Significantly higher levels of n-
methyl-serotonin and guanine
PLUS
(ii) Lower concentrations of
hypoxanthine, anthranilate, and
xanthine
Can identify patients with CUD [42]

MOR binding Prognostic Receptor
binding

Brain PET scan [11C]-
carfentanil

IC DSM-V for CUD, addiction
severity index

Increased brain MOR binding in
frontal and temporal cortical regions
can predict risk for relapse

Methamphetamine [37]

(i) a1-Acid
glycoprotein
(ii) Transthyretin
(iii) Complement
factor H
(iv) Apolipoprotein L1
(v) Haptoglobin

Diagnostic Metabolic
(proteins)

Serum (human) 2-DE, MS IC/NE/EF DSM-V for MUD; behavioral
tests for IS, NE, EC (e.g., DD)

An upregulation of all five of these
proteins can identify patients with
MUD [43]

Opioids [36,37]

(i) N-methylserotonin
(ii) a- and
g-tocopherol
(iii) Guanine
(iv) Xanthosine
(v) Guanosine
(vi) Hypoxanthine

Diagnostic Metabolites Human
plasma

LCECA
metabolomics
platform

IC/NE/EF DSM-V for OUD;
behavioral tests for IS, NE,
EC (e.g., DD)

(i) Higher levels of N-methylserotonin,
a- and g-tocopherol, guanine,
xanthosine
PLUS
(ii) Lower levels of guanosine and
hypoxanthine
Can identify patients with OUD [44]
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Table 1. (continued)

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

MOR genotype Predictive Genetic (SNP) Blood, saliva,
immortalized
cells

Illumina
HumanOmni1-
Quad_V1.0
microarray or Illumina
human core exome
microarray

NA Opioid dosing schedules in
methadone replacement
therapy

The presence of the rs73568641 SNP
(300 kb upstream of MOR) can
predict optimal opiate dosage
schedulesc [45]

MOR genotype Diagnostic Genetic (SNP) Blood Illumina
HumanOmni1-Quad

NA Heroin injection drug users Four SNPs in MOR intron 1 associate
with OUDc [46]

DNA methylation of
MOR

Diagnostic Epigenetic Blood BS plus Sanger/
pyrosequencin

NA DSM-V for OUD Increased DNA methylation in the
MOR promoter of patients with OUD
[47–49]

DNA methylation of
MOR

Diagnostic Epigenetic Blood (i) Methylation-
specific PCR
(ii) BS plus Sanger

NA DSM-V for OUD Increased DNA methylation in the
MOR promoter of patients with OUD
[50]

Heroin [36]

MOR genotype Prognosis,
predictive

Genetic (SNP) ND TaqMan or restriction
fragment length
polymorphism

IC/NE (i) DSM-V for OUD
(ii) Adjective checklist
reflecting opioid agonist
effects to classify as negative
or positive effect of use

SNP biosignature can predict heroin-
induced subjective responsec [51]

MOR expression Diagnostic Gene expression Brain Microarray plus
nanostring

NA DSM-V for AUD Decreased MOR expression in the
striatum [52]

MOR and DOR
expression

Diagnostic Gene expression Blood qPCR NA DSM-V for AUD DecreasedMOR andDOR expression
in peripheral blood lymphocytes [52]

Nicotine (smoking) [36,37,53]

Alkyl-DHAP plus lipid
metabolite panel

Diagnostic Proteins plus
metabolites

Human serum ESI–tandem MS/MS IC/NE/EF DSM-V for dependence;
behavioral tests for IS, NE,
EC (e.g., DD)

(i) Upregulated lipid metabolite panel
(20 total)
PLUS
(ii) Three decreased acyl-alkyl-
phosphatidylcholines
PLUS
(iii) Ratio of plasmalogens to diacyl-
phosphatidylcholines
Can indicate smokers with a NUD

Alkyl-DHAP enzyme Susceptibility/
risk

Proteins
(enzyme)

Human serum ESI–tandem MS/MS IC/NE/EF Alzheimer disease
assessment scale – cognitive
behavioral test

Reduced or lack of activity of the
enzyme alkyl-DHAP can indicate the
presence of a plasmalogen-deficiency
disorder in smokers with a NUD [54]

