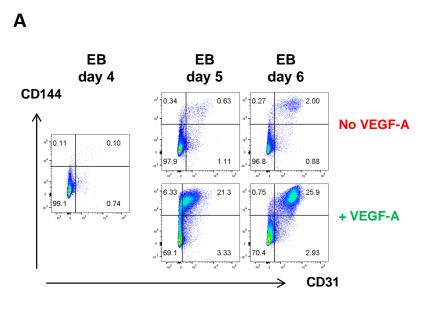
Stem Cell Reports, Volume 11


Supplemental Information

Early Human Hemogenic Endothelium Generates Primitive and Defini-

tive Hematopoiesis In Vitro

Eva Garcia-Alegria, Sara Menegatti, Muhammad Z.H. Fadlullah, Pablo Menendez, Georges Lacaud, and Valerie Kouskoff

SUPPLEMENTAL FIGURE AND LEGENDS

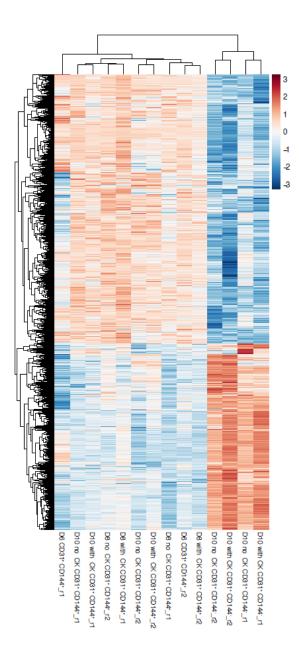
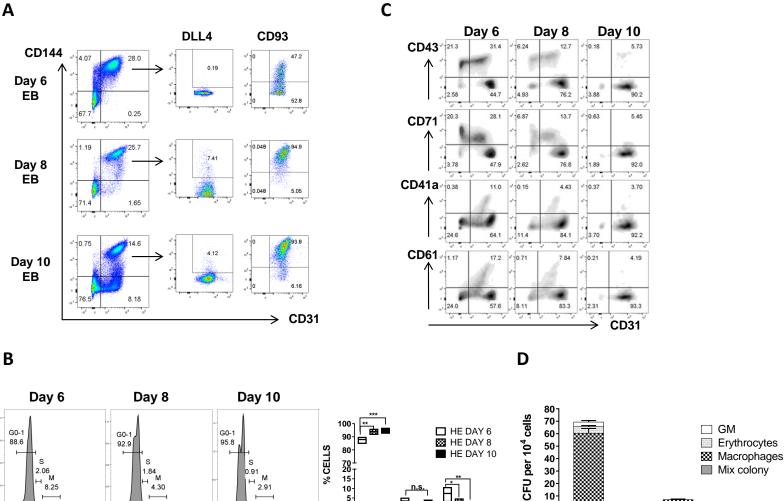



Figure S1: related to experimental procedures and Figure 1.

A. Effect of VEGF-A addition at day 4 of EB differentiation on the emergence of human CD144⁺CD31⁺ cell populations. Data shown are representative of 3 independent experiments.

В

B. Heat map of all differentially expressed genes (DEG) between the CD31⁺CD144⁺ population obtained at different times of EB differentiation and the hematopoietic committed population CD31⁺CD144^{neg} based on transcriptomic RNA-seq data.

Figure S2: HE at different time points of the EB differentiation, related to figure 2

