

Supporting Information

© 2018 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

Structural Determination of Antioxidant and Anticancer Flavonoid Rutin in Solution through DFT Calculations of ¹H NMR Chemical Shifts

Leonardo A. De Souza, Haroldo C. Da Silva, and Wagner B. De Almeida^{*[a]}

open_201800209_sm_miscellaneous_information.pdf

Figure S1. Experimental ¹H NMR spectrum (in DMSO-*d6*) from ref. [46] (a) and B3LYP/6-31G(d,p)-PCM(DMSO) (b-r) ¹H NMR spectra for 17 Rutin optimized structures with the CH₃-C5" group in axial position.

Figure S2. Experimental ¹H NMR spectrum (in DMSO-*d6*) from ref. [46] (a) and B3LYP/6-31G(d,p)-PCM(DMSO) (b-r) ¹H NMR spectra for 17 rutin optimized structures with the CH₃-C5^{**} group in equatorial position.

Figure S3. B3LYP/6-31G(d,p)-PCM(DMSO) ¹H NMR chemical shifts (in ppm) regression analysis for rutin molecule. Rotated and Fully-optimized almost planar (FULL-OPT) structures.

Figure S4.1 Comparison of B3LYP/6-31G(d,p) Mulliken charges for all atoms of the optimized and rotated structure **27** of the rutin molecule showed in Figure 6.

Figure S4.2 Comparison of B3LYP/6-31G(d,p) Mulliken charges for all atoms of the optimized and rotated structure **28** of the rutin molecule showed in Figure 6.

Figure S4.3 Comparison of B3LYP/6-31G(d,p) Mulliken charges for all atoms of the optimized and rotated structure **32** of the rutin molecule showed in Figure 6.

Figure S4.4 Comparison of B3LYP/6-31G(d,p) Mulliken charges for all atoms of the optimized and rotated structure **34** of the rutin molecule showed in Figure 6.

Figure S4.5 Comparison of B3LYP/6-31G(d,p) Mulliken charges for all atoms of the optimized and rotated structure **30** of the rutin molecule showed in Figure 6.

Figure S5. Simulation of the IR spectra calculated for rutin structures shown in Figure 6. The main absorption bands are described in Table S2.

Figure S6. DFT/6-31G(d,p) relative energies (ΔE_{rel}) and Gibbs free energy (ΔG_{rel}) values (in kcal mol⁻¹) for fully optimized rutin structures: 6, 11, 15, 22, 27, 28, 30, 32 and 34. Gas phase and PCM-DMSO data are shown.

Figure S7. Theoretical PCM-DMSO ¹H NMR spectra for five representative rutin ϕ_1 , ϕ_2 rotated structures (see Figure 6) calculated with B3LYP, M062x and B97D functionals using 6-31G(d,p) and 6-311+G(2d,p) basis sets and PCM model to describe DMSO solvent effects. Structure **30** ($\phi_1 = -146^\circ$) did not need to be rotated to describe correctly the H2' and H6' NMR signals.

Figure S9. Comparison between B3LYP/6-31G(d,p), M062x/6-31G(d,p)//B3LYP/6-31G(d,p) and B97D/6-31G(d,p)//B3LYP/6-31G(d,p) PCM-DMSO ¹ H NMR spectra for ten rutin fully optimized structures: 6, 11, 15, 18, 22, 27, 28, 30, 32 and 34. (Continuation)

Figure S10. DFT-PCM(H₂O) ¹H NMR chemical shift regression analysis for five representative rutin rotated structures (**27**, **28**, **30**, **32** and **34**).

Table S1. Optimized B3LYP/6-31G(d,p) dihedral angles (ϕ_1 to ϕ_6) and relative energy (ΔE_{rel} , in kcal mol⁻¹) for 34 true minima located on the PES for rutin molecule. Minimum energy structures from Figure 1 were used as initial guesses input for full geometry optimization.