Alkyl-DHAP PD Proteins
(enzyme)

Human serum ESI–tandem MS/MS IC/NE/EF (i) Behavioral tests for IS, NE,
EC (e.g., DD)
(ii) Restoration of normal
striatal activity

Activation of this enzyme may provide
and indicator for therapeutic efficacy
[54]
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Table 1. (continued)

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

(i) Bilirubin
(ii) Scyllo-inositol

Safety/toxicity,
prognostic

Metabolites Human blood U-HPLC; GC-MS/
MS

IC/NE/EF Cigarettes per day (i) Lower levels of bilirubin
PLUS
(ii) A lower circulating scyllo-inositol
Can indicate a risk factor for the
development of smoking-related
cancer [55]

Striatal hypoactivity Diagnostic Neuroimaging Striatal and
dACC

rsFC (fMRI) IC/EF Cigarettes per day NUD patient selection – quantitative
assessment of dependence

Striatal hypoactivity Prognostic Neuroimaging Striatal and
dACC

rsFC (fMRI) EF Craving measure Potential indicator for NUD time
relapse (i.e., time to relapse and
severity)

Striatal hypoactivity PD Neuroimaging Striatal and
dACC

rsFC EF (reward
anticipation)

NRT or varenicline NUD patient response to therapeutic
or assessment of efficacy for a new
NUD treatment

Striatal hypoactivity Diagnostic,
Prognostic

Neuroimaging Striatal and
dACC

rsFC IC (reward
receipt)

FTND (negative) (i) NUD patient selection – quantitative
assessment of dependence
(ii) Patient stratification

Striatal hypoactivity Diagnostic,
Prognostic

Neuroimaging Striatal and
dACC

fMRI (MID task) IC/EC (reward
anticipation)

FTND (negative) (i) NUD patient stratification
(ii) Risk for relapse

Striatal hypoactivity Susceptibility/
risk

Neuroimaging Striatal and
dACC

fMRI (MID task) IC, executive
control (reward
anticipation)

Reduced striatal activity Possible indicator of a vulnerability risk
factor for addiction in adolescents

Striatum-centered
functional
connectivity

Diagnostic,
monitoring,
prognostic, PD

Neuroimaging Striatum and
dACC

rsFC IC/NE (i) FTND (negative)
(ii) No response to nicotine or
varenicline

(i) NUD patient stratification
(ii) Long-term relapse
(iii) Non-response to NRT or
varenicline efficacy
Can identify individuals with a NUD
and assess the efficacy of a non-
nicotinic therapeutic

Insula-centered
functional
connectivity

Monitoring,
prognostic

Neuroimaging Insula,
amygdala, DMN

rsFC NE/EF (i) Response to NRT or
varenicline
(ii) Self-report withdrawal
symptoms

Can be used to identify individuals
with a NUD and assess their risk for
short-term relapse

Blunted ACTH and
cortisol

Diagnostic Metabolites Blood ELISA NE Behavioral tests of NE (e.g.,
Beck anxiety inventory)

Blunted ACTH and cortisol levels in
smokers is indicative of WD (may be
correlated with rsFC of hypoactivated
DMN)

HF-HRV Susceptibility/
risk, diagnostic

Physiologic ECG ECG IC Anxiety tests, FTND drug
craving

(i) A blunted stress-induced HF-HRV
can indicate both a greater risk to
develop a NUD, or:
(ii) Quantitative assessment of
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Table 1. (continued)

Candidate(s)
biomarkers

Biomarker
category

Biomarker type
(approach)

Biospecimen Assay(s) ANA-based SUD
domain(s)

Correlative phenotypic assay
(s)

Possible context of use statement

dependence (may be correlated with
rsFC of hypoactivated DMN)

Tobacco [36]

MOR PET scan Diagnostic Receptor
binding

Brain [11C]-carfentanil PET
scan

IC/NE (i) DSM-V for NUD
(ii) FTND
(iii) Expired CO levels

Correlations between behavioral
effects of smoking and changes in
MOR [56]

MOR PET scan and
MOR genotype

Predictive Receptor
binding and
genotyping

Brain and blood [11C]-carfentanil
PET scan and
PCR genotyping

IC (i) Current smokers WD
symptom checklist
(ii) Cigarette evaluation scale
(iii) Sensory questionnaire

