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1 Detailed materials and methods

1.1 Experimental evolution in changing salt environments

1.1.1 Ancestral population

All populations employed here are ultimately derived from a hybrid population of 16
wild isolates (Teotonio et al., 2012; Noble et al., 2017), followed by 140 generations
of laboratory domestication to a 4-day non-overlapping life-cycle under partial self-
fertilization (selfing) at census sizes of N = 104 (Teotonio et al., 2012; Chelo and
Teotónio, 2013), and finally introgression and homozygosity of the xol-1(tm3055)
allele at high populations sizes for 16 generations to generate the ancestral pop-
ulation named M00 (where M stands for monoecious and 00 for ancestor). The
xol-1(tm3055) allele disrupts X-chromosome dosage compensation such that male
embryos are not viable (Meyer, 2005), and reproduction occurs exclusively by selfing
as hermaphrodites cannot mate each other (Maupas, 1900). Reproduction is dis-
crete within 2 hours of the 96 hour life-cycle. Barring overdominance, homozygosity
across the genome should be quickly achieved during the first few generations (Crow
and Kimura, 1970).

1.1.2 Design

The experimental evolution design has been detailed elsewhere (Theologidis et al.,
2014). M00 samples with more than 104 individuals were thawed, expanded in
numbers and first larval staged (L1s) seeded at the appropriate densities to three
regimes. The “Sudden” experimental evolution regime was characterized by the same
4-day life cycle conditions to which previous lab-adaptation occurred, except that
NGM-lite media (US Biological) was supplemented with NaCl to 1.78% w/v (305
mM) from the start of the experiment and for 50 generations (SM2, SM3, SM5, and
SM6 populations; where S stands for sudden, M for monoecious). For the “Gradual”
regime NGM-lite plates were supplemented with increasing concentrations of NaCl
from 33 mM at generation 1 to 305 mM NaCl at generation 35 and onwards until
generation 50 (GM1-7 populations). Finally, a “Control” regime was maintained
in the ancestral environmental conditions without any salt supplement, also for 50
generations (CM1-3 populations). For all experimental evolution regimes, [NaCl]
from L1 to adult reproduction were constant, from embryo to L1 [NaCl] were of
25 mM under all regimes. Periodic samples of each population were cryogenically
frozen at high densities. During the experiments we were always able to maintain
census population sizes at the L1 seeding stage at 104 or above (Theologidis et al.,
2014).

1.2 Identifying the two lineages (L28 and L11) explaining
most of population genetics during experimental evolu-
tion

Our analysis suggested that effectively one lineage swept through the sudden popu-
lations, while another lineage was initially sweeping though the gradual populations
when they were at intermediate salt concentrations. From the GM1 and GM3 popu-
lations at generation 50, we have derived elsewhere (Noble et al., 2017) 100 lineages
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by 13 generations of single hermaphrodite self-fertilization, which were both geno-
typed by the Sequenom methods described below and whole-genome short-read Illu-
mina sequenced, as described in (Noble et al., 2017). Of these, we chose GM350L28
(L28 for simplicity) and GM350L11 (L11) to test our model predictions, as they
would correspond to lineages that presumably swept in the sudden and initially in
the gradual populations, respectively.

1.3 Absolute fitness assays

1.3.1 Ancestral population

1.3.1.1 Design Fitness of the M00 population was characterized by carrying
out a growth rate assay in three NaCl concentrations: 25 mM, 225 mM and 305
mM. The assays involved measurement of per-capita population growth rates over a
complete generation, under conditions that closely mimicked those employed during
experimental evolution (Teotonio et al., 2012; Theologidis et al., 2014), and that ac-
count for potential confounding maternal and grand-maternal environmental effects
(Dey et al., 2016; Teotonio et al., 2017).

Specifically, M00 (> 103) was thawed from frozen stocks and individuals reared
for two generations at 25 mM before they were exposed to the three assay NaCl
treatments. On the third generation, five Petri dishes per NaCl treatment were
seeded with 1000 L1s per plate. These five plates constituted one technical replicate,
and there were four of these for each salt treatment. After 66 h, individuals were
harvested with M9 isotonic solution into a 15 mL Falcon tube, and exposed to a 1
M KOH:5% NaOCl “bleach” solution (to which only embryos survive), washed three
times and suspended in 5 mL of M9 solution. After 16 h, debris of dead larvae and
adults were removed and the total number of live L1s in each tube was estimated
by scoring the number of L1s in ten 5 µL drops, and by measuring the total M9
volume. The estimated number of L1s was divided by 5000, the number of L1s used
in the previous generation to set up each assay replicate, to calculate the per-capita
L1-to-L1 growth rate.

1.3.1.2 Statistical analysis In order to obtain the expected number of live
offspring in each assay environment (the key variable necessary for analyzing the
data from experimental evolution; see equations 35 and 36), the log-transformed
per-capita L1-to-L1 growth rate values were analyzed using a linear model with the
assay environment as a categorical variable. For this, the assay environment for the
i-th measurement is denoted as Ei, and given by: Ei = 0, for 25 mM NaCl; Ei = 1,
for 225 mM NaCl and Ei = 2, for 305 mM NaCl. In this way, the 25 mM NaCl
condition is taken as the “reference” environment. The model then takes the form:

ζi = β0 + β1 I (Ei, 1) + β2 I (Ei, 2) (1)

where ζi is the log-transformed per-capita growth rate value, β0, β1 and β2 are
coefficients to be estimated, and I (Ei, j) is the indicator function:

I (Ei, j) =

{
1, if Ei = j

0, otherwise
(2)
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The data was analyzed in R (version 3.3; R Core Team, 2016), using the following
formula to specify the model in the lm function:

logGrowthRate ~ saltTreat

where logGrowthRate is the log-transformed per-capita L1-to-L1 growth rate (nu-
merical variable, corresponding to ζi in equation 1) and saltTreat is the assay
environment (identified by the NaCl concentration: 25 mM, 225 mM or 305 mM;
categorical variable, corresponding to Ei in equation 1). Least-square estimates
of the log-growth rates were obtained using the R package lsmeans (version 2.24;
Lenth, 2016), producing the values log (φ25mM), log (φ225mM) and log (φ305mM) (see
section 1.9 and equation 34). These values correspond to the logarithm of the ex-
pected number of offspring, averaged over the individuals in the ancestral population,
for the respective assay environments (25 mM, 225 mM and 305 mM).

