

1 Supplemental Figure 1

2

3 The effects of chronic vagal nerve stimulation (VNS) on hemodynamics in control (CTRL, 4 n=5), sham stimulation (SS, n=6) and VNS (n=6) rats 5 weeks after SU5416 injection. 5 There are no significant differences in mean arterial pressure (mAP), left ventricular end-6 diastolic pressure (LVEDP), or heart rate (HR) among 3 groups (A-C). Max +dP/dt (D) 7 and Min –dP/dt (E) of RV are significantly higher in SS than in CTRL, while there are no 8 significant differences between VNS and SS. Data are expressed as mean \pm SEM. 9 Differences were tested by one-way analysis of variance, followed by post-hoc Tukey-10 Kramer test. 11 **p < 0.01 vs. CTRL.

13 SUPPLEMENTAL MATERIALS:

14 Assessment of heart rate variability

Beat to beat (RR) intervals were obtained from 10-min telemetric ECG recording during daytime. The RR-interval time series were used to derive power spectral density (PSD, msec²/Hz) by Fourier transform, plotting power in milliseconds squared per Hertz (msec²/Hz) versus Hertz, for frequencies up to 2.0 Hz. The frequency range of 0.04–0.73 Hz was defined as low frequency (LF) and 0.73–2.0 Hz as high frequency (HF) (1).

21

22 Hemodynamic assessment and right ventricular hypertrophy

23 Hemodynamic data were recorded under general anesthesia with a mixture of 24 ure than $(250 \text{ mg/mL}) + \alpha$ -chloralose (40 mg/mL) and mechanical ventilation. Each 25 signal is obtained at 1000 Hz using a 16-bit analog-to-digital converter (Power Lab 16/35, 26 AD Instruments, Sydney, Australia) and stored in a dedicated laboratory computer system. 27 LV end-diastolic pressure (LVEDP) and right ventricular (RV) end-diastolic pressure 28 (RVEDP) were averaged for at least 10 sequential beats. Both Max +dP/dt and Min -29 dP/dt in RV pressure were calculated from the first time derivative of instantaneous RV 30 pressure (2). Max +dP/dt was divided by RVEDP to normalize the preload effect. 31 Pulmonary vascular resistance (PVR) was calculated as follow: PVR = (mean PAP -32 LVEDP)/CO.

33

35

34 Collection of lung and right heart samples for histological analysis

At the end of each hemodynamic study in protocol 1B, the lungs were inflated

36 with 10% formalin plus 0.5% agarose at 20 cm H_2O pressure, and fixed in 10% formalin 37 overnight. The left and right lobes were blocked and paraffin embedded. All sections were 38 cut at 5-µm. The right heart was also harvested and immediately fixed in buffered 10% 39 paraformaldehyde, embedded in paraffin, and cut into 5-µm thick sections.

40

41

Luminal occlusive lesion of pulmonary arteries

42 Verhoeff van Gieson (EVG) staining was performed for morphometric analysis 43 of pulmonary arteries. All small PAs (more than 100 vessels per cross-section of left lobes 44 including the hilum, outer diameter $< 100 \mu m$) were evaluated. Vessels were assessed for 45 occlusive neointimal lesions on EVG-stained slides and scored as: no evidence of 46 neointimal formation (grade 0), partial luminal occlusion (< 50 %, grade 1), or severe-47 luminal occlusion (\geq 50 %, grade 2). PA occlusion rate was expressed as percentage for 48 each grade. We assessed the vessels with outer diameter (OD) \leq 50 µm and 50 < OD < 49 100 µm (3).

50

51 Macrophage migration of pulmonary arteries

52 Macrophages were detected by immunostaining using anti-CD68 antibody 53 (1:50 dilution; MCA341B, Serotec). The number of CD68-positive cells were counted 54 within a 100-µm diameter circle around the vessel (outer diameter, 30-70 µm) in 10 55 random fields at $\times 400$ magnification (4).

56

57

Cell proliferation of pulmonary arteries

58 The number of proliferative cells was evaluated by anti-Ki67 antibody (1:400 59 dilution; RM-9106-S1, Thermo Scientific). Ki67positive cells were counted within a 100-

61	×400 magnification (4).		
62			
63	Apoptotic cells of pulmonary arteries		
64	Apoptotic cells were labeled using a TdT-mediated dUTP-biotin nick end		
65	labeling (TUNEL) in situ apoptosis detection kit (MK500, Takara). TUNEL-positive cells		
66	in pulmonary arteries (outer diameter, 30-70 μ m) were counted in 10 random fields at		
67	×400 magnification (5).		
68			
69	Fibrosis of right ventricle		
70	Masson Trichrome (MT) staining was performed on serial sections of the right		
71	ventricle. The percentage of fibrotic area was quantified on digitized images: blue-stained		
72	tissue area was expressed as a percentage of the total surface area of RV (6).		
73			
74	Capillary density of right ventricle		
75	Capillary epithelium was detected by anti-CD34 antibody (1:100 dilution; LS-		
76	C150289, LS Bio). Capillary density was expressed as the number of capillaries per		
77	section area, measured in at least three randomly chosen areas per ventricle, where		
78	cardiomyocytes were transversally sectioned at $\times 400$ magnification (7).		
79			
80	Apoptotic ratio of right ventricle		
81	Apoptotic ratio was expressed as the number of TUNEL-positive myocytes		
82	divided by the total number of cardiomyocytes per field. Apoptosis was assessed in at		
83	least three randomly chosen areas per ventricle, where cardiomyocytes were transversally		

 μm diameter circle around the vessel (outer diameter, 30-70 $\mu m)$ in 10 random fields at

84 sectioned at $\times 200$ magnification (6).