Hoechst 33342

70 20

15

10 5

G0-1

S

G2/M

30

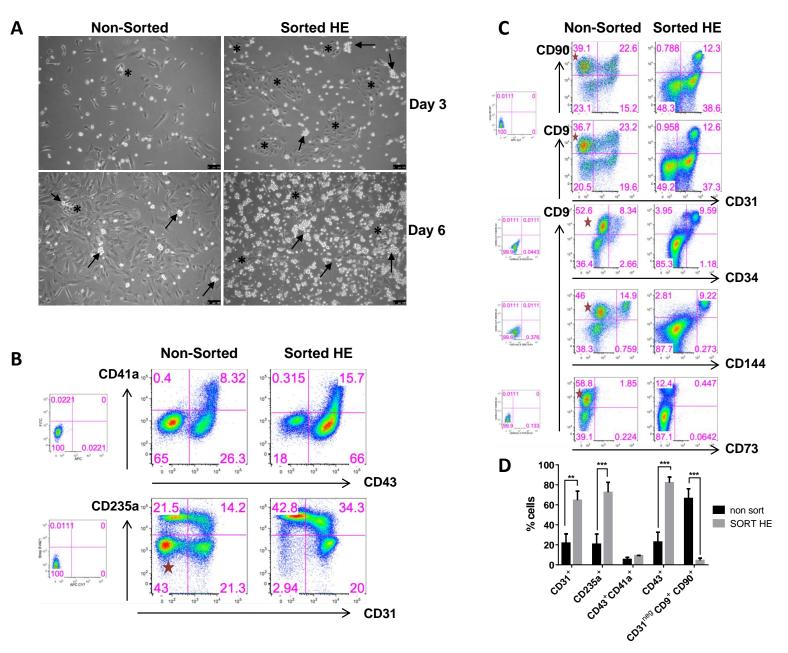
20-

10

0

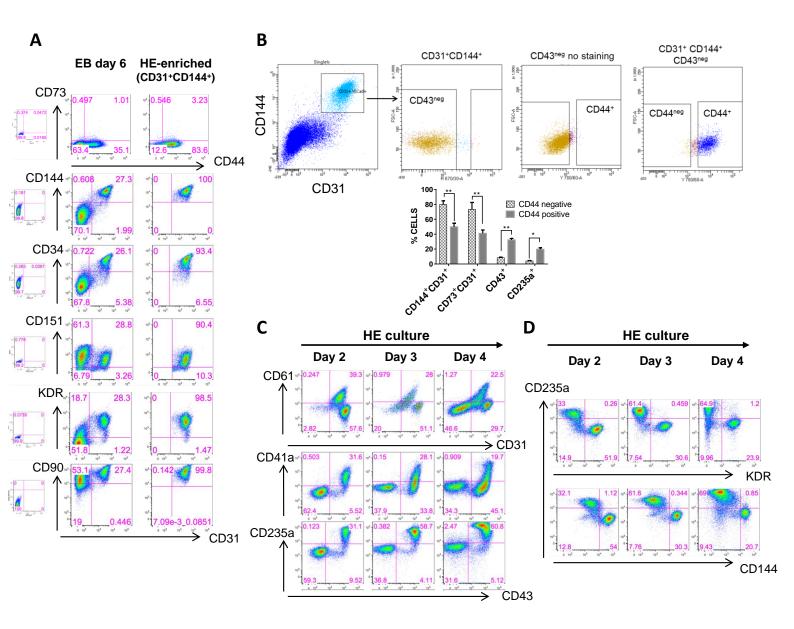
day 6

Mix colony

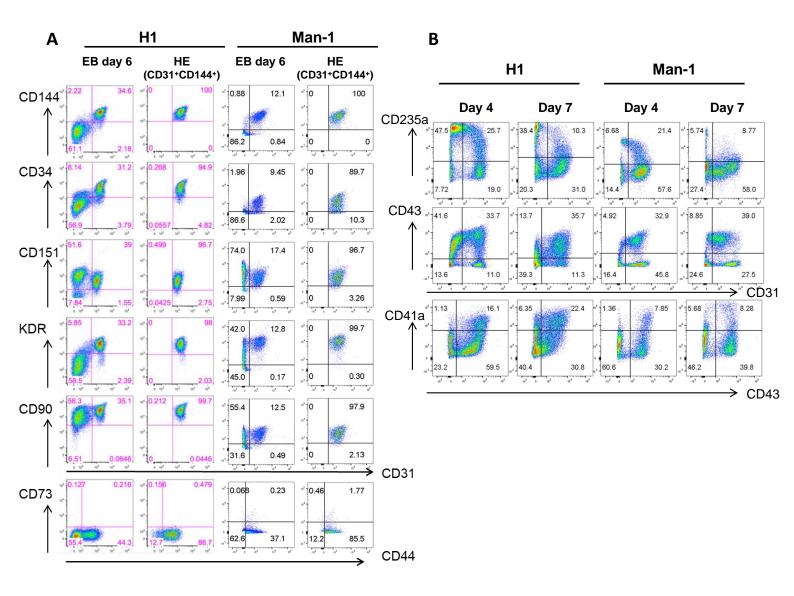

day10

day8

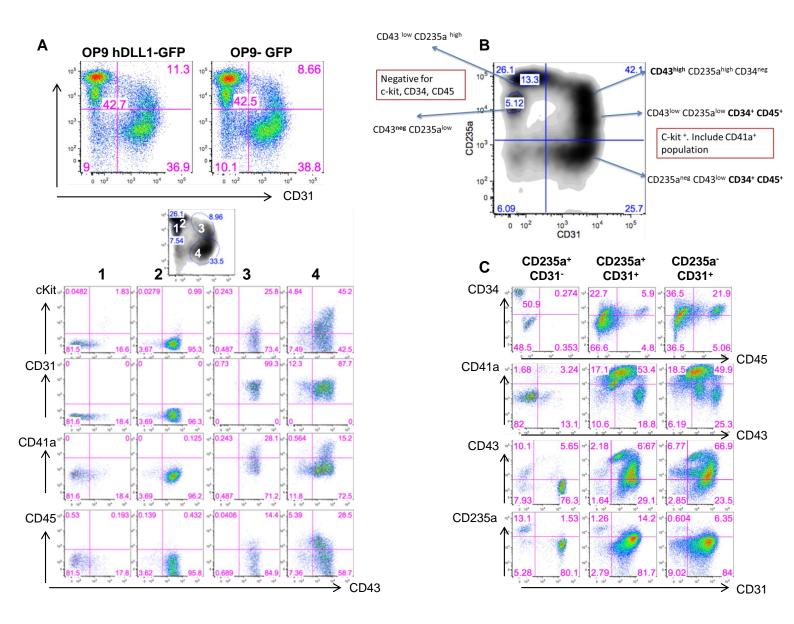
s 2.06 M


8.25

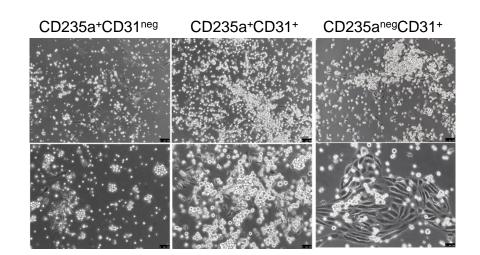
- A. Flow cytometric analysis of DLL4 and CD93 expression within the CD31⁺CD144⁺ cell populations at day 6, 8 and 10 of embryoid body (EB) differentiation. Data shown are representative of 3 independent experiments.
- B. Representative plot and statistical analysis of cell cycle of CD31⁺CD144⁺ cell populations isolated at the indicated times. Error bars indicate the SEM of data from 3 independent experiments. The significance of the difference between samples was confirmed using 2-way ANOVA; p-values *p< 0.05 ** p<0.001 ***p=0.0005.
- C. Flow cytometric analysis of the hematopoietic profile obtained after 4 days of culture of CD31⁺CD144⁺CD43^{neg} isolated along the EB differentiation at the indicated times. Data shown are representative of 3 independent experiments.
- D. Quantification of colony forming unit (CFU) potential of 104 cells obtained after 7 days of culture on gelatine-coated plates of CD31⁺CD144⁺ isolated from EBs at the indicated times. Error bars indicate the SEM of data from 3 independent experiments.


