
1

Supplementary Text

1 Modeling and Algorithm Details for the Dropout Event

Adjustment

The VIPER imputation procedure involves a step for adjusting dropout events. And we

describe the modeling and algorithm details for this dropout event adjustment in details here.

We first follow the main notation from the main text to explain the rationales. Specifically,

here we aim to distinguish the two possible mechanisms that generate a zero count: a zero

count either comes from a dropout event or represents a low or zero level of gene expression.

If the zero value of the expression count Cl,j is due to a dropout event, then it is not an

accurate measurement of the true expression level of j-th gene in l-th cell. Subsequently, we

do not wish to use the normalized value Xl,j from a dropout event to impute Xi,j . However,

if the zero value of Cl,j comes from low or zero expression level of j-th gene in l-th cell, then

we would want to use the normalized value Xl,j to impute Xi,j . To distinguish between

these two possibilities, we estimate an expected expression level for any zero value of Cl,j

and use these estimates to perform imputation. In particular, we assume that the gene

expression levels of j-th gene for all selected neighborhood cells for the i-th cell of interest

follow a zero inflated Poisson mixed model, such that

Cl,j ∼ pi,jδ0 + (1− pi,j)PMM(Nlλl,j , ψi,j)

where pi,j represents the dropout probability of j-th gene that is specific for all neighborhood

cells of the i-th cell of interest; δ0 denotes a point mass at zero; Nl is the total read depth for

the l-th cell; λl,j is the Poisson rate parameter that represents the expression level of j-th

gene in the l-th cell; ψi,j is an over-dispersion parameter that is specific for j-th gene and for

all neighborhood cells of the i-th cell of interest; and PMM denotes a Poisson mixed effects

model. Under the zero inflated Poisson mixed effects model, Cl,j is exactly zero with a

dropout probability pi,j and follows an over-dispersed Poisson distribution with probability

1− pi,j . Our goal is to estimate λl,j , the underlying expression level of j-th gene in l-th cell,

to serve as our final predictor variable for all zero values of Cl,j . To do so, we first estimate

all parameters (i.e. pi,j , λl,j , ψi,j) through an expectation maximization (EM) algorithm

based on the selected neighborhood cells for the i-th cell of interest.

2

To describe the EM algorithm in detail, we need to use a different set of notations in order

to simplify annotation. Specifically, we ignore the gene subscript and denote

Yl := Cl,j , π0 := pi,j , π1 := 1− π0, λl := λl,j , ψ := ψi,j

Therefore, the above equation can be re-expressed as

Yl ∼ π0δ0 + π1PMM(µ, ψ;Nl).

where the Poisson mixed model (PMM) is defined as

X ∼ PMM(µ, ψ;Nl) is equivalent to

X ∼ Poi(Nlλl) log λl = µ+ el el = logwl wl ∼ Gamma(ψ,ψ)

Let IY be a vector of latent variables to represent the membership of each data point, which

takes value of either 0 or 1. We denote Θ = {µ, ψ} and we write down the likelihood as:

P (Yl, IYl = 1|Θ) =
ψψ

Yl!

Γ(Yl + ψ)

Γ(ψ)

(Nle
µ)Yl

(Nleµ + ψ)Yl+ψ

P (Yl 6= 0, IYl = 0|Θ) = 0

P (Yl = 0, IYl = 0|Θ) =
1

P (Yl = 0|IYl = 1,Θ) + 1

The marginal likelihood of observing Y given IY can be written as:

logL(Y|IY,Θ) =
∑
IYl=0

P (Yl, IYl = 0|Θ) +
∑
IYl=1

P (Yl, IYl = 1|Θ)

Treating IY as missing data, we develop an EM algorithm to estimate the model parameters.

Our expectation step (E-Step) is

EIY|Y,Θ logL(Y|IY,Θ) =
∑
l

P(IYl = 0|Y,Θ)

+
∑
i

P(IYl = 1|Y,Θ)
[
Yl logNl + Ylµ+ ψ logψ + log Γ(Yl + ψ)− log Yl!− log Γ(ψ)− (Yl + ψ) log(Nle

µ + ψ)
]

We optimize the above quantity by gradient descent in the maximization step (M-Step). To

do so, we calculate the gradient at each t-th iteration:

∂EIY|Y,Θ logL(Y|IY,Θ)

∂µ
=

∑
i

P(IY i = 1|Y,Θ)
[
Yi − (Yi + ψ)

Nle
µ

Nleµ + ψ

]
∂EIY|Y,Θ logL(Y|IY,Θ)

