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Supplementary Materials and Methods 
 

Cross-Cutting Methods 

Below, we describe some cross-cutting methods and constraints that apply across all 21 NCS 

pathways before providing detailed methods for each of the NCS pathways. 

    

Maximum potential 

We consider additional mitigation potential for natural climate solutions (NCS) in the year 2025. 

By “additional,” we mean mitigation due to human actions taken beyond business-as-usual 

(BAU) activities in the land use sector as they are expected to occur in 2025. We chose the year 

2025 as a reference year for three reasons: 1) its policy relevance to the United States Nationally 

Determined Contribution under the Paris Agreement, 2) it is distant enough to envision a scaling 

up of activities by that year, but also 3) soon enough to contribute meaningfully to the urgent 

need for mitigation of climate change.  

 

We constrain our maximum estimate in order to be consistent with meeting human needs for 

food and fiber. For food, we constrain the loss of cropland and pasture. For cropland, we assume 

that 5.1 Mha of cropland can be restored. This is the equivalent of returning to the amount of 

lands retired from cropland in 2007, when the CRP saw its maximum enrollment. The CRP pays 

farmers to retire marginal land from production. Enrollment in the program decreased starting in 

2008 due to a combination of a policy change (a reduction in the cap on the number of CRP 

acres) and a spike in commodity prices that made it temporarily profitable to farm marginal 

lands. Future food demand can be met without expanding cropland via investments in yield 

increases, closing yield gaps, diet shifts, aquaculture, and biofuels policy, suggesting that some 

marginal cropland can be retired while meeting food demand (35, 36). For pasture, we estimate 

that 1.3 Mha could be reforested without impacting livestock production, as described in the 

reforestation pathway methods. For timber production, we assume that production could be 

decreased by 10%, equivalent to the coefficient of variation in timber production in the U.S. 

from 1986 to 2011, as further described in the improved forest management methods. We also 

constrain our maximum estimate to exclude practices that would harm biodiversity, such as 

establishing forests where they are not the native cover type (64).  

 

Saturation 

 

We recognize that, for most pathways, the mitigation potential that we estimate for 2025 will not 

persist indefinitely; rather, NCS based on increased sequestration will eventually saturate, given 

the finite potential for natural ecosystems to store additional carbon. However, such saturation 

takes decades, if not longer. For each NCS opportunity, we estimate the expected duration of the 

potential for sequestration at the maximum rate (table S1). Forests can continue to sequester 

carbon for >100 years (65, 66). Urban trees are more stressed, but can continue to sequester 

carbon for >40 years (67). Restored grasslands can continue to sequester carbon for >55 years 

(68). Seagrasses can continue to sequester carbon for millennia (69, 70). Peatlands can continue 

to sequester carbon for millennia (71). Note that NCS based on avoided emissions of CH4 and 

N2O do not saturate (e.g. cropland nutrient management, improved manure management, 

improved rice production, and avoided CH4 emissions from restored tidal marsh); rather, they 



continue to provide additional sequestration for as long as the BAU case indicates there is 

potential for avoided emissions. In the case of seagrass loss, the BAU is for 1.5% loss every 

year, such that seagrasses would disappear entirely after 67 years. 

 

Uncertainty 

To estimate uncertainty of the maximum potential for each NCS opportunity, we considered 

uncertainty in both the extent (i.e. hectares) and flux (i.e. sequestration or reduced emissions per 

hectare). Unless otherwise noted, we used the IPCC approach to combining uncertainty (72). 

Where possible, we present 95% confidence intervals based on multiple published estimates. 

Where a sample of estimates was not available, we report uncertainty as a range, typically based 

on the minimum and maximum estimates available from the literature. Where enough data exist 

to calculate the 95% CI, this is indicated by black text (gray text otherwise) in table S1.  

 

To calculate overall uncertainty, we used a Monte Carlo simulation, with 100,000 iterations, to 

combine uncertainty across all 21 NCS opportunities (72), fitting the data with a log-normal 

distribution when appropriate (e.g., values could not go below zero or a log-distribution was a 

more appropriate fit and uncertainty was large) and a normal distribution otherwise. 

