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Figure S1. The number of somatic mutations in the pre- and post- anti-PD-1 treatment tumor 

samples of the two patients. Related to Figure 1 and Figure 2. A) Patient 1; B) Patient 2. 

 



   

Figure S2. The distribution of nonsilent somatic mutations in the two TCGA cancer types 

anaylzed in the hyperprogressive tumor context in the present study. Related to Figure 1 

and Figure 2.The numbers of nonsilent somatic mutations of the esophageal carcinoma (ESCA, 

n=184) and kidney renal clear cell carcinoma (KIRC, n=384) samples from TCGA. 
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Figure S3. Key mutated cancer genes interacting network. Related to Table 2. Based 
on the eleven genes with the deleterious somatic mutations, a mechanistic network was 
built by IPA in which ten genes carrying these mutations resulted in the suppression of 
TP53 tumor suppressor pathway and activation of MYC, CCND1 and VEGF oncogenic 
pathways. 
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Figure S4. Key mutation in the TSC2 protein. Related to Table 2. The 3D structure 
of the TSC2 protein and the location of the amino acid residue harboring the p.Y1611S 
mutation, which is within the Rap/ran-GAP domain of the TSC2 protein critical to its 
biological function. 

Rap/ran-GAP domain p.Y1611S mutation 



 

  

Figure S5. Clonal evolution from the pre-anti-PD1 therapy baseline tumor to post-anti-PD-
1 relapsing tumor in the four melanoma patients from a previous study. Related to Figure 
4. The graphical representation of clonal evolution in the four melanoma patients: (A) Case #1; 
(B) Case #2; (C) Case #3; (D) Case #4.  
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Figure S6. The mutation clusters representing clonal evolution from the pre-anti-PD1 
therapy baseline tumor to post-anti-PD-1 relapsing tumor in the four melanoma patients 
from a previous study. Related to Figure 4. The mutation clusters detected in the pre-anti-PD1 
therapy baseline tumor to post-anti-PD-1 relapsing tumor in the patients: (A) Case #1; (B) Case #2; 
(C) Case #3; (D) Case #4. The relationship between the clusters in the pre-therapy and post-
therapy tumors are indicated by lines linking them. 



  

Figure S7. The ILC1 and ILC2 populations activity do not have significant changes in the 

HPD tumors after anti-PD-1 therapy. Related to Figure 7. (A) The ILC1 and (B) the ILC2 

marker genes were not enriched in either the top up- or down-regulated genes in the HPD 

tumors. 

A. ILC1 population B. ILC2 population 



  

Figure S8. Pre-α-PD-1 therapy tumors of hyperprogressive patients have elevated 

inflammation pathway activity (mainly chemokine activity) compared to the responsive 

patients. Related to Figure 8. (A) GSVA identified the activation of two founder data sets of 

inflammation pathways in the pre-therapy tumors of HPD patients compared to the non-HPD 

patients; (B) The chemokine encoding genes that were up-regulated in the pre-therapy tumors 

of HPD patients compared to the non-HPD patients. 
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Figure S9. Results of the 121-gene expression signature in the discovery data set 

(Dataset_1). Related to Figure 9. ROC curves was shown for separating HPD patients from 

non-HPD patients in the discovery data set (4 HPD vs 16 non-HPD patients, AUC=1). The 

majority of these genes (70 of 121) belonged to the gene sets that we identified as significant to 

different aspects of the HPD tumors in our samples. Specifically, these genes were classified 

into the following six categories. 

AUC=1 

Performance of the 121-gene set in 
the discovery dataset (Dataset_1) 



  

Figure S10. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) LUSC, (B) STAD, (C) glioma, (D) 

BRCA were shown in this figure.  
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Figure S11. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) KIRC, (B) BLCA, (C) LIHC, (D) 

LUAD were shown in this figure.  
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Figure S12. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) HNSC, (B) SKCM were shown in 

this figure.  

