Supplementary Materials and Methods

Phosphorylation studies

Phosphorylation of Syk (15min treatment), SHP1, SHP2, SHIP1 or SHIP2 (1, 5 or 30min treatment) in the treated macrophages were measured using the MSD platform (Meso Scale Diagnostics), following the Manufacturer's instructions.

Flow cytometry

The immuno-phenotyping of macrophages was monitored by flow cytometer using fluorochrome-conjugated mouse anti-human antibodies (BD Pharmingen): CD16-BV421, CD32-FITC, CD64-BUV737, CD40-APC, CD80-AF700, HO-1-AF647, CD206-BV510 and NRP1-BV421. Fluorescence intensities were measured and analyzed by LSRII flow cytometer (BD Biosciences Immunocytometry Systems). Data analysis was performed using FlowJo software v10 (Tree Star).

Enzyme-linked immunosorbent assay

The production of pro-inflammatory cytokines was measured from supernatants of treated macrophages using the MSD 10-cytokine Pro-Inflammatory Panel (Meso Scale Diagnostics), following the Manufacturer's instruction.

Antioxidant capacity

Human blood plasma samples from healthy individuals (in-house blood donor program) or inhibitor-negative and inhibitor-positive HemA patients (HRF, Inc.; George King Bio-Medical, Inc.) were tested using the Total Antioxidant Capacity Assay Kit (Abcam), following the Manufacturer's instruction.

Supplementary Figure legends

Supplementary Figure 1. Dose correlation of HO-1 protein expression, *PPAR* γ gene expression and reduced glutathione production in macrophages. Macrophages (n=3) were treated with IgG1, rFVIII or rFVIIIFc at the indicated concentrations. (A) HO-1 protein expression was measured by flow cytometry after 24h treatment. (B) *PPAR* γ mRNA expression was measured after 6h of treatment by Q-PCR. (C) Glutathione production was measured from lysates of cells treated for 24h. Mean±SE; *p≤0.05, **p≤ 0.01, ***p≤ 0.005, calculated as compared to untreated cells.

Supplementary Figure 2. RNA sequencing pipeline. Bioinformatics analyses: the reads were aligned with STAR (version 2.4.0c) ⁵⁸, and genes annotated in Gencode v18 were quantified with featureCounts (v1.4.3-p1) ⁵⁹. Normalization and differential expression was done with the Bioconductor package DESeq2 ⁶⁰. p \leq 0.05 was taken as significant difference.

Supplementary Figure 3. Metabolite screening summary of lysates of IgG1-, rFVIII- or rFVIIIFc-treated macrophages. Green: indicates significant difference – downregulation ($p \le 0.05$); red: indicates significant difference – upregulation ($p \le 0.05$); light green: narrowly missed cutoff for significance - downregulation; 0.05 ; light red: narrowly missed cutoff for significance - upregulation; <math>0.05 ; light red: narrowly missed cutoff significance - upregulation; <math>0.05 ; light red: narrowly missed cutoff for significance - upregulation; <math>0.05 ; Non-colored text and cell: mean values are not significantly different for that comparison.

Supplementary Figure 4. Fatty acid screening of IgG1-, rFVIII- or rFVIIIFc-treated macrophage lysates. Green: indicates significant difference – downregulation ($p \le 0.05$); red: indicates significant difference – upregulation ($p \le 0.05$); light green: narrowly missed cutoff for significance - downregulation; 0.05 ; light red: narrowly missed cutoff for significance - upregulation; <math>0.05 ; light red: narrowly missed cutoff for significance - upregulation; <math>0.05 ; Non-colored text and cell: mean values are not significantly different for that comparison.

Supplementary Figure 5. Mouse bone marrow-derived macrophages respond to rFVIIIFc treatment with polarization to Mox/M2-like cells. Bone marrow from 12-week-old C57BL/6 mice was collected and cultured in complete RPMI medium supplemented with 20ng/ml rmM-CSF for 6 days. Mouse macrophages (n=5) then were treated with 200nM each of IgG1, rFVIII or rFVIIIFc. (A) HO-1 protein expression was measured by flow cytometry from 24h-treated samples. (B) Arginase 1 (*Arg1*) mRNA expression was measured after 6h of treatment by Q-PCR. (C) Glutathione production was measured from lysates of cells treated for 24h. Mean±SE; *p≤0.05, **p≤ 0.01, ***p≤ 0.005.