 

Committed Emissions 

For avoided conversion, we include “committed emissions.” When conversion of natural 

ecosystems occurs, carbon is not all emitted in the same year that the conversion occurs. For 

example, emissions from decaying wood, or from tilled soils, can continue for many years 

following conversion. Calculating committed emissions simplifies carbon accounting by 

including all of the avoided emissions in the year that the conversion was avoided. We use an 

accounting horizon of 20 years and consider any emissions that would have occurred in that 

timeframe in our estimate of committed emissions. 

    

Marginal Abatement Costs 

For each NCS opportunity, we constructed the marginal abatement cost (MAC) curve from the 

available information in the literature. A marginal abatement cost curve represents the monetary 

cost of achieving one additional ton of sequestered greenhouse gases (GHG) or avoided GHG 

emissions and indicates the total quantity of net GHG reductions that can be achieved at different 

price points. We estimated the total abatement available at USD 10, 50, and 100 Mg CO2e
-1

. 

Prices on the dominant U.S. regulatory carbon market (California) since 2012 continually have 

exceeded USD 10 (73), while prices are around USD 10 CO2e
-1

 on voluntary carbon markets for 

offsets that have strong co-benefits (74). The social cost of carbon, that is, the economic value of 

the society-wide damages caused in a given year by one additional ton of carbon dioxide 

emissions or its equivalent, is projected to be around USD 50 in 2025, depending on the discount 

rate used (10). A price of at least USD 100 is needed to keep the 100-year average temperature 

from warming more than 2.5 °C (11). All cost estimates presented in this study are expressed in 

2015 dollars using the U.S. Bureau of Labor Statistics’ Consumer Price Index (75). 

 

In some instances, MAC curves from the literature exceeded the maximum potential identified in 

our analysis. For example, a literature MAC might go to 200 Tg CO2e yr
-1

, but we may identify 

100 Tg CO2e yr
-1

 as the limit in our biophysical analysis. In these cases, we use the literature 

MAC curve up to the 100 Tg CO2e yr
-1

 that we identified as the maximum mitigation potential.    



Characterizing Co-Benefits 

NCS have the potential to produce strong co-benefits (table S2). We reviewed the literature for 

evidence that each pathway produces co-benefits from one or more of four generalized types of 

ecosystem services (biodiversity, water, soil, air). We define biodiversity benefits as any 

increases in alpha, beta, and/or gamma diversity as is described in the Convention on Biological 

Diversity (76). Water ecosystem benefits include hydrologic regulation, water purification, and 

storm protection as defined in the Millennium Ecosystem Assessment (77). Soil benefits include 

improved water holding capacity and fertility as described in the Millennium Ecosystem 

Assessment (77). We define air benefits as improvements in air quality as described in the 

Millennium Ecosystem Assessment (77). 

   

Additional mitigation required to meet Paris Agreement NDCs 

The United States’ NDC for the Paris Agreement is a 26-28% reduction in emissions compared 

to a 2005 baseline. The EPA quantifies net emissions in 2005 as 6,582.3 Tg CO2e, which 

indicates that net emissions of 4,739.3-4,870.9 Tg CO2e in 2025 are required to meet the NDC. 

The EPA (78) quantified net emissions in 2015 as 5,827.7 Tg CO2e. To estimate BAU emissions 

in 2025, we used EIA projections which predict an increase in energy sector emissions of 91 Tg 

CO2e yr
-1

 between 2015 and 2025. We used the EIA scenario without the clean power plan to 

reflect the current administration’s proposal to repeal the clean power plan. This suggests a 2025 

BAU net emissions of 5,918.7 Tg CO2e, requiring an additional 1,047.8-1,179.4 Tg CO2e of 

mitigation to meet the NDC.  

 

Reforestation 

We define reforestation as conversion from non-forest (<25% tree cover) to forest [>25% tree 

cover (45)], in areas where the historical natural vegetation is forest. Note that, in order to avoid 

conflicts with biodiversity protection, our analysis excludes planting trees in areas where they do 

not naturally grow, which is sometimes called afforestation (64, 79, 80). 

 

Mapping Reforestation Opportunity 

We created a novel 30 m resolution raster map of reforestation opportunity in the conterminous 

United States (CONUS) (fig. S1). To do so, we first identified all areas that historically had 

forest cover >25% using LANDFIRE Biophysical Setting (BPS) data (81) (N = 152 forested 

BPS groups). This created a map of all CONUS areas with potential vegetation of >25% forest 

cover. We also included an additional 40 marginal BPS groups where forest cover depends on 

spatial scale and/or environmental conditions. These latter types include ecosystems with highly 

variable historical tree cover including many savannas, woodlands, and forest-grassland mosaics 

(note that we treated these latter cover types differently; see below). 