1.3.2 L28 and L11 lineages

1.3.2.1 Design For lineages L28 and L11, the same protocol as for the ances-
tral M00 was used to estimate L1-to-L1 per capita growth rates, but considering 2
consecutive generations (generations 1 and 2), instead of a single generation as was
done for M00 (section 1.3.1). The assays were done over three blocks, each defined
by when the L28 and L11 were revived from frozen stocks. In each of the first two
blocks, four technical replicates under each lineage and salt treatment were done.
In the third block, only L28 was assayed, with four technical replicates under each
NaCl concentration treatment.

1.3.2.2 Statistical analysis Let λk,E denote the expected number of live off-
spring for lineage k in environment E . Since the data was collected on two genera-
tions, we sought to account for the potential presence of trans-generational effects,
and obtain estimates of the values of λk,E for lineages L28 and L11, in 25 mM, 225
mM and 305 mM. We let ζi denote the log-transformed number of live offspring
obtained in the i-th measurement (i.e., ζi = log (λi)). The data was analyzed using
a mixed effects model, with environment, line and trans-generation component as
fixed effects, and “assay block” as a random effect:

ζi = β (Ei, Li) + α (Li) gi︸ ︷︷ ︸
Fixed effects

+ γ (Bi)︸ ︷︷ ︸
Random effect

(3)

where ζi is the logarithm of the growth rate for the i-th measurement, Ei denotes
the environment (Ei = 0 for 25 mM, Ei = 1 for 225 mM, and Ei = 2 for 305 mM
NaCl), Li denotes line (L11 or L28; Li = 0 for L28, and Li = 1 for L11), gi denotes
the trans-generational component, and Bi is the assay block (Bi ∈ {1, 2, 3}).

In particular, gi is given by:

gi =

(
ci − 25

305− 25

)
(ti − 1) (4)

where ci is the NaCl concentration in mM, and ti ∈ {1, 2} the generation assayed.
The terms of the model are given by:
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• β (Ei, Li) denotes the statistical interaction between environment and line:

β (Ei, Li) = β0 + β1 I (Ei, 1) + β2 I (Ei, 2) + β3 I (Li, 1) +

β4 I (Ei, 1) I (Li, 1) + β5 I (Ei, 2) I (Li, 1) (5)

with βk, k = 0, 1, . . . , 5, being coefficients to be estimated

• α (Li) denotes the line-dependent trans-generational effect:

α (Li) = α0 + α1 I (Li, 1) (6)

with α0 and α1 being coefficients to be estimated

• intercept-based effect of block:

γ (Bi) =
3∑
j=1

γj I (Bi, j) (7)

with γj, j ∈ {1, 2, 3}, being coefficients to be estimated

The model was fit using package lme4 (version 1.1-12; Bates et al., 2015) in R
via the following formula:

logGrowthRate ~ saltTreat * line + tgenComp * line + (1 | block)

where: i) logGrowthRate is the log-transformed the per-capita L1-to-L1 growth
rate; ii) saltTreat is a categorical variable denoting the environment, defined by
the salt concentration (25 mM, 225 mM or 305 mM); iii) line is a categorical
variable denoting the line (L28 or L11); iv) tgenComp is a numerical variable rep-
resenting the “transgenerational component”, given by the product between x, the
normalized NaCl concentration (given by x = (c− 25)/ (305 − 25), where c is the
NaCl concentration in mM) and t− 1 (where t denotes the generation assayed); v)
block is a categorical variable representing the assay block (B1, B2 or B3).

Afterwards, the R package lsmeans (version 2.24; Lenth, 2016) was used to
obtain two sets of estimates, via the respective R formulas:

• least-squares estimates of log (λk,E) for each of the two lineages in each of the
three NaCl concentrations assayed: ~ saltTreat * line

• estimates of the selection coefficient of L28 relative to L11, in each of the three
NaCl concentrations assayed: pairwise ~ line | saltTreat

In both cases, the estimates obtained do not include contributions of trans-generational
effects, by evaluating the model at transgenComp = 0.

1.4 Relative fitness assays between L28 and L11

1.4.1 Design

L28 and L11 were revived from frozen stocks and reared for two generations at 25
mM NaCl before they were set up for head-to-head competition assays at three NaCl
concentrations: 25 mM, 225 mM and 305 mM. On the third generation, L1 larvae
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from the two lineages were mixed in 1:1 ratio, at a density of 1000 L1s in each of two
Petri dishes per technical replicate. Each technical replicate was then maintained
for two generations by employing the protocol used for the aforementioned non-
competitive growth rate assays. At both the assay generations, L1 samples (> 103)
were collected for pool-genotyping. Assays were performed in three blocks, with
3 replicates per salt concentration in each of two blocks, and 4 replicates in the
third block. Therefore, a total of 10 replicate competitions were done for each
experimental treatment (NaCl concentration), with a total of 30 replicates over the
entire experiment.

1.4.2 Statistical analysis

The data for analysis was based on the L28 and L11 frequency values obtained after
doing several calibration curves where the ratio of both lines was known. Let pi
denote the measured frequency for the L28 allele in the i-th measurement made. This
frequency was forced to be always contained in the interval (0.005, 0.995). Moreover,
let Ei denote the experimental treatment applied to the i-th measurement: Ei = 0
for the low salt (25 mM) environment, Ei = 1 for the intermediate salt (225 mM)
environment, Ei = 2 for the high salt (305 mM) environment. Finally, let ti denote
the generation and Ri ∈ {1, 2, . . . 30} the replicate population.

Analysis relied on a mixed effects model, with experimental treatment and gen-
eration as fixed effects, and “replicate” as a random effect. The model is formulated
as:

yi = β0 + α (Ei) ti︸ ︷︷ ︸
Fixed effects

+ γ (Ri)︸ ︷︷ ︸
Random effect

(8)

where yi is the logarithmic of odds-ratio for the allele of L28:

yi = log

(
pi

1− pi

)
(9)

and the terms of the model are given by:

• β0 is the intercept, corresponding to the log-odds ratio in the ancestral popu-
lation. For this term, β0 is a coefficient to be estimated.