 



 

Figure S13. The mutation analysis highlighted eleven genes with deleterious mutations in the HPD 

tumors after anti-PD-1 therapy. Related to Table 2. Most of these genes have not been adequately 

studied in the cancer context before. Querying the HPD tumors associated 11-mutated-gene set in the 

cBioPortal website (http://www.cbioportal.org/) showed that this gene set had somatic mutations or copy 

number aberrations (CNAs) in 8887 (22%) of 41320 sequenced patients. The frequencies of tumor 

samples having somatic alterations in at least one of the eleven genes among each type of cancers 

archived in cBioPortal were shown in the figure. 



Figure S14. Changes of the apoptosis pathway activity in the after anti-PD-1 
immunotherapy tumors of the HPD patients. Related to Figure 5 and Figure 6. (A) Five 
apoptosis gene sets were activated in the two patients after anti-PD-1 immunotherapy; (B) 27 
apoptotic genes of these five apoptosis gene sets including marker genes in caspase/bcl2 
pathways (CASP3, CASP7, BNIP2, BNIP3L) were significantly up-regulated. 
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Figure S15. Comparison of the somatic mutation profiles of pretreatment tumor samples 
between HPD patients and a subset of non-HPD patients. Related to Figure 9. Mutation 
analysis showed that 40 cancer genes had somatic mutations in the original tumors of the HPD 
patients but no mutations in the tumors of the patients whose tumor progression was 
intermediate and/or late. 
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Figure S16. GSVA analysis of the transcriptional profiles of pretreatment tumor 
samples between HPD patients and a subset of non-HPD patients. Related to Figure 9. 
(A) Four gene sets were significantly altered in the tumors of HPD patients compared to the 
patients with intermediate and/or late tumor progression; (B) The corresponding gene 
expression changes of the above significantly altered pathways were also shown. 
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Table S1, Table S2, Table S3 were the supplemental Excel files. 

 
 
Table S4. The clinical information of the eighteen follicular lymphoma patients from the 
GSE52562 study, among whom two patients had PFS less than two months together with 
advanced tumor progression phenotypes after anti-PD-1 treatment. Related to Figure 9. 
  

 
 
 

Table S5. The information of the 121 genes in the expression signature of pre-anti-PD-1 
treatment tumors that may be predictive of HPD (hyperprogressive disease) patients after 
anti-PD-1 immunotherapy. Related to Figure 9. 

Gene Symbol Entrez Gene Name Location Type(s) 
AAK1 AP2 associated kinase 1 Cytoplasm kinase 
ACOT1 acyl-CoA thioesterase 1 Cytoplasm enzyme 
ACOT2 acyl-CoA thioesterase 2 Cytoplasm enzyme 
ADAR adenosine deaminase, RNA specific Nucleus enzyme 
AFF1 AF4/FMR2 family member 1 Nucleus transcription regulator 
ANKS6 ankyrin repeat and sterile alpha motif 

domain containing 6 
Cytoplasm other 

ANXA5 annexin A5 Plasma 
Membrane 

transporter 

ARID2 AT-rich interaction domain 2 Nucleus transcription regulator 

ExpId SampleID gender age pfs.censorship pfs.time.month treatment tissue HPDstatus 

GSM1269893 SAMPLE.25 F 67 1 1.8 pre-pidilizumab tumor biopsy HPD 

GSM1269873 SAMPLE.5 F 79 1 2.0 pre-pidilizumab tumor biopsy HPD 

GSM1269883 SAMPLE.15 M 46 1 3.7 pre-pidilizumab tumor biopsy nonHPD 

GSM1269886 SAMPLE.18 M 69 0 4.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269877 SAMPLE.9 F 58 1 6.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269888 SAMPLE.20 F 56 0 7.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269875 SAMPLE.7 M 60 1 10.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269889 SAMPLE.21 F 62 1 12.7 pre-pidilizumab tumor biopsy nonHPD 

GSM1269871 SAMPLE.3 M 51 1 13.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269894 SAMPLE.26 M 58 1 15.3 pre-pidilizumab tumor biopsy nonHPD 

GSM1269890 SAMPLE.22 M 70 1 18.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269892 SAMPLE.24 M 63 0 18.8 pre-pidilizumab tumor biopsy nonHPD 