 

From this map, we removed existing forests using the National American Forest Dynamics 

(NAFD) 2010 map (82). We next removed areas with intensive human development, including 

all major roads (46), impervious surfaces [National Land Cover Data (47)], and urban areas (48). 

Removing urban areas also eliminated double counting with the urban forestry pathway. To 

eliminate double counting with the peatland restoration NCS, we removed pixels with >5% 

Histosol soils (60). Where soils data were missing (7% of land area), we used the BPS vegetation 

map to remove riparian vegetation (81). The resulting map included a total of 154.4 Mha of land 

potentially available for reforestation. 



Deductions 

We then applied a suite of deductions to either eliminate or down-weight areas where 

reforestation is less feasible. These deductions were primarily non-spatial; we did not specify the 

exact pixel where they should occur, but rather applied proportional deductions across areas that 

met relevant criteria. 

 

For the 40 marginal BPS groups (i.e., those with potentially less than 25% forest cover), we 

applied a 50% deduction, assuming only half of these lands would meet our 25% forest cover 

threshold. Moreover, reforestation efforts in the remaining marginal areas should proceed with 

caution and seek to maintain natural disturbance regimes (e.g. fire), as well as a natural balance 

of trees and herbaceous species. 

 

To protect food production we removed almost all croplands in the 2015 National Agricultural 

Statistics Service Cropland Data Layer that overlapped with our reforestation map (83). We 

retained <1% of the reforestable cropland, based on a U.S. Department of Agriculture (8) report 

that developed a carbon sequestration scenario where 0.36 Mha of riparian forest buffers (out of 

a total of 42.8 Mha of cropland in the U.S.) are reforested through the CRP (8). 

 

Next, we deducted background reforestation rates, because we are interested in additional 

reforestation opportunities beyond what is already occurring. We calculated background 

reforestation rates from the annual average forest gain between 1986 and 2010 (NAFD) (82) in 

each U.S. Forest Service (USFS) forest type, and assumed that historical reforestation rates will 

continue through 2025. Note that this deduction effectively removes areas that regrow without 

intervention after natural forests are clear-cut a or where plantation forests are harvested and re-

planted, which prevents double counting with our natural forest management pathway and 

improved plantations pathway, respectively. 

 

After these deductions, 79.0 Mha remained available for reforestation. This represents the 

maximum potential reforestation extent for CONUS, which includes the reforestation of 17.5 

Mha of pasture, and therefore would likely require dietary shifts that reduce meat consumption. 

 

Finally, we estimated how much reforestation is possible without impacting livestock production 

by removing 92.4% of all pasture lands in the 2011 National Land Cover Data (NLCD) (84) that 

overlapped with the remaining reforestable area. We estimated that 7.6% of pasture land could 

be reforested without compromising livestock production. This is based on trends in beef cattle 

production efficiency between 1996 and 2014 (85), which show that production has held steady 

even while the number of animals has decreased. During this time, the number of beef cattle in 

the U.S. has been decreasing linearly at approximately 270,000 head per year, on average. 

Extrapolating this trend to 2025 we find that the head of cattle will decrease by 7.6% between 

2017 and 2025. We assume that the need for pastureland will decrease proportionally. We apply 

this percentage to only those pasture acres that we deem reforestable rather than to all 

pastureland, making the deduction more conservative. After all of these deductions, the 

remaining area available for reforestation is 62.9 Mha. 

 

 

 



Estimating Carbon Sequestration 

We used USFS yield tables to estimate carbon sequestration rates (86). These tables provide 

estimates of live tree carbon, above and belowground, at different time steps [Appendix A/B in 

(86)]. The estimates are specific to both forest type and USFS region. For each forest type and 

region combination, we calculated mean annual sequestration per hectare over the first 20 years. 

This provides an average growth rate over a time span that is relevant to climate mitigation and 

is shorter than harvest age for forests that might be reforested as a timber plantation. When there 

was no 20-year data point, we calculated sequestration rates with the 15 and 25-year data and 

used the average of those two values. Sequestration rates ranged from 0.31 Mg C ha
-1

 yr
-1

 

(Ponderosa Pine, Pinus ponderosa) to 3.15 Mg C ha
-1

 yr
-1

 (Douglas-fir, Pseudotsuga menziesii). 