• α (Ei) is a treatment-dependent coefficient relating the impact of the number
of generations:

α (Ei) =
2∑
j=0

αj I (Ei, j) (10)

with the αk (k = 0, 1, 2) being coefficients to be estimated. Note that the
selection coefficient of line L28 relative to L11 in assay environments j is
therefore given by:

sj = αj (11)
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• intercept-based effect of replicate population:

γ (Ri) =
30∑
j=1

γj I (Ri, j) (12)

with the γj (j ∈ {1, 2, . . . , 30}) being coefficients to be estimated

The model was fit using (package lme4, version 1.1-12; Bates et al., 2015) in R
via the following formula:

logOddsRatioL28Allele ~ generation : saltTreat + (1 | replPop)

where: i) logOddsRatioL28Allele is the logarithmic of odds-ratio for the allele
of L28, given by log (pL28/ (1− pL28)). ii) saltTreatment is a categorical variable
denoting the salt concentration; iii) generation is a numerical variable denoting
the generation; iv) replPop is a categorical variable corresponding to the replicate
population.

For subsequent analysis, point estimates of the selection coefficients for each SNP
in each treatment were obtained.

1.5 Experimental evolution at different population sizes in
constant high salt

1.5.1 Ancestral populations

The second set of evolution experiments was conducted at constant 305mM NaCl
for 30 generations. All seven replicate GM populations from G35 were revived
from frozen stocks at sample sizes of 103 individuals or more each, expanded in
numbers for two generations, and then split into two regimes: large population
sizes of N = 104 and small population sizes of N = 2 · 103. For full population
nomenclature see S1 table.

1.5.2 Design

For the large population size regime, we followed exactly the same protocol as the
first set of evolution experiments, while in the second treatment only 2 Petri dishes
were seeded each with 1000 L1s at each generation. From each of the seven grad-
ual populations at generation 35, one replicate was maintained at large population
sizes and three replicates were maintained at small population sizes. Given the ex-
tent of genetic diversity in the M00 population, the known Poisson distributions
of hermaphrodite fertility (Chelo and Teotónio, 2013), and the effects of selfing on
the segregation of neutral SNP markers (Crow and Kimura, 1970), we expected the
large population size treatment populations to have an effective population size of
close to Ne = 500, and the small population size treatment populations of about
Ne = 100. With selection and complete linkage among markers across the genome
these numbers will be greatly reduced (Schiffels et al., 2011; Neher, 2013).
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1.6 Genotyping of single individuals from the evolution ex-
periments in changing environments

1.6.1 Sample preparation

Immature (L4 larval stage) individuals from M00, SM2, SM3, SM5, SM6, GM1,
GM3, GM5, CM1, CM2 and CM3 were hand-picked at generation 10, 35 and 50.
GM2 individuals were also collected but only for generation 10 and 35 (as this pop-
ulation was discontinued at this point). Individual genomic DNA was prepared
with the ZyGEM prepGEM TM Insect kit following the manufacturer’s protocol.
A total of 925 biallelic SNPs evenly distributed across the genome according to
the genetic distance of Rockman and Kruglyak (2009) were assayed based on the
known polymorphism data segregating in the 140 generation lab-adapted popula-
tion (Noble et al., 2017) and using the iPlex SequenomTM MALDI-TOF methods
as described in Bradić et al. (2011). Due to the limited amount of gDNA, each indi-
vidual was assayed for only two of the six C. elegans chromosomes (chromosomes I
and II, or III and IV, or V and X). Because of exclusive selfing during experimental
evolution, linkage across the genome was expected to be extensive and this design
was anticipated to yield a better estimate of the total number of lineages present
in the ancestral population, as opposed to sampling fewer SNPs across the whole
genome in each individual (see model for inference below, section 1.8). For each one
of the three pairs of chromosomes, the genotyping data consists of 64 individuals
for the ancestral M00, and 16 individuals per evolutionary replicate population per
generation

1.6.2 Quality control

Quality control of the genotyping data on single individuals was performed following
Chelo and Teotónio (2013), starting from 817 SNPs that passed preliminary inspec-
tion of the raw data. Quality control relied on a large dataset, consisting of data
obtained from various populations and experimental evolution done in the lab, so
as to leverage a large sample size to discard unreliable SNPs.

In a first step of quality control, we sought to discard SNPs with high frequency
of heterozygous calls. For this, we split the various set of samples into two main
categories: i) those in which few, if any heterozygous calls were expected, with
4 groups, namely all the monoecious populations considered in the present study
(total of 576 individuals genotyped per chromosome), and inbred lines derived from
monoecious (100 lines), androdioecious (333 lines) and trioecious populations (88
lines) (Noble et al., 2017); ii) those in which heterozygous calls were expected, with
3 groups, consisting of androdioecious (96 individuals), dioecious (560 individuals)
and trioecious (32 individuals) populations (unpublished data). For each of these
two categories, the frequency of heterozygous calls was determined as the maximum
frequency in the groups belonging to that category. SNPs were then excluded from
the analysis if the frequency in both was greater than 5%. The 817 SNPs that passed
this first step had at most 10% heterozygous calls in the first category. Heterozygous
calls in individuals from the monoecious populations or the inbred lines were then
considered missing data.

In the second step of quality control, the frequency of missing data over all
individuals and inbred lines genotyped (total of 1728) was determined, and SNPs
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having more than 30% of missing data were discarded. Finally, in the last step,
individuals/lines having more than 25% of missing data were discarded. In the
end, we obtained a total of 761 SNPs that were considered for analysis, with 112
in chromosome I, 119 in II, 130 in III, 134 in IV, 128 in V, and 138 in the X
chromosome; median distance between consecutive SNPs within each chromosome
are 55-100 kbp and 0.30-0.38 cM The number of individuals that passed quality
control per population per pair of chromosomes is shown in figure

After quality control, the genotyping data on all the monoecious populations and
the inbred lines was imputed using fastPHASE (version 1.4; Scheet and Stephens,
2006), to obtain chromosome-wide haplotypes. This analysis was done using 20
random starts of the EM algorithm, 10 clusters and using argument -B for estimating
missing data.