Figure S3: Enrichment of the HE, related to experimental procedures

- A. Representative photographs of cell morphologies obtained after 3 and 6 days of culture on gelatincoated dishes in hematopoietic-inducing condition from non-sorted day 6 embryoid body (EB) or from purified CD31⁺CD144⁺ cells at the same time of differentiation (scale bars 100µm). Progression and emergence of the hematopoietic round cells can be observed. Asterisks indicate endothelial clusters with hematopoietic cells emerging from them. Arrows indicate some of the emerging clusters of blood cells.
- B. Flow cytometric analysis of the hematopoietic markers CD43, CD235a and CD41a and endothelial CD31 marker after 4 days of culture. Red star marks the presence of a cell population only present in the non-sorted culture (B-C).
- C. Immuno-phenotypic characterization of the cell populations found in the non-sorted and sorted cultures after 4 days in gelatine coated culture. Data are representative of 3 independent experiments.
- D. Quantification and statistical analysis of the flow cytometry data obtained after 4 days of culture. Error bars indicate the SEM of data from 3 independent experiments. The significance of the difference between samples was confirmed using 2-way ANOVA; p-value **p=0.004 and ***p<0.001.


Figure S4: Purified HE of Man-5 cell line and hematopoietic development in gelatine, related to figure 3

- A. Immuno-phenotypic characterization of CD31⁺CD144⁺ cells at day 6 of EB differentiation. Data shown are representative of 5 independent experiments.
- B. Sorting strategy of CD31⁺CD144⁺ cells at day 6 of EB differentiation to better characterization of CD44 expressing population. Statistical analysis shows an increase of hematopoietic cells after 7 days in culture from the CD44⁺CD31⁺CD144⁺ cell population. Error bars indicate the SEM of data from 3 independent experiments. The significance of the difference between samples was confirmed using 2-way ANOVA; p value *p<0.05 and **p< 0.005.</p>
- C. Flow cytometric analysis of the hematopoietic development obtained from sorted CD31⁺CD144⁺CD43^{neg} on gelatine-coated plates at the times indicated. Data shown are representative of 3 independent experiments.
- D. Downregulation of CD144 endothelial and KDR mesodermal marker in the hematopoietic population obtained from sorted CD31⁺CD144⁺CD43^{neg} cultured on gelatine-coated plates and analysed at the indicated day of culture. Data shown are representative of 3 independent experiments.


Figure S5: Characterization of HE and hematopoietic differentiation obtained from H1 and Man1 cell lines, related to experimental procedures.

- A. Phenotypic characterization of CD31⁺CD144⁺ at day 6 of EB differentiation for H1 and Man1 hESC lines. Representative plots from 3 different experiments per cell line, showing reproducible marker characterization of the human HE-enriched populations.
- B. Flow cytometric analysis of the hematopoietic development obtained from sorted CD31⁺CD144⁺CD43^{neg} cells on gelatine-coated plates at day 4 and 7 for the H1 and Man1 hESC lines. Data shown are representative of 3 independent experiments per cell line.

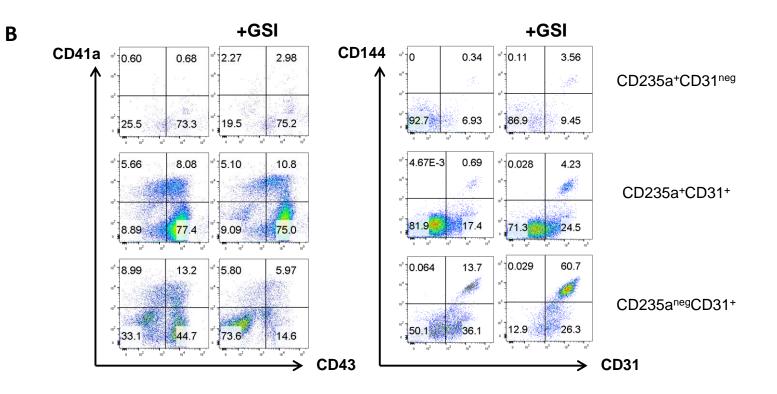


Figure S6: CD235a/CD31 kinetics in stromal co-culture, related to figure 3 and 5

- A. Representative flow cytometric analysis of CD235a/CD31 populations obtained from CD31⁺CD144⁺CD43^{neg} co-cultured for 7 days with irradiated OP9 and OP9-hDLL1 (upper panels). Characterization of the cell surface markers expressed or not in each population following 7 days of co-culture with stromal cells OP9-hDLL1, (lower panels). Data shown are representative of 3 independent experiments.
- B. Summary of the cell surface markers expressed by each population after 7 days of CD31⁺CD144⁺CD43^{neg} co-culture with stromal cells.
- C. Flow cytometric analysis of hematopoietic development from the different CD235a/CD31 fractions after 7 day of culture on irradiated OP9 GFP stromal cells.