To these values we added a soil carbon accumulation rate of 0.09 Mg C ha
-1

 yr
-1

 for all forest 

types in all regions, based on published reforestation soil carbon accumulation rates (87). 

 

To assign these sequestration rates to the LANDFIRE BPS types, we matched the USFS cover 

types to the BPS types, using the National Forest Type Dataset (88). We constructed a crosswalk 

based on 1) spatial overlap, 2) cover type name similarity, and 3) environmental similarity (e.g., 

riparian species). In cases where the USFS yield tables did not include a carbon estimate for a 

specific forest type and regional combination, we used forest type data from the most 

climatically and geographically proximate region. 

 

When calculating the mitigation benefit of reforestation, we applied one final deduction. We 

halved the carbon sequestration rates of conifer-dominated forest types to account for the albedo-

driven warming that is associated with increased conifer cover (89). We then area-weighted the 

sequestration rate for each BPS cover type to calculate an average reforestation sequestration 

intensity of 1.33 Mg C ha
-1

 yr
-1

. Multiplying this value by the feasible reforestation extent of 

62.9 Mha gave us a total mitigation potential of 306.6 Tg CO2e yr
-1

. If we allow reforestation of 

all reforestable pasture lands, the total mitigation potential increases to 381.3 Tg CO2e yr
-1

 on 

79.0 Mha. 

 

Uncertainty for reforestation 

There are multiple estimates of reforestation opportunity in the U.S. (90–94). These range from 

7.9 Mha to 134.3 Mha, and are highly variable due to the diversity of the methods used to 

quantify extent. Across all studies, the average extent was 68 Mha with a 95% CI of ±46%, 

which aligns well with our own estimate. Applying this uncertainty gives an estimated feasible 

reforestation extent of 62.9 Mha (95% CI: 34.0 to 91.8) 

 

To quantify the uncertainty of our reforestation sequestration rate, we acquired the original data 

in Smith et al. (86) for stands between 1 and 25 years old. We used these data to estimate percent 

uncertainty for flux by fitting the data with a log-normal distribution and running a Monte Carlo 

simulation (100,000 iterations) that took into account the relative area of each Forest Service 

cover type. We used resulting percent uncertainty to calculate a 95% CI of 0.17 to 5.01 Mg C ha
-

1
 yr

-1
. 

 

Marginal abatement costs for reforestation 

To estimate potential annual sequestration at USD 100 Mg CO2e
-1

, USD 50 Mg CO2e
-1 

and USD 

10 Mg CO2e
-1

, we partitioned the areas of reforestation opportunity by their current land uses, to 



reflect different marginal costs on agricultural (cropland and pasture) and other land. For 

reforestation of agricultural lands, we construct a MAC curve from MAC points reported in four 

of the five studies included in the most recent comprehensive literature review of the cost of 

reforestation on U.S. agricultural lands (7). These studies report mitigation and associated MAC 

estimates for time horizons of 20 years or less, or allow us to calculate those estimates from their 

reported results. We exclude the fifth study (95) that uses the same model (FASOM-GHG) used 

in two more recent studies included in our MAC analysis (96, 97) but that is over a decade old 

and reports much lower reforestation costs. The four included studies use partial or general 

equilibrium models and report higher MAC for reforestation than studies using econometric 

models (7). 

 

Latta et al. (98) estimate annualized MAC of reforestation on U.S. private lands using a 20-year 

timeframe. Their analysis is based on the FASOM-GHG sectoral optimization model of the U.S. 

forest and agricultural sectors, modified to allow incorporation of two offset program types—

voluntary and mandatory. We estimate a best-fit (power) function for Latta et al.’s (98) data 

points and use that function to estimate the abatement levels achievable at our three carbon 

prices (USD 10, 50, and 100 Mg CO2e
-1

, respectively). 

 

Alig et al. (96) use the FASOM-GHG model to estimate cumulative sequestration from 

reforestation of pasture and crop lands over a 45-year time horizon at prices of USD 0, 25, and 

50 Mg CO2e
-1

, respectively. We use their base rate development scenario and their estimated 

total cumulative net sequestration during the first ten years of their analysis horizon in their base 

case (no carbon pricing) and carbon pricing scenarios (USD 25 Mg CO2e
-1 

and USD 50 Mg 

CO2e
-1

) to calculate average annual sequestration gains for these price points during that 10-year 

period. 