GSM1269879 SAMPLE.11 M 67 1 19.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269869 SAMPLE.1 F 61 1 21.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269891 SAMPLE.23 F 37 0 26.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269887 SAMPLE.19 F 41 0 30.4 pre-pidilizumab tumor biopsy nonHPD 

GSM1269881 SAMPLE.13 M 58 0 30.8 pre-pidilizumab tumor biopsy nonHPD 

GSM1269885 SAMPLE.17 F 45 0 35.0 pre-pidilizumab tumor biopsy nonHPD 



ARL1 ADP ribosylation factor like GTPase 1 Cytoplasm enzyme 
ARMC9 armadillo repeat containing 9 Cytoplasm other 
ATF7IP activating transcription factor 7 

interacting protein 
Nucleus transcription regulator 

ATP11C ATPase phospholipid transporting 11C Plasma 
Membrane 

transporter 

ATP5L ATP synthase membrane subunit g Cytoplasm enzyme 
BAZ1B bromodomain adjacent to zinc finger 

domain 1B 
Nucleus transcription regulator 

BAZ2A bromodomain adjacent to zinc finger 
domain 2A 

Nucleus transcription regulator 

C17orf97 chromosome 17 open reading frame 97 Other other 
CAMSAP1 calmodulin regulated spectrin associated 

protein 1 
Cytoplasm other 

CARD8 caspase recruitment domain family 
member 8 

Nucleus other 

CCNA1 cyclin A1 Nucleus other 
CCNT1 cyclin T1 Nucleus transcription regulator 
CD63 CD63 molecule Plasma 

Membrane 
other 

CD96 CD96 molecule Plasma 
Membrane 

other 

CHD4 chromodomain helicase DNA binding 
protein 4 

Nucleus enzyme 

CLSTN3 calsyntenin 3 Plasma 
Membrane 

other 

COL4A1 collagen type IV alpha 1 chain Extracellular 
Space 

other 

COL4A2 collagen type IV alpha 2 chain Extracellular 
Space 

other 

COMMD9 COMM domain containing 9 Cytoplasm other 
CORO1C coronin 1C Cytoplasm other 
CPT1A carnitine palmitoyltransferase 1A Cytoplasm enzyme 
CREBZF CREB/ATF bZIP transcription factor Nucleus transcription regulator 
CSNK1G1 casein kinase 1 gamma 1 Cytoplasm kinase 
CTLA4 cytotoxic T-lymphocyte associated 

protein 4 
Plasma 
Membrane 

transmembrane receptor 

CYP2D6 cytochrome P450 family 2 subfamily D 
member 6 

Cytoplasm enzyme 

DGKD diacylglycerol kinase delta Cytoplasm kinase 
DIAPH1 diaphanous related formin 1 Plasma 

Membrane 
other 

EID2 EP300 interacting inhibitor of 
differentiation 2 

Nucleus other 

ELK4 ELK4, ETS transcription factor Nucleus transcription regulator 
EP300 E1A binding protein p300 Nucleus transcription regulator 
ERN1 endoplasmic reticulum to nucleus 

signaling 1 
Cytoplasm kinase 

FAHD1 fumarylacetoacetate hydrolase domain 
containing 1 

Cytoplasm enzyme 

FAM104B family with sequence similarity 104 
member B 

Other other 

FBXL17 F-box and leucine rich repeat protein 17 Other other 



FPGT fucose-1-phosphate guanylyltransferase Cytoplasm enzyme 
FUBP3 far upstream element binding protein 3 Nucleus transcription regulator 
FUCA2 alpha-L-fucosidase 2 Extracellular 

Space 
enzyme 

GALNT10 polypeptide N-
acetylgalactosaminyltransferase 10 

Cytoplasm enzyme 

GALNT2 polypeptide N-
acetylgalactosaminyltransferase 2 

Cytoplasm enzyme 

GAPVD1 GTPase activating protein and VPS9 
domains 1 

Cytoplasm other 

GATAD2B GATA zinc finger domain containing 2B Nucleus transcription regulator 
GBF1 golgi brefeldin A resistant guanine 

nucleotide exchange factor 1 
Cytoplasm other 

GOLIM4 golgi integral membrane protein 4 Cytoplasm other 
GPR18 G protein-coupled receptor 18 Plasma 