1.7 Pooled genotyping from relative L28/L11 fitness assays
and experimental evolution at different population sizes
in constant high salt

1.7.1 Sample preparation

For L28 and L11 head-to-head competition assays and for the second set of evolution
experiments at different population sizes (see above), we performed genotyping of
gDNA obtained from multiple individuals. We decided to do a limited number of
SNPs, instead, for example, of doing pooled gDNA whole-genome sequencing, since
to estimate allele frequencies we needed as high coverage per SNP site as possible
(which is a function of the number of individuals sampled).

GM1-7 at generation 35, and all populations of the second set of evolution exper-
iments after 15 and 30 generations in high salt were collected in pools of L1s (>103)
and gDNA prepared from them using the Qiagen Blood and Tissue kit, following the
manufacturer’s protocol. These samples were then genotyped for 84 SNPs in chro-
mosomes I, IV and V, using the iPlex Sequenom methods in 3 technical replicates
for each SNP assay.

In parallel, pooled gDNA was also prepared for the M00 population and the L28
and L11 lineages. We did two calibration curves in order to estimate SNP allele
frequencies. In the first, equal molarity of L28 and L11 gDNA were mixed, while in
the second equal molarity of M00 and L28 gDNA, at 0:100, 25:75, 50:50, 75:25 and
100:0 proportions. For the first calibration, between 8 and 14 technical replicates
were done for each of the five DNA mixes, while for the second calibration 8 technical
replicates per DNA mix were done.

1.7.2 Quality control

For the pooled genotyping, a different quality control approach is needed than that
of individual genotyping (Le Hellard et al., 2002). For each SNP, the initial step
was verifying whether it has the same or different alleles in L28 and L11. We then
considered the calibration data on each SNP, which consists of technical replicates
within each calibration value assayed. In these data, we determined the number
of technical replicates, within each calibration value, that had frequency values in
the interval (0.05, 0.95) (that is, not indicative of fixation). Afterwards, for each
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SNP, we summarized the number of “reliable” calibration values as the number of
calibration values in which the number of non-fixation values is greater than or
equal to 2. We also processed the calibration data to determine, for each SNP and
calibration setup (L28 vs L11, or L28 vs M00), the 5%-quantile (denoted by q0.05)
and the 95%-quantile (denoted by q0.95) of the L28 allele frequency values observed,
independently of the calibration value. In this way, SNPs that passed the quality
control were those that satisfied the following criteria for both calibration settings:

L28 vs L11: if L28 and L11 have the same allele, then the SNP passed the quality
control if q0.05 ≥ 0.95. At other frequencies, the SNP passes quality control if
the following three conditions are all satisfied: i) q0.05 ≤ 0.1; ii) q0.95 ≥ 0.9; iii)
the number of good calibration values is greater than or equal to 2

L28 vs M00: the SNP passed quality control if the following three conditions are
all satisfied: i) q0.95 − q0.05 ≥ 0.2; ii) q0.95 ≥ 0.99; iii) the number of good
calibration values is greater than or equal to 2

This resulted 29 SNPs, out of which 18 have different alleles in L28 and L11.
In order to estimate the true allele frequencies given the measured frequency val-

ues, the data on each SNP is denoted as D = {g1, g2, . . . , gn}, with each observation
gi consisting of a tuple (ci, ki, yi), where:

• 0 < ci < 1 is the “calibration value”, corresponding to the L28 frequency in the
mix. This calibration value is pre-processed via ci = min (1− δ,max (δ, c̃i)),
where c̃i is the raw, unprocessed value and δ is a threshold, such that δ ≤ ci ≤
1 − δ, for some 0 < δ < 1. This is done so that the logit transformation (see
equation 15 below) always produces a finite value. For the analysis, we use
δ = 0.01.

• ki ∈ {0, 1} is given by:

ki =

{
1, if gi arises from the calibration data on L28 vs M00
0, if gi arises from the calibration data on L28 vs L11

(13)

• yi is the frequency of the L28 SNP allele that was measured

The following formulation was used for fitting of the calibration curves:

fi = ci + (1− ci) ki u0, 0 < fi < 1∀i (14)

zi = logit (fi) = log

(
fi

1− fi

)
(15)

yi =
1

1 + exp (−b zi + d)
+ εi (16)

where fi (an estimate of the true frequency of the target allele in the sample corre-
sponding to observed gi) and zi (transformed version of fi) is an auxiliary variable.
The following parameters were estimated per SNP: i) u0 ∈ [0, 1]: frequency of the
target allele in the ancestral population M00; ii) b: the steepness of the calibration
curve; iii) d: the horizontal displacement of the calibration curve.

Model fitting was done using the Levenberg-Marquardt algorithm in R, via func-
tion nlsLM from package minpack.lm (version 1.2-1; Elzhov et al., 2016), considering
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100 random initial conditions, and retaining in the end the model with the smallest
sum of squared residuals. The parameters were constrained to be in the intervals:
u0 ∈ [0.01, 0.99], b ∈ [0.001, 20], and d ∈ [−δd, δd], where δd = 5 for SNPs that are
different in L28 and L11, and δd = 0.1 for SNPs that are identical in L28 and L11.
Once the model was fit, for a given sample and observed value ỹi, an estimate of the
“true” frequency of the target SNP allele with the parameters (u0, b, d) is obtained
by interpolating the calibration curve (fi, yi) around the value ỹi, resulting in the
estimate f̃i.

1.8 Modeling selection in changing environments

1.8.1 Preliminary considerations

In this section we describe a general model to understand natural selection in chang-
ing environments solely from extant genetic diversity, which is then applied to infer
the population genetic dynamics during the two sets of evolution experiments that we
did. We developed this model motivated by two major empirical problems, likely en-
countered in all studies of natural or experimental populations. First, extant genetic
diversity can only be partially accounted for because not all reproducing individuals
can be genotyped and/or because genotype data is incomplete with low frequency
variants never being sampled or the genetic markers employed being at unknown
linkage disequilibrium with the causal adaptive alleles. Second, only partial informa-
tion about the frequency trajectories of extant genotypes or fitness will be available
(e.g., by having data for only one or two time-points during evolution). Related
approaches have been used in the context of viral infection or cancer progression,
e.g. (Illingworth et al., 2014) and references therein, although environmental change
has not been explicitly considered.