 

Haim et al. (97) also use FASOM-GHG to estimate reforestation and GHG stocks under a 

hypothetical national carbon market and two carbon prices (USD 30 Mg CO2e
-1

 and USD 50 Mg 

CO2e
-1

) over a 45-year time horizon, but also provide results for a 20-year horizon. To estimate 

abatement at USD 10 Mg CO2e
-1 

and USD 100 Mg CO2e
-1 

from Alig et al.’s (96) and Haim et 

al.’s (97) data, we fit exponential MAC curves to the two data points in each study. This is a 

conservative assumption as other studies suggest a linear or logarithmic functional form (98, 99), 

which would result in lower MAC for given abatement levels. Golub et al. (99) estimate MAC 

for both avoided forest conversion and reforestation combined. We use a best-fit (polynomial) 

function to their seven data points to estimate abatement at our three carbon price points. 

 

We construct mean abatement estimates at the three carbon prices as the unweighted average of 

the abatement quantities calculated from the four studies using the best-fit MAC functions 

described above (table S3). Where MAC curve-based estimates of abatement quantities for given 

carbon prices exceed the abatement potential associated with our feasible implementation level, 

we constrain abatement to the latter. Our estimated MAC do not include any transaction costs 

that may be associated with certification, monitoring, and enforcement needed to implement 

economic incentives for forest-based carbon mitigation because none of the studies we used to 

construct our MAC estimates include those costs. 

 



To determine how the other (non-crop and non-pasture) areas are currently used, we cross-

referenced our spatial map of reforestation opportunity with the 2011 NLCD (84). Note that this 

spatial analysis does not incorporate the non-spatial deductions described above, but we assumed 

that the non-spatial deductions applied uniformly across NLCD types and that relative 

proportions would remain constant. We found that the current land use fell into four categories: 

production lands (e.g., pasture and crop), natural ecosystems (e.g., forests and shrublands), low 

human development areas (e.g., parks), and barren lands (e.g., mine lands) or those with 

perennial snow/ice. Excluding production lands, we found that 82% of our spatial reforestation 

pixels fell into natural ecosystems, 2% into low human development areas, and 17% into barren 

and perennial snow lands. We assumed that the latter two categories would be cost-prohibitive to 

reforest for carbon sequestration, because of the high opportunity cost of converting recreational 

areas and the high implementation cost of reforesting barren lands. For the remaining 82% (or 

50.1 Mha) that fell into natural ecosystems, we assumed zero opportunity cost for conversion and 

estimated MAC based on only the costs of forest reestablishment. 

 

To estimate the cost of reforesting natural ecosystems, we use the mean of the per hectare 

reforestation cost reported in several studies (100–104) (table S4). We annualize costs over nine 

years using the average September 2012 to September 2017 U.S. Treasury Bond yield rate of 

2.2% (105). Using the estimated mean sequestration rate of 1.33 Mg C ha
-1

 yr
-1

, we estimate the 

mean MAC of reforesting natural ecosystems as USD 21 Mg CO2e
-1

. Thus, we estimate that 

none of these natural lands would be reforested with a USD 10 Mg CO2e
-1 

price on carbon and 

that all of them would be reforested at USD 50 Mg CO2e
-1

. 

  

Natural Forest Management and Improved Plantations 

Natural forest management includes changes in timber management practices to increase net 

forest carbon sequestration. The natural forest management pathway covers mixed native species 

forests under private ownership, which primarily occur in the eastern continental U.S. Public 

forests are generally already managed with longer rotations, such that the potential for increasing 

carbon storage on these lands through the improved management practices considered here is 

negligible. We considered activities that maintain long-term wood harvest levels, but may 

constrain near and mid-term harvest levels. Our estimate for maximum biophysical potential in 

natural forests is based on a harvest hiatus of ≥25 years for private forests already under timber 

management (excluding plantations, which are covered in the improved plantations pathway). 

While this calculation determines our estimate of the maximum potential, we note that other 

activities (e.g. reduced-impact logging, thinning treatments) can deliver more constrained 

mitigation levels for this pathway without delaying wood harvest. 