Super Pathway	
Amino Acid	
Peptide	
Carbohydrate	
Energy	
Lipid	
Nucleotide	
Cofactors and Vitamins	
Xenobiotics	
Unnamed	

CELL PELLETS	FVIII Treatment		FVIIIFc Treatment		Treatment Difference	
Super Pathway	<u>rFVIII 6h</u> IgG1 6h	<u>rFVIII 24h</u> IgG1 24h	<u>rFVIIIFc 6h</u> IgG1 6h	<u>rFVIIIF-c 24h</u> IgG1 24h	<u>rFVIIIFc 6h</u> rFVIII 6h	<u>rFVIIIFc 24h</u> rFVIII 24h
				-		

	FVIII Treatment		FVIIIFc Treatment		Treatment Differences	
Summary Counts	<u>rFVIII 6H</u> IgG1 6H	rFVIII 24H IgG1 24H	<u>rFVIIIFc 6H</u> IgG1 6H	rFVIIIFc 24H IgG1 24H	rFVIIIFc 6H rFVIII 6H	rFVIIIFc 24H rFVIII 24H
Total number of biochemicals with p≤0.05	43	15	88	131	107	139
% of biochemicals with p≤0.05	7.0	2.4	14.3	21.3	17.4	22.6
Biochemicals (↑↓)	2 41	3 12	49 39	37 94	97 10	65 74
Total number biochemicals 0.05 <p<0.10< td=""><td>79</td><td>12</td><td>42</td><td>62</td><td>44</td><td>57</td></p<0.10<>	79	12	42	62	44	57
% of biochemicals with 0.05 <p<0.10< td=""><td>12.8</td><td>2.0</td><td>6.8</td><td>10.1</td><td>7.2</td><td>9.3</td></p<0.10<>	12.8	2.0	6.8	10.1	7.2	9.3
Biochemicals (↑↓)	1 78	3 9	18 24	16 46	36 8	24 33

	FVIII Tr	eatment	FVIIIFc Treatment		
Cell Lysate	rFVIII 6H	rFVIII 24H	rFVIIIFc 6H	rFVIIIFc 24H	
buturulcarnitino (C4)		0.02	1.02	1 01	
propiopulcarnitine (C4)	0.64	0.92	0.46	0.52	
propionyicamiline (CS)	0.72	0.72	0.46	0.55	
acetylcamitine (C2)	0.85	0.80	0.72	0.84	
3-hydroxybutyrylcarnitine (1)	0.88	1.08	1.21	1.17	
3-hydroxybutyrylcarnitine (2)	0.91	0.84	0.99	1.35	
hexanoylcarnitine (C6)	0.93	1.15	1.81	1.04	
octanoylcarnitine (C8)	0.84	1.12	1.67	0.86	
decanoylcarnitine (C10)	0.73	1.49	1.14	1	
5-dodecenoylcarnitine (C12:1)	1.19	1.14	1.56	0.6	
laurylcarnitine (C12)	1.13	1.11	2.58	0.76	
myristoylcarnitine (C14)	1.01	1.08	1.73	0.66	
palmitoylcarnitine (C16)	1.01	0.87	1.52	0.51	
palmitoleoylcarnitine (C16:1)*	1.28	1	1.3	0.38	
stearoylcarnitine (C18)	0.91	0.88	1.32	0.55	
linoleoylcarnitine (C18:2)*	1.18	0.77	0.8	0.21	
3-hydroxyoleoylcarnitine	1.03	0.98	1.16	0.57	
oleoylcarnitine (C18:1)	1.41	1.01	1.25	0.34	
myristoleoylcarnitine (C14:1)*	1.23	1.16	1.3	0.4	
adipoylcarnitine (C6-DC)	0.72	0.83	0.64	0.99	
arachidoylcarnitine (C20)*	0.85	0.79	0.95	0.59	
arachidonoylcarnitine (C20:4)	1.28	0.84	0.81	0.23	
adrenoylcarnitine (C22:4)*	1.08	0.72	0.59	0.31	
behenoylcarnitine (C22)*	0.82	0.97	0.9	0.71	
dihomo-linoleoylcarnitine (C20:2)*	1.11	0.84	1.1	0.52	
eicosenoylcarnitine (C20:1)*	0.85	0.86	0.87	0.64	
erucoylcarnitine (C22:1)*	0.8	0.82	0.82	0.48	
docosatrienoylcarnitine (C22:3)*	1.55	0.78	1.16	1.26	
tetracosadienoylcarnitine (C24:2)*	0.84	0.71	0.77	0.57	
lignoceroylcarnitine (C24)*	0.78	0.87	0.91	0.86	
margaroylcarnitine (C17)*	1.13	0.9	1.71	0.64	
pentadecanoylcarnitine (C15)*	1.18	0.92	1.81	0.54	
3-hydroxypalmitoylcarnitine	0.93	1	1.37	0.71	
N6,N6,N6-trimethyllysine	0.81	0.77	1.19	0.72	
deoxycarnitine	0.8	0.87	0.77	1.06	
carnitine	0.78	0.94	0.77	1.12	
3-hydroxybutyrate (BHBA)	0.96	1.43	1.18	0.99	