Association of the MOR A118G
variant with nicotine reinforcement in
women [57]

aAbbreviations: 2-DE, two-dimensional gel electrophoresis; ALDH2, aldehyde dehydrogenase 2; alkyl-DHAP, alkyl-dihydroxyacetonephosphate; AUD, alcohol use disorder; AUDIT, alcohol use disorders
identification test; AUDIT-C, abbreviated AUDIT (three questions); BS, bisulfite; CDT, carbohydrate-deficient transferrin; CO, carbon monoxide; CUD, cocaine use disorder; CUD, cannabis use disorder;
dACC, dorsal anterior cingulate cortex; DD, delayed discounting; DMN, default mode network; DOR, d-opioid receptor; DSM-V, Diagnostic and Statistical Manual of Mental Disorders (5th edn); EC,
executive function; ECG, electrocardiogram; ELISA, enzyme-linked immunosorbent assay; ESI–tandem MS/MS, electrospray ionization in tandem with MS/MS; fMRI, functional magnetic resonance
imaging; FTND, Fagerström test for nicotine dependence; GC, gas chromatography; HF-HRV, high frequency heart-rate variability; HPA, hypothalamus–pituitary–adrenal axis; HRV, heart-rate variability;
IC, incentive salience; KOR, k-opioid receptor; LC, liquid chromatography; LCECA, liquid chromatography–electrochemistry array metabolomics platform; MCV, mean corpuscular volume; MID, monetary
incentive delay; MOR, m-opioid receptor; MS, mass spectrometry; MUD, methamphetamine use disorder; NA, not applicable; ND, not determined; NE, negative emotionality; NRT, nicotine replacement
therapy; NUD, nicotine use disorder; OCDS, obsessive-compulsive drinking scale; OUD, opioid use disorder; PD, pharmacodynamic; PET, positron emission tomography; POMC, pro-opiomelanocortin;
qPCR, quantitative PCR; rsFC, resting state functional connectivity; SNP, single-nucleotide polymorphism; THC, D9-tetrahydrocannabinol; TUD, tobacco use disorder; WD, withdrawal.

bIncludes g-glutamyl transpeptidase, lactate dehydrogenase, alkaline phosphatases, aminotransferases, and bilirubin.
cAn association was found [46] between the rs3778150-C SNP within the MOR1 intron and heroin addiction. Association of the A118G allele of the m-opioid receptor was only found when placed on the
haplotype background containing the rs3778150-C SNP within the MOR1 intron. This result might explain the inconsistent association of A118G allele of the m-opioid receptor with opioid use disorder.
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Key Figure

A Biomarker for Substance Use Disorders (SUDs): Tobacco Is Our Best Example

Substance use disorder   
(smoking as our best example) 

E.g., CHRNA5 variant*, CYP2A6† 
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(stress, negaƟve emoƟonality) 

E.g., High basal HR; blunted phasic HR; blunted HRV 

•
•

E.g., MCL engagement 
vmPFC hypoacƟvity in
stress and cue states   

E.g., insula–DMN engagement 
Insula–ECN disengagement 
Reduced dACC-striatum coupling*† 
Likely NRT, varenicline efficacy 

E.g., decreased CorƟsol, ACTH 
E.g., High Basal CorƟsol; Blunted Phasic CorƟsol*
High basal ACTH, blunted phasic ACTH*
High corƟsol/ACTH relapse*
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E.g.,. increased FTND score*,†; smoking heaviness-CPD; greater subjecƟve effects

E.g., DSM-V diagnosis [subj.]; decreased delayed discounƟng [obj.] †; diminished working memory tasks [obj.] 

E.g., insula–ECN engagement  
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••
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•
•

•

•
•
•

•

•
•
•
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Protein 
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                                           Clinical Outcome Assessments  
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Figure 1.

(Figure legend continued at the bottom of the next page.)