 

The improved plantations pathway covers intensively managed planted monoculture forests, 

which primarily occur in southeastern and northwestern U.S. Our estimate of maximum 

mitigation potential for the improved plantations pathway is based on extending rotations by 5 to 

20 years, depending on region. We quantify this potential on private, intensively-managed forest 

in the two major production centers of the U.S. (the South and the Pacific Northwest).  

 

We considered forest land in the U.S. (including Alaska and Hawaii) in timber production as of 

2012 based on the latest U.S. Forest Service Resources Planning Act (RPA) Assessment (106). 



We considered carbon pools in live tree biomass (aboveground and belowground), coarse woody 

debris, and harvested wood products. The term “improved forest management” (IFM) includes 

both natural forest management and improved plantations. Mitigation potential is quantified as 

the difference in annual forest carbon stock changes between an IFM and a BAU scenario, where 

 

Maximum mitigation potential = stock Δ IFM – stock Δ BAU 

 

For each scenario, stock change is quantified as the net of carbon sequestration via forest growth 

and carbon emissions due to harvest and natural disturbance (e.g. fire, pests, wind, ice). We 

assume that carbon emissions from natural disturbance are the same under IFM and BAU 

scenarios. While we note that there are interactions between harvest regimes and frequency and 

severity of natural disturbance events, the direction of cumulative harvest impacts on natural 

disturbance is ambiguous and we find no clear basis for altering the assumption of equal natural 

disturbance in BAU and IFM scenarios. For example, susceptibility to wind-throw and ice 

damage may increase post-thinning, while thinning activities may improve residual tree vigor 

and reduce incidence of forest pest infestation (107–111). Assuming no change in natural 

disturbance between BAU and IFM allows us to define changes in stocks based on growth and 

harvest alone 

 

stock Δ IFM = forest growth IFM – harvest IFM 

stock Δ BAU = forest growth BAU – harvest BAU 

 

We further simplify this equation by assuming no change in average forest growth rates during 

the first 25 years of deferred harvests. While net sequestration rates can be expected to reach a 

peak and then decline as forests mature (112), evidence supports the assumption of no change 

from BAU in mean net sequestration rates within the first 25 years of deferred harvests. Over the 

last 25 years, estimates of forest growth per unit area in the U.S. have remained fairly constant, 

ranging between 3.9 to 5.1 Mg CO2 ha
-1

 yr
-1 

net ecosystem productivity. There have been no 

apparent trends from 1990 to 2013, despite generally maturing age class distributions (113–118). 

Further, stopping logging in these mostly uneven-aged systems would avoid the short-term 

reductions in growth rates following harvest (14, 119–121), making our overall assumption of no 

change in growth rates a conservative one. Eventual reductions in growth rates would be 

expected to occur where harvests are deferred indefinitely. Therefore, based on the literature 

reviewed above, we assume that this pathway begins to saturate after 25 years. 

With these assumptions, and only applying these equations to the years before saturation occurs, 

forest growth is equivalent under BAU and IFM. Consequently, our accounting for both natural 

forests and plantations simplifies to become a function of relative harvest emissions 

 

Maximum mitigation potential = harvest BAU - harvest IFM 

 

Harvest Reduction Scenarios for Improved Plantations 

The IFM NCS involve extending rotations on private lands in two intensively managed softwood 

forest regions in the U.S.: The South and Pacific Northwest (PNW). In 2011, these two sources 

made up 88% of U.S. plantation acreage (122) and 49% of total U.S. timber production, as 

calculated from 2012 RPA data (106). Most of these production landscapes are currently 

managed on short, economically optimal rotations. Under BAU, when the growth rate of timber 



in the field is less than the growth rate of cash in the bank, the trees are harvested and sold so that 

the capital can be reinvested to maximize returns. Note that, if harvest is delayed past the 

economically optimal rotation length, while the growth rate may decline as a percentage of 

standing timber, the quantity of wood and carbon added to these forests annually continues to 

increase for a period of time. Under IFM, the rotation length is moved from the economic 

optimum to the biological optimum. In each landscape, we set the target extended rotation length 

as the biological optimum rotation of the dominant timber species. The biological optimum is 

defined as the point at which the maximum annual increment (MAI) occurs, representing a 

rotation length for production forests that would increase long-term average timber output. 

 

The carbon benefit of extending rotations is realized during the transition between management 

regimes, which is essentially a stop-harvest period resulting in increased standing forest carbon. 