Rutin strucutures			ΔE_{rel}^{a} (kcal mol ⁻¹)								
		ϕ_1	\$ 2	\$ 3	φ ₄ φ ₅		ф 6	PCM-Water ^b			
	Geometries optimized using minimum energy input structures from rigid 1D Scan										
1	φ ₁ : M1-axial	162.3	-80.2	176.3	-169.3	-68.8	-44.3	20.6 (23.2) ^a			
2	φ ₁ : M1-equat	162.6	-80.4	176.7	-168.6	-70.0	-42.2	17.6 (19.7) ^a			
3	φ ₁ : M2-axial	163.0	-80.7	176.6	-168.8	-69.1	-44.8	20.5 (23.2) ^a			
4	φ ₁ : M2-equat	162.5	-80.3	176.5	-168.7	-69.8	-42.8	20.2 (21.7) ^a			
5	φ ₂ : M3-axial	160.4	124.4	134.2	-169.2	-68.9	-43.3	16.0 (17.0) ^a			
6	φ ₂ : M3-equat	160.8	124.8	134.3	-167.5	-69.8	-41.5	13.1 (13.5) ^a			
7	φ ₂ : M4-axial	162.1	-80.4	176.5	-169.2	-68.9	-44.8	20.5 (23.2) ^a			
8	φ ₂ : M4-equat	162.4	-80.2	176.4	-168.7	-69.7	-42.7	17.5 (19.7) ^a			
9	φ ₃ : M5-axial	163.0	-80.2	176.2	-168.7	-68.9	-44.0	20.5 (23.3) ^a			
10	¢₃: M5-equat	162.3	-80.3	176.9	-169.3	-68.8	-43.1	17.6 (19.7) ^a			
11	φ ₃ : M6-axial	154.6	-97.2	-64.0	-170.0	-68.0	-46.4	18.8 (18.4) ^a			
12	φ₃: M6-equat	154.7	-97.3	-64.1	-170.6	-68.4	-43.1	15.8 (14.9) ^a			
13	φ ₄ : M7-axial	162.4	-80.3	176.7	-167.9	-70.0	-43.8	20.5 (23.2) ^a			
14	φ ₄ : M7-equat	162.4	-80.5	176.7	-169.1	-69.1	-42.1	17.6 (19.7) ^a			
15	φ4: M8-axial	156.0	-75.5	170.7	68.9	-83.3	-35.7	18.2 (18.1) ^a			
16	φ ₄ : M8-equat	159.5	-79.2	170.4	71.5	-88.0	-75.0	11.4 (12.1) ^a			
17	φ ₄ : M9-axial	161.7	-79.7	175.0	-72.4	-102.9	-25.4	18.9 (22.8) ^a			
18	φ ₄ : M9-equat	161.7	-80.4	175.4	-71.1	-107.0	-18.2	16.1 (19.1) ^a			
19	φ ₄ : M10-axial	157.3	-73.8	170.3	65.7	-83.7	-33.3	17.9 (18.0) ^a			
20	φ ₄ : M10-equat	158.6	-74.6	170.8	62.7	-83.0	-45.1	12.2 (12.4) ^a			
21	φ ₅ : M11-axial	162.2	-80.8	175.3	173.3	157.3	-83.6	13.8 (17.6) ^a			
22	φ ₅ : M11-quat	162.3	-81.0	175.6	172.6	156.6	-83.1	11.3 (14.4) ^a			
23	φ ₅ : M12-axial	162.8	-81.0	176.1	162.7	-165.9	-59.9	19.8 (23.5) ^a			
24	φ ₅ : M12-equat	162.8	-80.6	175.8	162.9	-164.4	-59.3	17.0 (20.1) ^a			
25	φ ₆ : M13-axial	162.6	-80.4	176.4	-169.7	-68.6	-44.0	20.5 (23.2) ^a			
26	φ ₆ : M13-equat	162.6	-80.3	176.6	-169.0	-69.3	-42.1	17.6 (19.7) ^a			
27	φ ₆ : M14-axial	164.5	-85.1	177.1	116.2	-77.8	-156.6	20.3 (19.9) ^a			
28	φ ₆ : M14-equat	167.1	-83.7	177.3	90.7	-59.5	-146.7	15.0 (13.1) ^a			
	Ge	ometries opt	imized as in	put combina	tion of \$ 1, to	φ ₆ from stru	ictures 1 to 2	8			
29	E-ax (\$\$: M11- eq)	-145.4	106.8	-86.7	-170.0	-100.6	177.4	17.6 (19.6) ^a			
30	E-eq (\$\$: M11- eq)	-145.5	106.7	-84.3	-169.9	-99.7	176.8	15.0 (16.1) ^a			
31	G-ax (\$5: M11- eq)	-174.5	114.2	138.2	-168.7	-98.4	177.9	9.4 (11.2) ^a			
32	G-eq (φ ₅ : M11- eq)	174.0	119.1	137.3	-168.9	-99.5	176.9	6.4 (7.7) ^a			
33	H-ax (φ ₅ : M11- eq)	-171.6	109.1	138.9	-60.9	-125.5	-168.8	3.0 (3.5) ^a			
34	H-eq (\$5: M11- eq)	-172.0	109.8	139.8	-60.7	-124.7	-171.1	0 (0) ^a			