We model effectively asexual population genetic dynamics for an haploid organ-
ism by ignoring segregation within loci and recombination among loci. We consider
a linear genome that may be genotyped at the individual level for bi-allelic markers
such as single-nucleotide polymorphims (SNPs).

To explicitly account for how genotyping data was collected (and may be col-
lected in other empirical studies), the genome is divided into L non-overlapping
regions, named region-wide haplotypes (RWHs). Each region may correspond to a
single SNP allele, a set of SNP alleles in a chromosome or a pair of chromosomes,
as in the case of our sampling in the first set of evolution experiments. This al-
lows us to cast all analyses in a multi-allelic framework, thinking of each particular
combination of RWHs across the genome as an extant “lineage” of the ancestral pop-
ulation. Finally, we ignore the impact of new mutations, as adaptive ones should be
relatively rare and deleterious or neutral ones quickly removed or maintained at low
frequencies, respectively, during tens to hundreds of generations (Crow and Kimura,
1970; Matuszewski et al., 2015).

We consider deterministic environmental and population genetic dynamics, al-
though our maximum likelihood inference accounts for measurement errors, random
covariates and other non-deterministic effects during experimental evolution and
assays (Teotonio et al., 2017).
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1.8.2 General model

We assume deterministic population genetic dynamics, under discrete non-overlapping
generations and viability selection. By deterministic population genetic dynamics
we mean that the frequency of lineages in a given generation is a deterministic
function of the frequencies of the previous generation. In addition, we assume an
infinite population size, such that any given lineage never goes extinct. Our model
further assumes there are no density- or frequency-dependencies, and that trans-
generational effects are absent. We let generation 0, t = 0, refer to the ancestral
population and generation 1, t = 1, time at reproduction after populations first
faced the respective environment for that generation. The environment here is for-
malized in terms of an environmental value represented by the variable x(t). In the
present study, the environment is the salt concentration, and for convenience we let
x(t) denote the normalized salt concentration (with x(t) = (c(t)− 25)/ (305− 25),
where c(t) is the concentration in mM). In this way, x(1) = 0 for the control popu-
lations (25 mM NaCl), x(1) = 0.11 for the gradual populations (33 mM NaCl), and
x(1) = 1 for the sudden populations (305 mM NaCl). Furthermore, we assume that
the G lineages that constitute the ancestral population are known in their identity,
along with their frequencies.

We define λk(x) as the fitness reaction norm for a lineage k as a function of the
environmental value x. Specifically, λk(x) corresponds to the expected number of
live offspring produced after one generation in the environment x. We account for
the environmental values x(t) that define a given experimental evolution regime and
for simplicity consider:

λk (x(t)) = λ
(t)
k (17)

Let g(t)
k denote the frequency of the k-th lineage in generation t, before selection,

such that
∑G

k=1 g
(t)
k = 1∀t. Under deterministic dynamics, and for a single popula-

tion, the frequencies of the lineages in the next generation are then given by (e.g.,
Bürger, 2000, pp. 24–25):

g
(t+1)
k =

λ
(t+1)
k g

(t)
k∑G

i=1 λ
(t+1)
i g

(t)
i

(18)

Since the denominator in equation 18 (which corresponds to the mean population
fitness) is merely a scaling factor, ensuring that the lineage frequencies g(t+1)

k add
to unity, we will re-write equation 18 with a proportionality sign to simplify the
presentation:

g
(t+1)
k ∝ λ

(t+1)
k g

(t)
k (19)

Extending to after δ ≥ 1 generations, one obtains:

g
(t+δ)
k ∝

(
δ∏
i=1

λ
(t+i)
k

)
g

(t)
k (20)

For H time points plus the ancestral, we consider distinct epochs of the exper-
imental evolution, evaluated at generations T0,T1, . . . ,TH . In the present study,
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H = 3, and T0 = 0, T1 = 10, T2 = 35, and T3 = 50. Using a superscript enclosed
in square brackets to refer to these epochs, we define:

Λ
[h]
k =

Th∏
t=Th−1+1

λ
(t)
k , h = 1, . . . , H (21)

Furthermore, let g[h]
k denote the frequency of the k-th lineage in the h-epoch (i.e.,

g
[h]
k = g

(Th)
k in our experiments). Using equations 20 and 21, we obtain:

g
[h]
k ∝ Λ

[h]
k g

[h−1]
k (22)

As the identity of genome-wide haplotypes is never known (due to incomplete
characterization of linkage disequilibrium because genotyped markers and causal
alleles, insufficient sampling, etc.) the genome can be divided into L non-overlapping
regions, called region-wide haplotypes (RWHs). A haploid haplotype or gamete, here
termed lineage, k can therefore represented as a tuple Sk indicating the RWHs in
each region:

Sk = (lk,1, lk,2, . . . , lk,L) (23)

where lk,i is the RWH at the i-th region, such that the ancestral population is
represented by:

A = (S1,S2, . . . ,SG) (24)

To complete the model, we introduce parameters that describe the fitness reaction
norm for each of the M RWHs. In this way, the lineage frequencies in the next
epoch follow, via equation 22, from the frequencies in the previous epoch, the RWH
fitness reaction norm parameters, and the environmental values that are faced in
between these two epochs. We let θl denote the parameters for RWH l, and:

Θ = (θl1 , θl2 , . . . , θlM ) (25)

denote the parameters for all RWHs. We assume, for simplicity, that the fitness
reaction norms for all RWHs have the same parametric form, given by a function
f(·). In this way, we write the fitness reaction norm for lineage k as:

λk (x) = λ (x | Θ,Sk) (26)

to emphasize the dependency on the RWH parameters (Θ) and on the RWHs that
define lineage k (Sk). Finally, assuming that the fitness reaction norm of lineage k is
an additive function, in log-scale, of the fitness reaction norm of the RWHs in that
lineage, we define:

log (λ(x | Θ,Sk)) =
∑
l∈Sk

f(x | θl) (27)

For example, when the log-fitness reaction norms are defined as linear over the
environment value x, θl would consist of the intercept and the slope. Let X [h]

denote the environmental values encountered over an epoch h, that is:

X [h] =
(
x
(
t
[h]
1

)
, x
(
t
[h]
2

)
, . . . , x

(
t
[h]
Th−Th−1

))
, t

[h]
i = i+ Th−1 (28)
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where x(t) is the environmental value encountered in generation t. In this way, over
an epoch h, it follows from equation 21 that:

log
(

Λ[h]
∣∣ Θ,Sk

)
=
∑
x∈X[h]

∑
l∈Sk

f(x | θl), h = 1, . . . , H (29)

Therefore, equation 22 can be re-written as:

g
[h]
k ∝ exp

 ∑
x∈X[h]

∑
l∈Sk

f(x | θl)

 g
[h−1]
k , h = 1, . . . , H (30)

Hence, equation 30 allows to calculate the frequencies of the lineages in the current
epoch h, given the frequencies in the previous epoch h−1, the environmental values
encountered (X [h]) and the lineage fitness reaction norms (f(x | θl), l ∈ Sk).

1.9 Maximum-likelihood inference of fitness reaction norms

In this section, we present the approach for estimating the fitness reaction norm
parameters Θ (equation 25) given two types of data, fitness and genotypes. Using
model described in section 1.8.2, inference is framed in a maximum likelihood con-
text, such that we derive expressions for the likelihood, and also its gradient with
respect to a generic scalar parameter θ. This generic scalar may refer to a parameter
of a RWH fitness reaction norm, but also an additional parameter that is introduced
in the model for inference.

We first consider the case in which data is available on a single population
during the evolution experiment, which encountered environmental values X =(
X [1], X [2], . . . , X [h], . . . , X [H]

)
(cf. equation 28). In section 1.9.3, we extend the

approach to account for the multiple populations and regimes, and combine the
likelihood functions on the two types of data into a single function to be optimized
for model fitting. Since we assume that theG lineages in the ancestral population are
known (A, equation 24), along with their frequencies (g[0]), the likelihood functions
are conditioned on A and g[0]. Furthermore, we consider without loss of generality
that both fitness and genotyping data are available for all epochs T0,T1, . . . ,TH ;
the case in which data is available only for certain epochs is treated by evaluating
the corresponding likelihood function only for those epochs.

1.9.1 Lineage fitness reaction norms given fitness data

We first consider the fitness data. It may be at the level of single individuals (that is,
the number of live offspring produced by each individual sampled) or a population-
averaged estimate (e.g., the ratio between the total number of live offspring produced
and the total number of individuals sampled). We consider only population-averaged
fitness data, with the extension to fitness data at the level of individuals being
straight-forward. Moreover, although we use only fitness data on the ancestral
population for fitting the model in the present study, for the sake of generality we
present expressions considering the general case in which fitness data is gathered
in various time-points during experimental evolution. We consider a set of NE
assay environments, with xm denoting the value corresponding to the m-th assay
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environment, and denote the fitness data as:

W =
(
W [0],W [1], . . . ,W [H]

)
(31)

where the data in epoch h, denoted by W [h], corresponds to data in NE assay envi-
ronments:

W [h] =
(
φ

[h]
1 , φ

[h]
2 , . . . , φ

[h]
m , . . . , φ

[h]
NE

)
(32)

with φ[h]
m being the population-level fitness that has been measured in them-th assay

environment in epoch h.
Given the lineage frequencies in a given epoch and the parameters of the fitness

reaction norms, the predicted population-level fitness in the m-th assay environment
is:

φ̂[h]
m =

G∑
k=1

λ (xm | Θ,Sk) g[h]
k (33)

We assume for simplicity a log-normal model for noise, such that:

log
(
φ[h]
m

)
− log

(
φ̂[h]
m

)
∼ N

(
0, σ2

w

)
(34)

where σ2
w represents the dispersion between observed and predicted population-level

fitness. This dispersion may be taken as either known or to be inferred given the
data. Therefore, assuming that σ2

w is the same for all assay environments, the log-
likelihood for fitness, denoted by LW , is given by:

LW
(
Θ | W ,X , A, g[0]

)
= −1

2

H∑
h=0

NE∑
m=1

[
log
(
2 π σ2

w

)
+

1

σ2
w

(
r[h]
m

)2
]

(35)

where:

r[h]
m = log

(
φ[h]
m

)
− log

(
φ̂[h]
m

)
(36)

The gradient of the log-likelihood for the fitness data is then given by:

∂LW
(
Θ | W ,X , A, g[0]

)
∂θ

= − 1

2σ2
w

H∑
h=0

NE∑
m=1


1−

(
r

[h]
m

)2

σ2
w

 ∂ (σ2
w)

∂θ
+

2 r
[h]
m

φ̂
[h]
m

∂φ̂
[h]
m

∂θ


(37)

where,

∂φ̂
[h]
m

∂θ
=

G∑
k=1

λ (xm | Θ,Sk)
∂g

[h]
k

∂θ
+ g

[h]
k

∂λ (xm | Θ,Sk)
∂θ

=
G∑
k=1

g
[h]
k

∂λ (xm | Θ,Sk)
∂θ

=
G∑
k=1

(
g

[h]
k λ (xm | Θ,Sk)

∑
l∈Sk

∂f (xm | θl)
∂θ

)
(38)
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1.9.2 Lineage fitness reaction norms given genotyping data

We now turn our attention to the individual genotyping data, represented as:

D =
(
D[1], D[2], . . . , D[h], . . . , D[H]

)
, D[h] =

(
n

[h]
l1
, n

[h]
l2
, . . . , n

[h]
lM

)
(39)

where n[h]
l is the number of times that RWH l has been observed in the h-th epoch.