Membrane 
G-protein coupled 
receptor 

HADH hydroxyacyl-CoA dehydrogenase Cytoplasm enzyme 
HHLA3 HERV-H LTR-associating 3 Other other 
HIVEP1 human immunodeficiency virus type I 

enhancer binding protein 1 
Nucleus transcription regulator 

HIVEP2 human immunodeficiency virus type I 
enhancer binding protein 2 

Nucleus transcription regulator 

HMBS hydroxymethylbilane synthase Cytoplasm enzyme 
HPGDS hematopoietic prostaglandin D synthase Cytoplasm enzyme 
HSPG2 heparan sulfate proteoglycan 2 Extracellular 

Space 
enzyme 

KDM6B lysine demethylase 6B Extracellular 
Space 

enzyme 

KDR kinase insert domain receptor Plasma 
Membrane 

kinase 

KLHDC8B kelch domain containing 8B Cytoplasm other 
LAMTOR3 late endosomal/lysosomal adaptor, 

MAPK and MTOR activator 3 
Cytoplasm other 

LGALS12 galectin 12 Extracellular 
Space 

other 

LNPEP leucyl and cystinyl aminopeptidase Cytoplasm peptidase 
LRP6 LDL receptor related protein 6 Plasma 

Membrane 
transmembrane receptor 

MAGEH1 MAGE family member H1 Cytoplasm other 
MEF2D myocyte enhancer factor 2D Nucleus transcription regulator 
MTIF3 mitochondrial translational initiation 

factor 3 
Cytoplasm translation regulator 

NFE2L2 nuclear factor, erythroid 2 like 2 Nucleus transcription regulator 
NOTCH3 notch 3 Plasma 

Membrane 
transcription regulator 

NPLOC4 NPL4 homolog, ubiquitin recognition 
factor 

Nucleus other 

NSD1 nuclear receptor binding SET domain 
protein 1 

Nucleus transcription regulator 

NUP188 nucleoporin 188 Nucleus other 
OBSCN obscurin, cytoskeletal calmodulin and 

titin-interacting RhoGEF 
Cytoplasm kinase 

OTUD7B OTU deubiquitinase 7B Cytoplasm peptidase 



PAK2 p21 (RAC1) activated kinase 2 Cytoplasm kinase 
PCDHGB7 protocadherin gamma subfamily B, 7 Other other 
PHF8 PHD finger protein 8 Nucleus enzyme 
PPM1L protein phosphatase, Mg2+/Mn2+ 

dependent 1L 
Cytoplasm phosphatase 

PPP2R3C protein phosphatase 2 regulatory subunit 
B''gamma 

Cytoplasm other 

PTPN3 protein tyrosine phosphatase, non-
receptor type 3 

Cytoplasm phosphatase 

PTS 6-pyruvoyltetrahydropterin synthase Cytoplasm enzyme 
RANGAP1 Ran GTPase activating protein 1 Nucleus other 
SATB1 SATB homeobox 1 Nucleus transcription regulator 
SERPINF1 serpin family F member 1 Extracellular 

Space 
other 

SETX senataxin Nucleus enzyme 
SLC25A34 solute carrier family 25 member 34 Cytoplasm other 
SLC27A1 solute carrier family 27 member 1 Plasma 

Membrane 
transporter 

SLC38A6 solute carrier family 38 member 6 Plasma 
Membrane 

transporter 

SLC6A6 solute carrier family 6 member 6 Plasma 
Membrane 

transporter 

SMURF1 SMAD specific E3 ubiquitin protein 
ligase 1 

Cytoplasm enzyme 

SNAPC4 small nuclear RNA activating complex 
polypeptide 4 

Nucleus transcription regulator 

SORT1 sortilin 1 Plasma 
Membrane 

G-protein coupled 
receptor 

SPEN spen family transcriptional repressor Nucleus transcription regulator 
SPIN2A spindlin family member 2A Other other 
SPP1 secreted phosphoprotein 1 Extracellular 