Α

Figure S7: Culture of CD235a/CD31 populations in gelatine and effect of Notch inhibition in coculture, related to figures 5 and 7.

- A. Representative pictures of cell cultures obtained from sorted CD235a/CD31 fractions after 7 days of culture on gelatine-coated plates magnification (10X (upper row) and 20X (lower row)). Scale bars 100μm.
- B. Effect of Notch inhibition as measured by the addition of 10 μ M gamma secretase inhibitor (GSI) RO4929097 or DMSO control in the culture of the indicated populations after 7 days in co-culture with OP9h-DLL1. Data are representative of 3 independent experiments.

Table S1

EnsembleGeneID	symbol	Fold change	EnsembleGeneID	symbol	Fold change
ENSG00000135638	EMX1	0.032	ENSG00000139618	BRCA2	0.370
ENSG00000171388	APLN	0.038	ENSG00000161681	SHANK1	0.371
ENSG00000170373	CST1	0.052	ENSG00000163520	FBLN2	0.371
ENSG00000139438	FAM222A	0.070	ENSG00000139734	DIAPH3	0.372
ENSG00000115085	ZAP70	0.073	ENSG00000138821	SLC39A8	0.377
ENSG00000101441	CST4	0.076	ENSG00000134333	LDHA	0.377
ENSG00000109255	NMU	0.076	ENSG00000198838	RYR3	0.377
ENSG00000188803	SHISA6	0.096	ENSG00000184661	CDCA2	0.379
ENSG00000105672	ETV2	0.100	ENSG00000128683	GAD1	0.387
ENSG00000148704	VAX1	0.101	ENSG0000090530	LEPREL1	0.387
ENSG00000163492	CCDC141	0.119	ENSG00000115687	PASK	0.389
ENSG00000185666	SYN3	0.132	ENSG0000011426	ANLN	0.391
ENSG00000203805	PPAPDC1A	0.134	ENSG00000198826	ARHGAP11A	0.392
ENSG00000102385	DRP2	0.139	ENSG0000075218	GTSE1	0.395
ENSG00000155657	TTN	0.139	ENSG00000109805	NCAPG	0.398
ENSG0000075340	ADD2	0.142	ENSG00000186638	KIF24	0.400
ENSG00000197046	SIGLEC15	0.156	ENSG00000122966	CIT	0.405
ENSG00000143369	ECM1	0.164	ENSG00000131747	TOP2A	0.405
ENSG00000168280	KIF5C	0.164	ENSG0000050555	LAMC3	0.406
ENSG00000244588	RAD21L1	0.165	ENSG00000142945	KIF2C	0.414
ENSG00000222033	LINC01124	0.171	ENSG00000141526	SLC16A3	0.414
ENSG00000171643	S100Z	0.174	ENSG00000187164	KIAA1598	0.417
ENSG00000110092	CCND1	0.177	ENSG00000138778	CENPE	0.421
ENSG00000100351	GRAP2	0.182	ENSG00000166845	C18orf54	0.421
ENSG00000130477	UNC13A	0.193	ENSG00000139946	PELI2	0.424
ENSG00000166342	NETO1	0.197	ENSG00000101447	FAM83D	0.425
ENSG00000171587	DSCAM	0.198	ENSG00000178295	GEN1	0.427
ENSG00000158764	ITLN2	0.205	ENSG00000119969	HELLS	0.434
ENSG00000178568	ERBB4	0.235	ENSG0000079739	PGM1	0.436
ENSG00000159212	CLIC6	0.238	ENSG00000148773	MKI67	0.436
ENSG00000179715	PCED1B	0.249	ENSG00000126787	DLGAP5	0.440
ENSG00000105464	GRIN2D	0.262	ENSG00000123124	WWP1	0.441
ENSG00000159307	SCUBE1	0.263	ENSG00000162367	TAL1	0.442
ENSG00000095777	МҮОЗА	0.266	ENSG00000095637	SORBS1	0.444
ENSG00000189120	SP6	0.270	ENSG00000140534	TICRR	0.446
ENSG00000179403	VWA1	0.273	ENSG00000183850	ZNF730	0.447
ENSG00000111981	ULBP1	0.285	ENSG00000051341	POLQ	0.448
ENSG00000144136	SLC20A1	0.308	ENSG00000117724	CENPF	0.450
ENSG00000185565	LSAMP	0.310	ENSG00000180773	SLC36A4	0.450
ENSG00000186777	ZNF732	0.322	ENSG00000105227	PRX	0.450
ENSG00000166450	PRTG	0.334	ENSG00000137642	SORL1	0.451
ENSG00000155760	FZD7	0.337	ENSG00000162063	CCNF	0.454