When sampling individuals to be genotyped out of the population in the respective
time-point, we assume that the number of observations of the various RWHs follow
a multinomial distribution, given the frequencies of the lineages in the population
(g[h]
k , k = 1, . . . , G) and the relation between the lineages and the RWHs (A). The

assumption of the multinomial distribution is justified when the number of sampled
individuals is much smaller than the total number of individuals in the source pop-
ulation, such that the process is well approximated by sampling with replacement.
Hence, although the model for inference considers only deterministic population ge-
netics dynamics, it does account for noise due to the sampling of individuals for
genotyping. The log-likelihood for the genotyping data is denoted as LX , and is
given by:

LD
(
Θ | D,X , A, g[0]

)
=

H∑
h=1

∑
l

n
[h]
l log

(
ν

[h]
l

)
(40)

where ν [h]
l is the probability of observing RWH l in epoch h (given by the sum of

the frequencies of the lineages that have this RWH):

ν
[h]
l =

G∑
k=1

I (l,Sk) g[h]
k (41)

I (l,Sk) =

{
1, if l ∈ Sk
0, otherwise

(42)

Note that the genotyping data on the ancestral population is not included in D
(equation 39), since the corresponding likelihood term is independent of the reaction
norm parameters Θ (as the likelihood would depend only on the initial lineage
frequencies g[0]).

The gradient of the log-likelihood function for the genotyping data is then:

∂LD
(
Θ | D,X , A, g[0]

)
∂θ

=
H∑
h=1

∑
l

n
[h]
l

ν
[h]
l

(
G∑
k=1

I (l,Sk)
∂g

[h]
k

∂θ

)
(43)

Defining:

Π
[h]
k = Λ

[h]
k g

[h−1]
k , h = 1, 2, . . . , H (44)

Φ[h] =
G∑
k=1

Π
[h]
k (45)
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where Λ
[h]
k is given by equation 29, the expression for ∂g

[h]
k

∂θ
needed for equation 43

follows from equation 30:

∂g
[h]
k

∂θ
=

1

Φ[h]

(
∂Π

[h]
k

∂θ
− g[h]

k

∂Φ[h]

∂θ

)
(46)

∂Φ[h]

∂θ
=

G∑
k=1

∂Π
[h]
k

∂θ
(47)

∂Π
[h]
k

∂θ
= Λ

[h]
k

∂g[h−1]
k

∂θ
+ g

[h−1]
k

∑
l∈Sk

∑
x∈X[h]

∂f(x | θl)
∂θ

 (48)

1.9.3 Summing the max-likelihoods of fitness and genotyping data for
the analysis of multiple populations and regimes

Up to this point we focused on inference in the case of a single evolving population.
In this section, we consider how the ensemble of the data that may be collected
is analyzed. In the present work, the ensemble of the data consists of multiple
experimental evolution regimes, each with several replicate populations. Let the
regimes be denoted by C = (c1, c2, . . . , cNC), and let Rc = (r1, r2, . . . , rNR) define the
replicate populations in regime c. Since the replicate populations are independent
evolutionary realizations , and in our case the ancestral population is the same in
the first set of evolution experiments we did, the log-likelihood for treatment c given
the individual genotyping data Dc =

(
Dr1 ,Dr2 , . . . ,DrNR

)
on the NR populations

is: ∑
r∈Rc

LD
(
Θ | Dr,Xc, A, g[0]

)
(49)

where Xc denotes the environmental values that define regime c. From equation 40,
it follows that the genotyping data from the replicate populations in the evolutionary
regime c can be grouped together:

D̃c =
(
D̃[1]
c , D̃

[2]
c , . . . , D̃

[h]
c , . . . , D̃

[H]
c

)
(50)

where:

D̃[h]
c =

(
. . . ,

∑
r∈Rc

n
[h]
l,r , . . .

)
(51)

with n[h]
l,r being the number of times that RWH l was observed in replicate population

r in epoch h. We note that, if the sample sizes in some cases are very different,
the values of n[h]

l,r should be combined considering by weighting, such that cases
with large sample sizes do not dominate the log-likelihood; such adjustments were
not done in the present study, as the sample size in the experimental data for the
evolved populations was mostly between to 12 and 16 individuals per region per
sample analyzed, and all replicate populations being analyzed in all epochs (except
for GM2 in generation 50).
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Therefore, the final log-likelihood for regime c is given by:

LW
(
Θ | Wc,Xc, A, g[0]

)
+ LD

(
Θ | D̃c,Xc, A, g[0]

)
(52)

The log-likelihood for the fitness data, LW
(
Θ | Wc,Xc, A, g[0]

)
, is written consid-

ering fitness data at the level of the regime c (given Wc), for simplicity. The
corresponding values of φ[h]

m (equation 32) may be obtained out of the values per
replicate population by averaging, for example. Finally, the final log-likelihood for
the experiment, considering all regimes, is given by:∑

c∈C

LW
(
Θ | Wc,Xc, A, g[0]

)
+ LD

(
Θ | D̃c,Xc, A, g[0]

)
(53)

For model fitting, the L-BFGS gradient-based optimization algorithm was used
(Nocedal, 1980; Liu and Nocedal, 1989). Model fitting was done via the NLopt
package (version 2.4.2) as implemented in R (version 1.0.4; Johnson, 2017).

1.10 Defining major sub-genomic region haplotypes (RWHs)

We lumped the RWHs that were observed only few times during the experiment
into a single RWH, referred to as the background RWH, in order to reduce the
number of parameters. In this way, inference is done considering only the major and
background RWHs. We call as major RWHs those that are among the KM RWHs
with the highest frequencies in at least one time point and one replicate population
that was assayed. For this, the genotyping data on the ancestral population was not
considered.

1.11 Sampling standing genetic variation in the ancestral pop-
ulation

1.11.1 Lineage identity

Unless the ancestral population is especially constructed to bear specific lineages
at particular frequencies (see, e.g., Gresham et al., 2011), its exact constitution in
practice is always unknown. For this reason, we describe the heuristic employed
to sample the ancestral population for inference. We describe how to sample A
(equation 24), given the genotyping data obtained for the entire experiment and
the definition of major and background RWHs. The approach can nonetheless be
directly applied to the input RWHs.