Space 
cytokine 

SSBP2 single stranded DNA binding protein 2 Nucleus transcription regulator 
OBFC1 STN1, CST complex subunit Nucleus other 
SYTL4 synaptotagmin like 4 Cytoplasm transporter 
TCF4 transcription factor 4 Nucleus transcription regulator 
TEX261 testis expressed 261 Extracellular 

Space 
other 

TGOLN2 trans-golgi network protein 2 Cytoplasm other 
TIMM8B translocase of inner mitochondrial 

membrane 8 homolog B 
Cytoplasm transporter 

TLN1 talin 1 Plasma 
Membrane 

other 

TMEM99 transmembrane protein 99 Other other 
TNFRSF25 TNF receptor superfamily member 25 Plasma 

Membrane 
transmembrane receptor 

TNKS2 tankyrase 2 Nucleus enzyme 
TRIO trio Rho guanine nucleotide exchange 

factor 
Cytoplasm kinase 

TRIP12 thyroid hormone receptor interactor 12 Cytoplasm enzyme 
TSC2 TSC complex subunit 2 Cytoplasm other 
TSPAN3 tetraspanin 3 Plasma 

Membrane 
other 



UBTF upstream binding transcription factor, 
RNA polymerase I 

Nucleus transcription regulator 

KIAA2018 upstream transcription factor family 
member 3 

Other other 

VHL von Hippel-Lindau tumor suppressor Nucleus transcription regulator 
WDR44 WD repeat domain 44 Cytoplasm other 
YWHAE tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein 
epsilon 

Cytoplasm other 

YWHAQ tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein 
theta 

Cytoplasm other 

ZFP36L1 ZFP36 ring finger protein like 1 Nucleus transcription regulator 
ZNF609 zinc finger protein 609 Nucleus other 
ZNF878 zinc finger protein 878 Other other 

 

 



PatientID Sample SampleType PFS 
Censorship 

Clinical  
Phenotype 

PFS 
(days) 

HPD 
status 

Pt103 Pt103_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt106 Pt106_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt11 Pt11_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 59 HPD 

Pt17 Pt17_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 48 HPD 

Pt1 Pt1_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 54 HPD 

Pt24 Pt24_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt27 Pt27_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt29 Pt29_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt31 Pt31_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt39 Pt39_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt46 Pt46_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 51 HPD 

Pt47 Pt47_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt52 Pt52_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt5 Pt5_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt62 Pt62_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt66 Pt66_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 59 HPD 

Pt78 Pt78_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt84 Pt84_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt85 Pt85_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 49 HPD 

Pt8 Pt8_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 52 HPD 

Pt90 Pt90_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 44 HPD 

Pt101 Pt101_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 612 nonHPD 

Pt10 Pt10_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 119 nonHPD 

Pt18 Pt18_Pre Pre-anti-PD-1 tumor 0 NA 519 nonHPD 

Pt23 Pt23_Pre Pre-anti-PD-1 tumor 0 DEATH PRIOR TO DISEASE 
ASSESSMENT 

52 nonHPD 

Pt26 Pt26_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 294 nonHPD 

Pt28 Pt28_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 61 nonHPD 

Pt2 Pt2_Pre Pre-anti-PD-1 tumor 1 STABLE DISEASE 115 nonHPD 

Pt30 Pt30_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 603 nonHPD 

Pt34 Pt34_Pre Pre-anti-PD-1 tumor 1 NA 834 nonHPD 

Pt36 Pt36_Pre Pre-anti-PD-1 tumor 1 NA 737 nonHPD 

Pt37 Pt37_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 176 nonHPD 

Pt38 Pt38_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 167 nonHPD 

Pt3 Pt3_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 583 nonHPD 

Pt44 Pt44_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 560 nonHPD 

Pt48 Pt48_Pre Pre-anti-PD-1 tumor 1 NA 1046 nonHPD 

Pt49 Pt49_Pre Pre-anti-PD-1 tumor 1 PARTIAL RESPONSE 827 nonHPD 

Pt4 Pt4_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 175 nonHPD 

Pt59 Pt59_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 111 nonHPD 

Pt65 Pt65_Pre Pre-anti-PD-1 tumor 1 STABLE DISEASE 280 nonHPD 

Pt67 Pt67_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 281 nonHPD 

Pt72 Pt72_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 333 nonHPD 

Pt76 Pt76_Pre Pre-anti-PD-1 tumor 0 NA 10 nonHPD 

Table S6. The clinical information of the 51 melanoma patients subjected to nivolumab 

immunotherapy from the CA209-038 study, among whom 21 patients had PFS less than two 

months together with post-therapy tumor progression phenotypes. Related to Figure 9. 