^a The gas phase relative energy values are given in parenthesis.

^b The corresponding PCM-DMSO relative energies are very similar to PCM-Water values, exhibiting precisely the same energetic trend.

Structure 27 Structure 32 Structure 34 Structure 30 Structure 28 Atoms Opt Opt Rotated Opt Rotated Opt Rotated Opt Rotated **C6** -0.1708 -0,1706 -0,1691 -0.1671 -0.1681 -0.1679 -0.1696 -0.1697 -0.1673 C5 0.3139 0.3155 0,3211 0,3195 0.3153 0.3147 0.3148 0.3157 0.3144 C10 -0.0244 -0.0227 -0,0282 -0,0248 -0.0116 -0.0053 -0.0132 -0.0130 -0.0254 **C9** 0.2986 0.2972 0,3062 0,3040 0.2969 0.2940 0.2963 0.2939 0.2933 -0.1685 -0.1681 -0,2079 -0.1614 **C8** -0,2063 -0.1623 -0.1625 -0.1616 -0.1633 **C7** 0.3462 0.3465 0,3508 0,3521 0.3498 0.3499 0.3489 0.3492 0.3473 H6 0.0910 0.0914 0.0948 0.0949 0.0882 0,0981 0,0971 0.0919 0.0926 H8 0.1090 0.1085 0,1194 0,1204 0.1124 0.1131 0.1111 0.1119 0.1081 **C4** 0.4335 0.4192 0,4241 0.4608 0.4475 0.4560 0.4585 0.4519 0,4368 01 -0.5637 -0.5524 -0,5681 -0,5637 -0.5566 -0.5403 -0.557 -0.5445 -0.5469 C2 0,2969 0.2994 0.2625 0,3088 0.2838 0.2306 0.2906 0.2534 0.2538 C3 0.2265 0.2539 0.2209 0.2437 0,2312 0,2413 0.2275 0.2499 0.2180 07 -0.5523 -0.5524 -0,5471 -0,5472 -0.5493 -0.5490 -0.5510 -0.5506 -0.5526 H7 0.3256 0.3257 0,3288 0,3286 0.3271 0.3270 0.3258 0.3260 0.3247 05 -0.5722 -0.5715 -0,5678 -0,5670 -0.5666 -0.5664 -0.5696 -0.5690 -0.5756 H5 0.3583 0.3588 0,3604 0,3606 0.3584 0.3579 0.3576 0.3579 0.3568 C1' 0.0373 0.0350 0,0326 0,0299 0.0236 0.0556 0.0224 0.0473 0.0508 C2' -0.2242 -0.1471 -0.1548 -0,1508 -0,1469 -0.1354 -0.1328 -0.1244 -0.1146 C6' -0.1076 -0.1009 -0,1048 -0,1071 -0.1039 -0.1042 -0.1064 -0.1045 -0.1028 C3' 0.2805 0.2985 0,2904 0.2760 0.2878 0.2917 0.3022 0.3029 0,2813 H2' 0.0908 0.0982 0,0953 0,0949 0.1316 0.1168 0.1322 0.1195 0.1274 C5' -0.1163 -0.1182 -0,1159 -0.1174 -0.1154 -0.1178 -0,1162 -0.1191 -0.1130 H6' 0.1055 0.1034 0,1095 0.1077 0.1030 0.1034 0.1010 0.1099 0,1090 C4' 0.3281 0.3272 0,3292 0,3278 0.3300 0.3266 0.3213 0.3230 0.3284 04 -0.5809 -0.5783 -0,5848 -0,5789 -0.6435 -0.6397 -0.6383 -0.6354 -0.5863 04' -0.5546 -0.5532 -0,5530 -0,5524 -0.5561 -0.5559 -0.5605 -0.5592 -0.5540 H4' 0.3390 0.3394 0,3398 0.3381 0.3410 0,3397 0.3401 0.3404 0.3357 H5' 0.1054 0.1093 0,1079 0,1093 0.1035 0.1045 0.0975 0.1000 0.1104 03' -0.6073 -0.5994 -0,6059 -0,6014 -0.5987 -0.5946 -0.6330 -0.6137 -0.5899 H3' 0.3324 0.3330 0,3322 0,3315 0.3342 0.3330 0.3559 0.3380 0.3349 03' -0.5208 -0.5295 -0,5185 -0,5217 0.0761 0.0764 0.1111 0.1127 0.0791 04 0.1012 0.1162 -0.4865 -0.4861 -0,4962 -0,4959 0.1188 0.1146 0.1177 05 -0.5086 -0.5069 -0,5113 -0,5111 -0.5045 -0.5034 -0.5297 -0.5301 -0.5041