85

86 Immunoblot analysis of the expression of eNOS and phospho-eNOS

87 In protocol 2, harvested lungs were frozen at -80°C and then homogenized in 88 HEPES buffer. The protein concentration of the lysate was determined using a Coomassie 89 protein assay kit (Pierce, Rockford, IL, USA) with bovine serum albumin as standard. 90 Ten µg of protein was used to detect the expression of endothelial nitric oxide synthase 91 (anti-eNOS antibody; 1:5,000; #9572, CST, Danvers, USA) and phosphorylated-eNOS 92 (anti-phospho-eNOS; 1:2,000; #9571, CST, Danvers, USA) (8). The protein amount was 93 normalized by the loading control, β -actin (anti- β -actin; 1:2,000; #E2710, CST, Danvers, 94 USA).

95

96 **RT-PCR analysis**

97 In protocol 2, total RNA of lung tissue was extracted using the RNeasy Mini
98 Kit (QIAGEN). The mRNA levels were determined by real-time PCR. For reverse
99 transcription and amplification, we used the ReverTra Ace qPCR Kit (TOYOBO) and
100 SYBR Premix Ex Taq (TaKaRa), respectively. The acquired fluorescence data were
101 analyzed by ΔΔCt method, with *18s* as internal control.

102

PCR primers

Symbol	Sequence		
1111	Forward	5'-CCC TGA ACT CAA CTG TGA AAT AGC A-3'	
1110	Reverse	5'-TTC CAA GCC CTT GAC TTG GG-3'	
114	Forward	5'-ATT GTA TGA ACA GCG ATG ATG CAC-3'	
по	Reverse	5'-TCT GGA GTT CCG TTT CTA CCT GG-3'	
Tele	Forward	5'-TCA GTT CCA TGG CCC AGA C-3'	
Тпја	Reverse	5'-AGC AGT TAA GGC TGA GTT GTC TGA A-3'	
Maril	Forward	5'-TGT GAG GCT CAT CTT TGC CAT C-3'	
Мсрі	Reverse	5'-CAC CTG CAT GGC CTG GTC TA-3'	
1110	Forward	5'-CAG ACC CAC ATG CTC CGA GA-3'	
1110	Reverse	5'-CAA GGC TTG GCA ACC CAA GTA-3'	
	Forward	5'-TGG TGA CAG TGA TTG TGC TGA GA-3'	
Alpna/nachr	Reverse	5'-ACC ATG CAC ACC AGT TCA GGA G-3'	
190	Forward	5'-CCC TGA ACT CAA CTG TGA AAT AGC A-3'	
105	Reverse	5'-CCC AAG TCA AGG GCT TGG AA-3'	

107 **References in SUPPLEMENTAL MATERIAL:**

- Sanyal SN, Ono K. Derangement of autonomic nerve control in rat with right
 ventricular failure. Pathophysioly 2002;8:197–203.
- 110 2. GLEASON WL, BRAUNWALD E. Studies on the first derivative of the ventricular
 111 pressure pulse in man. J Clin Invest 1962;41:80–91.
- Toba M, Alzoubi A, O'Neill KD, et al. Temporal hemodynamic and histological
 progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial
 hypertensive rats. Am J Physiol Heart Circ Physiol 2014;306:H243–250.
- 115 4. Abe K, Shinoda M, Tanaka M, et al. Haemodynamic unloading reverses occlusive
- 116 vascular lesions in severe pulmonary hypertension. Cardiovasc Res 2016;111:16–25.
- 117 5. Long L, Ormiston ML, Yang X, et al. Selective enhancement of endothelial BMPR-
- 118 II with BMP9 reverses pulmonary arterial hypertension. Nat Med 2015;21:777–785.
- Bogaard HJ, Mizuno S, Hussaini AA Al, et al. Suppression of histone deacetylases
 worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J
- 121 Respir Crit Care Med 2011;183:1402–1410.
- 122 7. De Man FS, Handoko ML, Van Ballegoij JJM, et al. Bisoprolol delays progression
 123 towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail
 124 2012;5:97–105.
- Tanaka M, Abe K, Oka M, et al. Inhibition of nitric oxide synthase unmasks vigorous
 vasoconstriction in established pulmonary arterial hypertension. Physiol Rep
 2017;5:e13537.