 

 
 

 

Pt77 Pt77_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 163 nonHPD 

Pt79 Pt79_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 171 nonHPD 

Pt82 Pt82_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 220 nonHPD 

Pt89 Pt89_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 219 nonHPD 

Pt92 Pt92_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 190 nonHPD 

Pt94 Pt94_Pre Pre-anti-PD-1 tumor 1 COMPLETE RESPONSE 729 nonHPD 

Pt98 Pt98_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 408 nonHPD 

Pt9 Pt9_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 66 nonHPD 

Table S7. The information of the 40 HPD associated cancer genes having nonsilent somatic 

mutations in the original tumors of the HPD patients but no mutations in the tumors of the 

patients whose tumor progression was intermediate and/or late. Related to Figure 9. 



Transparent Methods: 

Whole-exome sequencing (WES) and RNA-seq experimentation and data analyses 

For each set of paired tumor samples, a section of formalin-fixed tissue was examined with 

hematoxylin and eosin (H&E) staining to confirm the presence of tumor and determine the 

relative tumor burden. At least five 10-mm FFPE slides were used for each tumor specimen, 

from which DNA and RNA were purified by a commercial vendor (Omega Bio-tek, Inc., 

Norcross, GA 30071) and subjected to WES and RNA-seq after library purification. The Illumina 

Nextera Rapid Capture Exome kit was used for the preparation of exome libraries, which were 

sequenced to the average depth of 150 X coverage in the paired end 150 bp (PE150) mode 

with a HiSeq 4000 system. The Illumina TruSeq RNA Access kit was used for the preparation of 

total RNA libraries that were sequenced to the average depth of 75 million reads in the paired 

end 100 bp (PE100) mode using the HiSeq 2500 system.  

The WES short reads were aligned to a reference genome (NCBI human genome assembly 

hg19) using the BWA (Burrows-Wheeler Aligner) program (Li and Durbin, 2009). Each 

alignment was assigned a mapping quality score by BWA (Li and Durbin, 2009), which 

generated a Phred-scaled probability that the alignment is correct. Reads with low mapping 

quality scores (< 5) were removed to reduce the false positive rate. The PCR duplicates were 

detected and removed using Picard software. Local realignment of the BWA-aligned reads was 

performed using the Genome Analysis Toolkit (GATK) (McKenna et al., 2010). VarScan 2 

(Koboldt et al., 2012) was used to identify somatic variants based on the local realignment 

results comparing each tumor with the two reference blood samples. Default parameters in 

VarScan 2 were used. The lists of shared SNVs/indels were then annotated using ANNOVAR 

(Wang et al., 2010). Single nucleotide polymorphisms (SNPs) were filtered against dbSNP 

version 142 (dbSNP 142). Plots of mutations were generated using the “oncoPrint” function 

provided by the R package – ComplexHeatmap (Gu et al., 2016). To identify somatic mutations 

with the most significant functional consequences, we predicted the impact of the mutations on 



HPD tumors using the bioinformatics programs SIFT, PolyPhen-2, and FATHMM according to 

our previous approaches (Xiong et al., 2015). Network analysis of the eleven genes having 

deleterious mutations in HPD tumors was performed and graphically depicted using Ingenuity 

Pathway Analysis software (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). Mapping of the 

p.Y1611S mutation to the 3D structure of the TSC2 protein was performed using MuPIT 

software (Niknafs et al., 2013). The bioinformatics tools SciClone (Miller et al., 2014) and 

Clonevol (Dang et al., 2017) were used to identify the clonal structures of the paired tumors of 

the two HPD patients. Plots of the clonal mutation clusters were generated using the fishplot 

software feature (Miller et al., 2016).  