Sampling the ancestral population relies on two sets of lineages: i) primary lin-
eages, representing the lineages for which there is reasonable evidence that they are
indeed present; ii) secondary lineages, corresponding to those with a lower probabil-
ity of being present. Consider the genotyping data on a given replicate population
r, as initially defined in equation 39:

Dr =
(
D[1]
r , . . . , D

[h]
r , . . . , D

[H]
r

)
, D[h]

r =
(
n

[h]
l1,r
, n

[h]
l2,r
, . . . , n

[h]
lM ,r

)
(54)

Note that this does not include the genotyping data on the ancestral. Let N [h] be
the sample size for the corresponding region in generation h:

N [h]
r =

∑
l

n
[h]
l,r (55)
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First, we obtain the maximum observed frequency of each RWH over the generations,
denoted by ql:

ql,r = max

(
n

[1]
l,r

N
[1]
r

,
n

[2]
l,r

N
[2]
r

, . . . ,
n

[H]
l,r

N
[H]
r

)
(56)

Then, for each region the KP RWHs having the highest values of ql,r will constitute
the set of primary RWHs for that region. Afterwards, the primary lineages are
formed by taking all possible combinations of the primary RWHs in the L regions.
The secondary lineages, on the other hand, are obtained by sampling the RWHs
for each region. If it happens that a secondary lineage is identical to a primary
lineage, only one instance of that lineage is retained in the ancestral; and that
lineage is considered to be a primary lineage. Therefore, the primary lineages are
obtained under a setting corresponding to linkage equilibrium among the primary
RWHs for the various regions, even though in our setting of exclusive selfing linkage
disequilibrium is very high We took this approach, however, because it is more
conservative and because it assures that the ancestral population will contain at
least one of the lineages that are consistent with the most common RWHs over the
regions that were defined (i.e., across chromosomes I and II, III and IV, and V and
X). Note, as well, that new segregants/recombinants between RWH will be identified
if they appear at a sufficient frequency during experimental evolution.

This concludes the description of the approach for sampling the ancestral given
the genotyping data on a single replicate population. After running this step for
all replicate populations, the overall ancestral population is obtained by taking the
union of the lineages sampled for each replicate population.

1.11.2 Estimating the initial lineage frequencies

Once the ancestral population has been sampled, the initial lineages frequencies
(g[h]

0 ) are estimated based on the genotyping data on the ancestral population:

D0 =
(
n

[0]
l1
, n

[0]
l2
, . . . , n

[0]
lM

)
(57)

Given X0 and A (equation 24), the initial lineage frequencies g[0] are obtained
by maximizing the log-likelihood, similarly to equation 40:

Lg[0]
(
g[0] | X0, A

)
=
∑
l

n
[0]
l log

(
G∑
k=1

I (l,Sk) g[0]
k

)
(58)

The gradient for the log-likelihood in equation 58 follows from equation 43. As
for fitting the model, estimation was done using L-BFGS (Nocedal, 1980; Liu and
Nocedal, 1989), via the NLopt package (version 2.4.2) in R (version 1.0.4; Johnson,
2017). We performed multiple runs of the optimization algorithm, each run starting
from a random initial condition, and kept the estimate for g[0] with the largest
likelihood value.
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1.12 Adaptation during experimental evolution at different
population sizes in constant high salt

1.12.1 Inferring the occurrence of an L28 sweep given the pooled geno-
typing

For the second set of evolution experiments, with different population sizes, we are
interested in determining the probability of a sweep involving the L28 lineage given
pooled genotyping data. Let G denote the set of lineages of interest, which are those
lineages that differ from L28 by a value lower than a threshold number of SNPs. We
require that G is non-empty, since at least lineage L28 belongs to it. For the analysis
of the experimental data, we used a threshold value of 1, such that all lineages that
are indistinguishable from L28, given the 29 SNPs that were assessed via pooled
genotyping, are essentially considered as being L28.

Let qi denote the allele frequency for SNP i, and let ~q = (q1, q2, . . . , qNS
) denote

the frequencies of NS SNPs measured in a given population. We define the function
χ(·) to quantify the discrepancy relative to the alleles that define lineage L28:

χ(~q) =

√√√√ 1

NS

NS∑
i=1

(qi − ai)2, 0 ≤ χ(~q) ≤ 1 (59)

ai =

{
1, if L28 has the alternative allele in SNP i

0, if L28 has the reference allele in SNP i
(60)

We let t denote the generation since the beginning of the second set of evolu-
tion experiments; t = 0 thus corresponds to generation 35 of the first evolution
experiment. Let then U (x) be the step function:

U (x) =

{
1, if x > 0

0, otherwise
(61)

For this analysis, we are interested in the probability of a sweep taking place at a
given generation t > 0, which is defined as:

p(t)
sweep = P

[∑
k∈G

U
(
g

(t)
k − g

(0)
k

)
> 0

∣∣∣∣∣ χ(t)
obs

]
(62)

where χ(t)
obs = χ(~qobs) is obtained given the allele frequencies that were measured

experimentally in generation t.
In order to estimate p(t)

sweep (equation 62), we simulate the dynamics of the lin-
eages, under multiple scenarios. For each such simulation, we calculate the values
of χ(t)

sim = χ(~qsim), based on the simulated allele frequencies. With the interval [0, 1]

divided into 50 bins, each with width 0.02, we estimate p(t)
sweep as the empirical fre-

quency of simulations in which
∑

k∈G U
(
g

(t)
k − g

(0)
k

)
> 0 among those simulations

in which χ(t)
sim falls in the same bin as χ(t)

obs.
For multiple simulations, we sampled the parameters Θ of the fitness reaction

norms, obtained for each sampled ancestral population (A). From these, we then
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obtained the estimates for the fitness of the L lineages in the high salt environment:

~ΨH =
[
ψ1 ψ2 . . . ψk . . . ψG

]
∈ <G (63)

ψk = log (λk(x))|x=1 (64)

To start the simulations, the initial frequencies of the lineages also have to be
defined. For this, we relied on estimates of the lineage frequencies produced by the
model (that was fit to the data on the first experiment) in generation 35 under the
gradual regime.

For each simulation, we sampled the lineage fitness values Ψk via a multivariate
normal distribution centered on the values that were initially estimated:

~̃ΨH ∼ N
(
ΨH , 3σ

2
Ψ IG

)
(65)

where IG ∈ <G,G is the identity matrix, and σ2
Ψ ∈ (0,∞) is given by:

σ2
Ψ =

1

G− 1

G∑
k=1

(
ψk − ψ̄

)2
, ψ̄ =

1

G

G∑
k=1

(ψk)
2 (66)

1.12.2 Principal component analysis

The function prcomp in R was used for principal component analysis, applied on
the matrix containing the frequency of the alternative allele for each SNP in each
sample (population assayed).
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