Table S2. B3LYP/6-31G(d,p) Mulliken charges (in e) calculated for optimized and rotated (ϕ_1 and ϕ_2 rotated) preferred structures of rutin in the vacuum.

Table S3. B3LYP/6-31G(d,p) IR stretching frequencies (in cm^{-1}) and intensities (in Km mol^{-1}) in parenthesis for relevant rutin structures.

Rutin Structures	С-Н (Сб)	С-Н (С2')	O-H (C5)	O-H (C7)	О-Н (СЗ')	O-H (C4')
	str. A-ring	str. B-ring	str. A-ring	str. A-ring	str. B-ring	str. B-ring
Str- 27 Full-opt	3198 (8.2)	3311 (9.1)	3154 (451)	3820 (87)	3742 (156)	3763 (123)
Str. 27 Rotated	3199 (8.4)	3292 (2.3)	3156 (435)	3821 (88)	3754 (98)	3764 (118)
Str- 30 Full-opt	3197 (8.9)	3217 (6.1)	3145 (462)	3821 (84)	3836 (68)	3774 (128)
Str- 32 Full-opt	3200 (4.9)	3261 (31)	3292 (488)	3820 (97)	3835 (61)	3769 (157)
Str. 32 Rotated	3201 (4.8)	3252 (5.4)	3291 (471)	3820 (97)	3835 (61)	3769 (142)

Table S4. Rotated dihedral angles (ϕ_1 and ϕ_2) and relative energies (ΔE_{rel} , ΔH_{rel} and ΔG_{rel} , in kcal mol⁻¹) for ten selected B3LYP/6-31G(d,p) rutin structures showing reasonable agreement with experimental ¹H NMR profile. (T = 298.15 K, p = 1 atm)

	Rutin	B3LYP/6-31G(d,p)					M06-	2x/6-310	G(d , p)	B97D/6-31G(d,p)		
Structure	Torsion angle rotated in 1D scan curve	Rotated torsion angle values (°)		ΔE _{rel}	ΔH _{rel}	ΔGrel	ΔE _{rel}	ΔH _{rel}	ΔGrel	ΔErel	ΔH _{rel}	ΔG_{rel}
		$\phi_1{}^{a,e}$	$\phi_2^{b,e}$	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO	PCM- DMSO
6	\$ 2	138	- ^c	9.6	9.5	6.3	10.5	10.4	7.1	7.4	7.3	4.0
11	\$ 3	140	- ^c	12.9	13.2	11.	10.9	11.2	9.1	10.5	10.8	8.7
15	ϕ_4	140	- ^c	15.4	15.7	17.1	13.9	14.2	15.6	7.4	7.7	9.1
18	ϕ_4	145	- ^c	12.5	12.5	12.7	11.5	11.5	11.7	11.8	11.8	12.0
22	\$ 5	145	- ^c	7.5	7.2	5.6	7.3	6.9	5.4	8.4	8.4	6.5
27	\$ 6	145	-65	17.0 (13.9) ^f	17.1 (14.0) ^f	14.8 (11.7) ^f	12.4 (10.4) ^f	12.6 (10.6) ^f	10.3 (8.3) ^f	9.5 (6.4) ^f	9.7 (6.6) ^f	7.4 (4.2) ^f
28	\$ 6	155	-75	11.0 (9.7) ^f	11.3 (10.0) ^f	12.6 (11.3) ^f	4.6 (3.0) ^f	4.8 (3.3) ^f	6.1 (4.6) ^f	0.6 (-1.0) ^f	0.8 (-0.7) ^f	2.1 (0.6) ^f
30	Combined ¢'s	_ d	_ d	8.3 (6.8) ^f	8.1 (6.6) ^f	5.7 (4.1) ^f	6.1 (5.1) ^f	5.9 (4.9) ^f	3.5 (2.5) ^f	8.0 (6.3) ^f	7.8 (6.1) ^f	5.4 (3.7) ^f
32	Combined ϕ 's	-150	130	2.7 (1.1) ^f	2.6 (0.9) ^f	-1.0 (-2.7) ^f	3.2 (2.3) ^f	3.1 (2.2) ^f	-0.5 (-1.4) ^f	5.6 (3.9) ^f	5.5 (3.8) ^f	1.9 (0.2) ^f
34	Combined $\phi's$	-152	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