RNA-seq sample quality was analyzed using the FastQC program 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw sequence data reads in fasta 

format were first processed through Perl scripts (Haas et al., 2013). Data were then refined by 

removing reads containing adapter, poly-N, or low-quality reads (Pei et al., 2016; Wang et al., 

2015). All downstream analyses were based on refined data. The “rsem prepare reference” 

script of the RSEM package was used to generate reference transcript sequences by using the 

gene annotation file (GTF) format and the full genome sequence (FASTA) format of human 

GRCh37 assembly. All of the quality reads of different samples were mapped to generated 

reference transcript sequences using the Bowtie-2 program (Langmead et al., 2009) to 

determine the identity between cDNA sequences and corresponding genomic exons in regions 

of exact matches. The “rsem calculate expression” script of RSEM was used to analyze both the 

alignment of reads against reference transcript sequences and the calculation of relative 

abundances. Normalized gene expression values in TPM (Transcripts Per Kilobase Million) 

were used as input of the AltAnalyze software (Olsson et al., 2016) for differential gene 

expression analysis. FDR (False discovery rate) corrected P-values of less than 0.05 were used 

as criteria for significantly regulated genes.  



To perform oncogenic pathway or network analysis, the list of differentially expressed genes 

between paired pre- and post-anti-PD-1 therapy tumors of the two patients was analyzed 

through the use of IPA. The GSVA (Gene Set Variation Analysis) (Hanzelmann et al., 2013) and 

GSEA (Gene Set Enrichment Analysis) (Subramanian et al., 2005) approaches were used to 

analyze the activity and enrichment of immune cell populations, respectively. GSEA analysis 

was performed for pre-ranked differentially expressed genes using the option ‘GseaPreranked’. 

One thousand permutations were used to calculate significance. A gene set was considered to 

be significantly enriched in one of the two groups when the P value was lower than 0.05 and the 

FDR was lower than 0.25 for the corresponding gene set. For inflammatory pathway analysis, 

we performed a focused gene expression study by analyzing the changes of the inflammatory 

related genes included in the Hallmark gene set for inflammatory response named 

“HALLMARK_INFLAMMATORY_RESPONSE” downloaded from the MSigDB database 

(Liberzon et al., 2015; Liberzon et al., 2011).  The GSVA approach (Hanzelmann et al., 2013) 

was used to characterize the activity of inflammation pathways in the post-anti-PD-1 treatment 

HPD tumors vs pre-treatment tumors. All heatmaps of gene expression were generated using 

the R package – heatmap3 (https://cran.r-project.org/web/packages/heatmap3/). 

 

Tumor immunogenicity analysis 

Immunogenicity of the pre-anti-PD-1 treatment tumors and post-treatment HPD tumors was 

analyzed using published criteria (Charoentong et al., 2017; Hakimi et al., 2016). The 

immunophenoscore (IPS) was calculated on an arbitrary 0–10 scale based on the sum of the 

weighted averaged Z score of the four categories shown in Figure 5 in accordance to the 

previous methods (Charoentong et al., 2017; Tappeiner et al., 2017). Briefly, the four categories 

include 20 single factors such as the presence of specific immune cell types along with the 

abundance of MHC molecules, or molecules known to act as immunoinhibitors or 

immunostimulators. For each determinant, a sample-wise Z score from gene expression data 



was calculated. For the six cell types, an average Z score from the corresponding metagenes 

was calculated. The metagenes were defined previously as non-overlapping sets of genes that 

are representative for specific immune cell subpopulations and are not expressed in normal 

tissue (Charoentong et al., 2017). The detailed list of genes included in the metagenes were 

available from the same literature (Charoentong et al., 2017). The determinants were then 

divided into four categories—effector cells (activated CD4+ or CD8+ T cells and effector 

memory CD4+ T cells or CD8+ T cells), and suppressive cells (Tregs and MDSCs [myeloid-

derived suppressor cells]), MHC-related molecules, and checkpoints or immunomodulators are 

color-coded in the outer part of the wheel (red: positive Z score, blue: negative Z score). 