ENSG00000123485	HJURP	0.338	ENSG00000166851	PLK1	0.456
ENSG0000233224	HIST1H2AM	0.339	ENSG00000138182	KIF20B	0.460
ENSG0000066279	ASPM	0.344	ENSG00000161800	RACGAP1	0.461
ENSG00000159399	HK2	0.345	ENSG00000100629	CEP128	0.463
ENSG00000135476	ESPL1	0.355	ENSG00000146263	MMS22L	0.464
ENSG00000167703	SLC43A2	0.357	ENSG00000131389	SLC6A6	0.472
ENSG0000088826	SMOX	0.358	ENSG0000060982	BCAT1	0.472
ENSG00000168421	RHOH	0.363	ENSG0000068489	PRR11	0.473
ENSG00000137812	CASC5	0.369			
EnsembleGeneID	symbol	Fold	EnsembleGeneID	symbol	Fold
ENSG00000150681	RGS18	change 489.068	ENSG00000168938	PPIC	change 3.821
ENSG00000176956	LY6H	234.933	ENSG00000143603	KCNN3	3.819
ENSG00000166979	EVAIC	109.390	ENSG00000112149	CD83	3.817
ENSG00000133800		109.316	ENSG0000005108	THSD7A	3.772
ENSG00000133800	HBA2	86.679	ENSG00000137266	SLC22A23	3.763
ENSG00000145192	AHSG	66.773	ENSG00000137200	CARD6	3.630
ENSG000000971	CFH	39.367	ENSG00000132357	MANSC1	3.629
ENSG0000079385	CEACAMI	35.535	ENSG00000205336	GPR56	3.596
ENSG0000099260	PALMD	17.622	ENSG00000182240	BACE2	3.491
ENSG00000150630	VEGFC	17.299	ENSG00000169594	BNC1	3.332
ENSG00000118777	ABCG2	15.342	ENSG0000071242	RPS6KA2	3.201
ENSG00000176435	CLEC14A	11.762	ENSG0000075426	FOSL2	3.184
ENSG00000182851	GPIHBP1	11.583	ENSG00000104870	FCGRT	3.165
ENSG00000113389	NPR3	10.919	ENSG00000173598	NUDT4	3.108
ENSG0000081051	AFP	10.575	ENSG00000240583	AQP1	3.107
ENSG00000101542	CDH20	10.468	ENSG00000163171	CDC42EP3	3.088
ENSG00000146674	IGFBP3	10.344	ENSG0000001561	ENPP4	3.049
ENSG00000172031	EPHX4	9.580	ENSG00000145623	OSMR	3.027
ENSG00000129422	MTUS1	9.079	ENSG00000164930	FZD6	2.892
ENSG00000132872	SYT4	7.611	ENSG00000185112	FAM43A	2.876
ENSG00000175874	CREG2	7.029	ENSG00000164035	EMCN	2.871
ENSG00000154133	ROBO4	6.793	ENSG00000147862	NFIB	2.863
ENSG00000171864	PRND	6.676	ENSG00000143801	PSEN2	2.840
ENSG00000136960	ENPP2	6.575	ENSG00000166750	SLFN5	2.707
ENSG00000184113	CLDN5	6.308	ENSG00000197461	PDGFA	2.679
ENSG00000116016	EPAS1	6.018	ENSG00000176597	B3GNT5	2.539
ENSG00000143140	GJA5	5.109	ENSG0000069122	GPR116	2.476
ENSG00000137393	RNF144B	4.982	ENSG00000198168	SVIP	2.428
ENSG00000127241	MASP1	4.728	ENSG0000078269	SYNJ2	2.401
ENSG00000213949	ITGA1	4.712	ENSG00000164929	BAALC	2.311
ENSG00000179144	GIMAP7	4.678	ENSG00000125810	CD93	2.254
ENSG00000165702	GFI1B	4.430	ENSG00000123240	OPTN	2.249
ENSG00000167680	SEMA6B	4.085	ENSG00000126785	RHOJ	2.134
ENSG00000133574	GIMAP4	4.063	ENSG00000101974	ATP11C	2.108
ENSG00000165507	C10orf10	4.035	ENSG00000170989	S1PR1	2.096
ENSG00000124772	CPNE5	3.929			