∂ψ

=
∑
i

P(IY i = 1|Y,Θ)
[

logψ + 1− Yi + ψ

Nleµ + ψ
− log(Nle

µ + ψ) + digamma(Yi + ψ)− digamma(ψ)
]

π
(t+1)
k =

∑
i P (IYl = k|Y,Θ(t+1))

#{Y}

3

where k = 0 or 1. With these derivatives, we update all parameters using a gradient descent

algorithm. Afterwards, at E-Step, we update the posterior likelihood as:

P(IYl = k|Y,Θ(t+1)) =
π

(t)
k P (Yl|IYl = k,Θ(t+1))∑
k π

(t)
k P (Yl|IYl = k,Θ(t+1))

We iterate through the E-Step and M-Step until convergence. Afterwards, we obtain an

estimate for λl (i.e. λl,j) based on these parameter estimates. We use the posterior mean

estimate λ̂l,j to replace zero Cl,j to serve as the final predictor variable. Certainly, we use the

normalized expression measurement Xl,j directly as the predictor variable if Cl,j is non-zero.

2 Differences between VIPER and scImpute

There are three key differences between VIPER and scImpute:

(1) Model and parameter specification. scImpute requires knowing a priori the number

of cell subpopulations (k) in the data, which is unfortunately not known in any real data.

Importantly, as we have shown in the Discussion section and the Supplementary Figures

S24-S25, the performance of scImpute is sensitive to the pre-specified number of cell sub-

populations and depends heavily on k. For example, the clustering results for the H1 cell

subpopulation from the Cell Type data using the scImpute imputed data are sensitive to k.

In particular, if we set the number of cell subpopulations in the H1 cell type to be either

1, 2, · · · or 6 before imputation, then we would also detect an increasing number of (arti-

ficial) cell subpopulations after imputation. In contrast, our method does not require the

pre-specification of the true number of cell subpopulations or any other tuning parameters.

Instead, we infer all parameters from the data at hand. Subsequently, our method yields

much more stable and accurate results compared with scImpute for various data sets. For

example, the clustering results for the H1 cell subpopulation using the VIPER imputed data

are generally consistent with that using the raw data, suggesting a single homogeneous cell

subpopulation in H1 cell type, as one might expect.

(2) Selection of predictive cells. scImpute only selects neighborhood cells from the same

subpopulation to predict the cell of interest. Subsequently, as explained in (1), the results

of scImpute are sensitive to how the subpopulation were inferred. In addition, because the

cells of interest in the same cell subpopulation are predicted using the same, and likely

small, subset of cells within the same population, the predicted expression levels across cells

4

within the same population may suffer from low expression variability. Indeed, from the

CV analysis results (Figure 5C and Supplementary Figures S8-S13), we have confirmed that

the expression variability across cells was reduced considerably in scImpute imputed data

as expected. In contrast, our method selects the predictive cells from all cells and is thus

much less likely to suffer from the same shortcoming of scImpute.

(3) Treatment of drop-out events. scImpute estimates the drop-out probability for one gene

at a time using all cells within a given cell subpopulation. Depending on this estimated

probability, scImpute will determine whether or not to impute this particular gene for all

cells within the cell subpopulation. Therefore, the performance of scImpute will depend

heavily on the estimated dropout probability and the cut-off: if the dropout probability is

not estimated accurately, then scImpute will either incorrectly impute all cells within the

subpopulation or incorrectly impute none of them, resulting in suboptimal performance. In

contrast, we follow the main idea of SAVER and impute all zero values regardless whether

it is a drop-out event or not. We reason that, if a zero value in a given gene and cell is

due to low abundance and true zero expression levels, then the predictive cells for this cell

of interest will also contain a large number of low or zero expression values. Subsequently,

the resulting prediction for the true zero or low expression value will remain small. If a

zero value in a given gene and cell is due to dropout, then the predictive cells for this

cell of interest will tend to contain a large number of non-zero or large expression values.

Subsequently, the resulting prediction value will remain large. In addition, we estimate the

drop-out probabilities for all neighborhood cells and use these probabilities to adjust for

these explanatory/predictive variables, which further improves imputation accuracy. We

model the drop-out probability for each cell of interest separately using only its neighbor-

hood cells to ensure that such adjustment is carried out in a cell specific fashion. Indeed, as

shown in the real-data based experiments (e.g. Figure 3 and Supplementary Figure S6), our

approach does yield more accurate imputation results than scImpute even for zero values

that are truly due to low abundance.