 

Development and validation of an HPD classifier based on gene expression data 

Previously, no gene expression signature had been identified to predict which patients might 

develop HPD after receiving anti-PD-1 immunotherapy. To identify such predictors, we analyzed 

the publicly available gene expression data sets of the anti-PD-1 immunotherapy studies that 

may contain subsets of patients that acquired HPD. Similar to previous studies (Champiat et al., 

2017; Kato et al., 2017; Saada-Bouzid et al., 2017), we defined HPD as (1) progression at first 

restaging on therapy, (2) increase in tumor size > 50%, and (3) >2-fold increase in tumor growth 

rate (TGR). Based on these criteria, we identified two cohorts in these datasets that received 

anti-PD-1 treatment and contained patients that developed putative HPD. The first study 

(Accession # “GSE52562” in the GEO database) performed gene expression profiling of tumor 

biopsies before and after pidilizumab (a humanized anti-PD-1 monoclonal antibody, also called 

“CT-011”) therapy in patients with relapsed follicular lymphoma (Westin et al., 2014). Previously, 

it was suggested that binding to PD-1 was the main driver for pidilizumab’s activity. Recent 

analyses show that pidilizumab binds to a hypoglycosylated /nonglycosylated form of PD-1 that 

is present on a distinct subpopulation of exhausted T cells (Fried et al., 2018). Nevertheless, 

multiple studies have shown that pidilizumab can affect PD-1 function either through binding or 



other mechanisms, so pidilizumab treatment is still considered as anti-PD-1 therapy (Abdin et 

al., 2018; Benson et al., 2010; Jelinek and Hajek, 2016; Mkrtichyan et al., 2011; Rosenblatt et 

al., 2011; Westin et al., 2014). Two of eighteen follicular lymphoma patients from this study had 

PFS less than two months after anti-PD-1 treatment. These two patients were classified as HPD 

patients, while the other sixteen were non-HPD patients (Table S4). To develop an HPD-

associated gene expression signature, the pre-therapy tumor expression data of our two HPD 

patients were combined with the pre-treatment tumor expression data of the two HPD patients 

and sixteen non-HPD patients from the GSE52562 study. This was used as the HPD signature 

discovery dataset (called “Dataset_1”). Another study (quoted as “CA209-038”) assessed 

transcriptome changes in tumors from the patients with advanced melanoma before and after 

nivolumab immunotherapy (Riaz et al., 2017). This CA209-038 study had 21 advanced 

melanoma patients having PFS < 2 months after anti-PD-1 immunotherapy. Therefore, these 21 

patients were classified as the HPD patients while the other 31 patients were classified as non-

HPD patients (Table S6). These 51 patients had pre-therapy gene expression data available, 

and this dataset was used as the validation dataset (called “Dataset_2”). 

Based on the genome-wide expression data of Dataset_1 and Dataset_2, we developed 

and validated a 121-gene classifier using the cancerclass R package (Budczies et al., 2014). 

The performance of the 121-gene set as a classifier was evaluated with the use of receiver-

operating-characteristic curves, calculation of AUC (Hanley and McNeil, 1982), and estimates of 

sensitivity and specificity implemented in the cancerclass R package (Jan et al., 2014). This 

classification protocol starts with a feature selection step and continues with nearest-centroid 

classification. Fisher’s exact test was used for categorical variables. All confidence intervals are 

reported as two-sided binomial 95% confidence intervals. Statistical analysis was performed 

with R software, version 3.2.3 (R Project for Statistical Computing). We also tested the 

prognostic performance of the 121-gene signature using gene expression data from the TCGA 

tumor samples in conjunction with the online biomarker validation tool and database – 



SurvExpress (Aguirre-Gamboa et al., 2013). Specifically, Kaplan-Meier survival analyses were 

implemented to estimate the survival functions after the samples were classified into two risk 

groups according to their risk scores based on the 121-gene set. Differences in survival risk 

between the two risk groups were assessed using the Mantel-Haenszel log-rank test. 
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