Table S1: List of the genes down-regulated (Blue) and up-regulated (red) between day 6 and day 10 in the CD31⁺CD144⁺ populations sorted from embryoid body EB differentiation. Related to Figure 1. Differentially expressed genes are derived from RNA-seq data analysis. The data were filtered to include only genes with at least 1 count-per-million reads and genes with a median coverage of more than 10%. Genes with > 2-fold change and false discovery rate < 0.05 were considered as differentially expressed.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Flow cytometry and cell sorting: For HE-enriched population sorting, cells were stained with hCD144-PE (Miltenyi), hCD43-APC (eBioscience) and hCD31-APC-Cy7 (eBioscience). Further characterization of human HE at day 6 of EB differentiation was performed using hCD90-Biotin (eBioscience), hCD44-PeCy7 hCD34-FITC (Miltenvi), hCD117-PeCy7 (eBioscience), (eBioscience), hKDR-AlexaFluor-647 (eBioscience), hCD151-APC (eBioscience), hCD9-Biotin (eBioscience), hCD73-APC (eBioscience), hDLL4-Biotin (Miltenyi) and hCXCR4-PeCy5.5 (eBioscience). Analysis of hematopoietic differentiation was assessed using hCD41a-FITC (eBioscience), hCD45-PeCy5.5 (eBioscience), hCD61-FITC (Miltenyi) CD71-FITC (eBioscience), and hCD235a-Biotin (eBioscience). BV421-Streptavidin (Biolegend) was used for all biotinylated antibodies. Non-viable cells were excluded by Hoechst 33258 staining. When co-culture was used the stromal cells were excluded based on their size and on their high expression level of GFP expression. Compensations were performed with beads controls. Acquisition was performed on LSRII or Fortessa (BD Biosciences) and data were analysed using FlowJo software (Treestar). Cell sorting was performed on Aria III or Influx sorters (BD Biosciences).

Clonogenic assay: Hematopoietic potential was assessed in semi-solid methylcellulose culture. As specified on each graphs, 7 to 10 $\times 10^3$ cells were seeded into IMDM media (Thermo Fisher) containing 1% methylcellulose and human cytokines as previously described (Kennedy et al., 2012). Counting was performed after 14 days of culture at 37°C in 5%CO². All assays were performed in triplicate.

Cell cycle: CD31+CD144+CD43neg cells were isolated at day 6, 8 and 10 of EB differentiation. 30,000 unfixed sorted cells maintained in 500 μ l of Stemspan medium (Stem Cell Technologies) were stained by incubation with 5 μ l of 50 μ M Hoechst 33342 (Thermo Fisher) for 30 min at 37°C. For live discrimination 5 μ l 7-amino actinomycin-D (7-AAD) (Thermo Fisher) was added 5 min before analysis at room temperature.