^a Rotated ϕ_1 torsion angle to reach agreement with experimental ¹H NMR spectrum in DMSO solution.

^b Rotated ϕ_2 torsion angle to reach agreement with experimental ¹H NMR spectrum in DMSO solution.

^c ϕ_2 was optimized.

 $^{d}\phi_{1}$ and ϕ_{2} were optimized.

^e ϕ_3 , ϕ_4 , ϕ_5 and ϕ_6 were optimized.

^f Values calculated with improved 6-311+G(2d,p) basis set are quoted in parenthesis.

 Table S5. DFT-PCM-DMSO ¹H NMR chemical shifts (in ppm). Regression analysis for rutin molecule.

Structure	Adjusted R-Squared (Adj. R ²)									
		Residual		Residual		Residual		Residual		
	Value	Sum of	Value	Sum of	Value	Sum of	Value	Sum of		
		Squares		Squares		Squares		Squares		
	M062x/6-31G(d,p)		M062x/6-311+G(2d,p)		B97D/6-31G(d,p)		B97D/6-311+G(2d,p)			
27	0.975	±1.664	0.981	±1.384	0.963	±1.607	0.971	±1.395		
28	0.945	±4.494	0.944	±4.655	0.982	±0.811	0.956	±2.560		
30	0.972	±1.930	0.974	±1.923	0.968	±1.410	0.972	±1.347		
32	0.986	±0.920	0.984	±1.072	0.980	±0.889	0.980	±0.946		
34	0.959	±2.705	0.969	±2.192	0.965	±1.534	0.966	±1.547		
Structure	Regression Slope									
		Standard		Standard		Standard		Standard		
		Error		Error		Error		Error		
	M062x/6-31G(d,p)		M062x/6-311+G(2d,p)		B97D/6-31G(d,p)		B97D/6-311+G(2d,p)			
27	1.120	±0.046	1.172	±0.042	0.897	±0.045	0.942	±0.042		
28	1.209	±0.075	1.218	±0.077	0.926	±0.032	1.029	±0.057		
30	1.125	±0.049	1.159	±0.049	0.903	±0.042	0.942	±0.041		
32	1.125	±0.034	1.122	±0.037	0.907	±0.034	0.932	±0.035		
34	1.101	±0.058	1.141	±0.053	0.893	±0.044	0.917	±0.044		
Structure				Regression	Intercept					
		Standard		Standard		Standard		Standard		
		Error		Error		Error		Error		
	M062x/6-31G(d,p)		M062x/6-311+G(2d,p)		B97D/6-31G(d,p)		B97D/6-311+G(2d,p			
27	-0.797	0.221	-1.251	0.201	1.035	0.217	0.560	0.202		
28	-1.437	0.363	-1.680	0.369	0.818	0.154	-0.059	0.274		
30	-0.800	0.238	-1.030	0.237	0.907	0.203	0.547	0.198		
32	-0.885	0.164	-0.980	0.177	0.876	0.161	0.658	0.166		
34	-0.666	0.281	-0.874	0.253	0.929	0.212	0.874	0.213		