Biomarkers related to nicotine use disorder (NUD) provide our best candidates for future qualification and clinical utility. When assessed together, the (i)
genetic CHRNA5 and CYP2A6 allelic variants; (ii) metabolic high basal cortisol and adrenocorticotropic hormone (ACTH); (iii) physiologic high basal heart rate (HR),
blunted phasic heart rate, blunted heart-rate variability (HRV); and (iv) nicotine metabolic ratio can identify a NUD and quantitatively determine the level of dependence [e.
g., smoking heaviness (CPD)] [27]. This composite biomarker can also provide an estimate for the time to- and severity of a potential relapse. These measures can be
linked to neuroimaging findings [e.g., insula–default-mode network (DMN) engagement, reduced dorsal anterior cingulate cortex (dACC)–striatum coupling];
neurobehavioral tests (e.g., decreased delayed discounting, diminished working memory tasks); and self-report [e.g., negative Fagerström test for nicotine dependence
(FTND) score, DSM-V diagnosis for a NUD]. When all these units of assessment (genetic, metabolic, protein, etc.) are combined within a neurobiologically defined
domain, a composite biomarker is more likely to reflect an underlying causal network within that domain, which can powerfully identify a SUD subtype and tease apart
associated heterogeneities. Combined data may enhance the discovery of novel biomarker candidates and may also be used to uncover fundamental mechanisms
applicable to multiple SUDs. The next step of biomarker development will be to standardize and validate biomarker assays, as has been demonstrated for the nicotine
metabolic ratio. There is strong evidence for a composite biomarker that can (i) identify a NUD (diagnostic), (ii) quantitatively assess the level of dependence (diagnostic),
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Outstanding Questions
Where are the opportunities to begin to
coalesce these types of biomarker
data? When and how do we correlate
them to clinical endpoints, and to
which clinical endpoints?

Given the large amount of existing data
surrounding smoking, should an initial
focus be placed on smoking research
because it might serve as an exemplar
for future biomarker discovery sur-
rounding other SUDs? Alternatively,
given the current opioid crisis, should
all efforts be aimed at biomarkers for
pain? If so, what ‘pain population’
should be prioritized?

Are there biomarkers that distinguish
opioid dependence from addiction?
Can we identify biomarkers associated
with drug craving that can predict
relapse in abstinent users, and not
those in withdrawal?

Is there a specific assay that should be
used for peripheral biomarker discov-
ery? Alternatively, should an effort be
made to standardize 2–3 assay plat-
forms to enable the discovery of a
standard composite biomarker for
each domain and substage of a SUD?
and nicotine metabolic ratio are evaluated together they can identify a nicotine use disorder and
quantitatively determine the level of dependence (Figure 1, Key Figure) [27]. Bayesian techni-
ques have already been used to quantitatively correlate genetic data with measures of nicotine
metabolism, smoking outcome measures, and the prediction of optimal smoking-cessation
treatment assignment [28,29]. This composite biomarker may also provide an estimate for
the time to- and severity of a potential relapse. Leveraging heterogeneous datasets, the use of
evolving data-mining and statistical techniques is now poised to identify and validate a robust
composite biomarker for SUDs, in many cases utilizing data collected from peripheral
biospecimens.

Enabling Biomarker Discovery Processes
Improved biomarker definitions [15] and FDA regulatory pathways for the discovery and
qualification of future biomarkers have now been well described [30]. Presently, the FDA offers
regulatory guidance to submitters wanting to qualify a putative biomarker through their letter-of-
intent program [31]; the latter concurrently establishes conjoint approval for both the US FDA
and the European Medicines Agency. Altogether, the pathway to biomarker qualification has
now been clarified, and this will hopefully allow for less arduous advancement into the clinic.

Concluding Remarks
Within the past 2 years a new neurobiologically based framework for SUDs has been described
that uses a combination of neuroimaging and behavioral assessments [6]. From this, the
incorporation of distinct units of measure – which can be taken from peripheral biospecimens –

is poised to elucidate the phase-specific underpinnings of SUDs. Information that is collectively
assembled and validated using behavioral, epidemiological, and/or neuroimaging data may
permit the discovery of a composite, peripheral biomarker which can objectively deconstruct
the heterogeneities of SUDs (see Outstanding Questions). Thus, the application of a composite
biomarker may provide an actionable tool that could be used for drug development (e.g.,
diagnostic measure for patient stratification) and objectively diagnose addiction [32].
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