Globin expression: RNA was extracted from hematopoietic colonies obtained after 2 weeks in methylcellulose culture from each population identified by CD235a/CD31 markers. Assessment of globin expression was performed by real time PCR using the StepOne plus system (Thermo Fisher) and the human assays Hs00362216_m1 HBE1 Hs00361131_g1 HBG1/2 and the Taqman universal master mix II (Thermo Fisher). Comparative Ct Method was used for relative quantification of the RNA expression using as housekeeping gene the human assay Hs00187842_m1 B2M (Thermo Fisher). Quantification and statistical analysis were performed from 3 independent experiments containing 3 replicates of the CFU culture per experiment and population. Statistical significance was assessed by 2-way ANOVA.

Notch pathway inhibition: The three CD235a/CD31 populations were isolated from day 4 of HE culture and 30,000 cells of each population per well of a 12-well plate were further cultured on OP9-hDLL1 stroma cells with the addition of 10μ M of gamma secretase inhibitor RO4929097 or control DMSO for 7 days prior to analysis.

RNA extraction and cDNA synthesis: Total RNA was extracted using RNeasy Mini Kit (Qiagen). cDNA was obtained with GoScriptTM Reverse Transcriptase mix (Promega).

RNA-Seq Libraries: Indexed total RNA libraries were prepared using 10ng of Total RNA, a 4-minute fragmentation time, and 12 cycles of amplification in the SMARTer Stranded Total RNA-Seq Kit-Pico input (Clontech). Libraries were quantified by qPCR using a Kapa Library Quantification Kit for Illumina sequencing platform (Kapa Biosystems Inc. Cat No: KK4835). Single end 75bp sequencing was carried out by clustering 1.8 pM of the pooled libraries on a NextSeq 500 sequencer (Illumina Inc.).

RNA-sequencing data analysis: Basecall files generated from HiSeq sequencing run were converted to FASTQ format with Illumina's bcl2fastq. Lane-wise alignment was performed by bowtie2 (version 2.2.1) (Langmead and Salzberg, 2012) to human reference genome (GRCh37.75) with default parameters. Generated SAM files from bowtie2 alignment were converted to BAM files by samtools v0.1.19. Parameters for samtools SAM to BAM conversion: -q 10 -f 2 -F 260. Resulting lane-wise BAM files from the same sequence library was merged into one BAM file used for downstream analysis. The expression levels of 57,773 annotated features were determined by using the featureCounts (Liao et al., 2014) function from the Bioconductor package Rsubread (version 1.13.13). The Bioconductor package edgeR (Robinson et al., 2010) (version 3.8.5) was used to identify genes that showed statistically significant variation in expression levels. The data was filtered to include only genes with at least 1 count-per-million reads and genes with a median coverage of more than 10%. Differential expression analysis was performed using the function exactTest in edgeR (Robinson et al., 2010). Genes with > 2 fold change and false discovery rate < 0.05 were considered as differentially expressed. Gene ontology analysis of the DEG was performed using DAVID on line tool.

Statistical Analyses: Statistical analyses were performed using Graph Pad Prism Version7.0 (Graph Software). Error bars indicate the SEM of data from independent experiments. Statistical differences were assessed by 2-way ANOVA using SIDAK's or Turkey multiple comparison test to obtain the multiplicity adjusted p-values as showed in the graphs and legends.

Mitotic inactivation of OP9 stroma cells by Mitomycin C. Stroma cells thawed in a 162 cm2 flask were maintained in alpha MEM 20% FBS (as described in experimental procedures) until 90% confluence is reached. The cells were then split in 4 flasks and once they reached 90% confluence they were treated with fresh media containing $10\mu g/ml$ of Mitomycin C (Bio Techne) for 3 hours. Cultures were then washed twice with media and twice with PBS to remove any trace of the drug. After the treatment cells were trypsinized, counted and frozen at -80C in a density of 1 million cells per vial, normally used within 2 months.

SUPPLEMENTAL REFERENCES

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.