After the stop-harvest period, production is resumed at former levels (now with higher stocking 

per unit area at harvest age, but with a smaller area harvested each year) and harvest emissions 

return to BAU levels. 

 

For improved plantations, we impose a constraint to maintain the intensively managed forest 

landscape, allowing no more than 10% reduction in harvest output at any point in time from the 

private plantation forestry landscape. This level of reduction falls within the historic range of 

fluctuations in timber production in the U.S. Specifically, from 1986 to 2011, the coefficient of 

variation (average deviation from the mean as a percent) of annual timber production was 10.6% 

[calculated from 2012 RPA data (106)]. 

 

To constrain reductions in annual harvest to 10% of total harvest, we simply reduce annual 

harvest from historic levels by 10%, and postpone harvest of these forests until they reach the 

biological optimum. Thus, these areas are subject to a stop-harvest period equal to the biological 

rotation age minus the economic rotation age. Once a stop-harvest period is over, those older 

forests start being harvested and an additional ten percent of younger forests can enter the stop-

harvest period (i.e., from 10% to 20%, then from 20% to 30%, etc.). In this manner, with only a 

10% reduction in overall production in any year, all of the forests would be shifted to a longer 

rotation over the length of the stop-harvest period multiplied by ten. Such a transition would 

generate increased carbon sequestration in forests for that entire time. At the end of this 

transition there is no additional net sequestration (and timber production returns to BAU levels or 

higher). 

 

Softwood forests on private lands in the South would undergo a stop-harvest period of five years 

to extend economically optimum rotation to a biologically optimum rotation. In the South, 94% 

of 2009 softwood timber outputs are from southern pines (Loblolly, Pinus taeda; Shortleaf, 

Pinus echinata; Slash, Pinus elliottii; Longleaf, Pinus palustris) (123), and 62% of the acreage of 

these species is in planted stands [calculated from 2012 RPA data (106)]. Under the improved 

plantations pathway, rotations in these forests can be extended from the typical intensive private 

management regime of 20-year rotation [review of age class distributions derived from 2012 

RPA data (106, 122)], to a 25-year biologically optimum rotation (86). As a result, the period of 

emission reductions from the BAU is 50 years (5 years * 10 cohorts). 

 



Softwoods on private lands in the PNW would undergo a stop-harvest period of 15 to 20 years to 

extend economically optimum rotation to a biologically optimum rotation. In the PNW, softwood 

timber outputs are dominated by Douglas-fir, and 55% of Douglas-fir acreage is in planted 

stands [calculated from 2012 RPA data (106)]. Under the improved plantations pathway, 

rotations in these forests (e.g. Douglas-fir) can be extended from the typical intensive private 

management regime of 40 to 45-year rotations [review of age class distributions derived from 

2012 RPA data (106, 122, 124)] to 60-year biologically optimum rotation (86). As a result, 

emission reductions would continue for 150 to 200 years (15-20 years * 10 cohorts). 

 

Harvest Reduction Scenarios for Natural Forest Management 

The natural forest management pathway considers natural forests on private lands under uneven-

aged and less intensive management. These less intensively managed forests have a wide range 

of typical rotation lengths and harvest approaches (e.g. selective harvests). Here we model 

reductions in harvest-associated emissions from stopping harvest entirely between 2025 and 

2050, shifting forests to overall more mature conditions, after which production would resume 

while retaining increased standing timber biomass compared to BAU. 

 

Given this “stop logging” scenario we use to calculate maximum mitigation potential of the 

natural forest management pathway, and our requirement that total domestic wood volume 

production is not reduced below 90% of historical mean production levels (266 million m
3
 yr

-1
), 

we meet 90% of the production from private natural forests (240 million m
3
 yr

-1
) by other 

domestic sources between 2025 and 2050.  

 

During 2030 to 2050, new wood production from the reforestation pathway could more than 

offset lost wood production from natural production forests on private lands (see below for how 

production is replaced between 2025 and 2030). Although the reforestation pathway is based 

exclusively on natural regeneration, we find that 52.7% of potentially reforestable lands (see 

reforestation pathway methods) occur within forest types (88) that could support intensive 

plantation management. If plantations were established in these areas in lieu of naturally 

regenerating forests, we estimate the new cumulative wood production would be 447 million 

m
3
 in 2030, 1.55 billion m

3
 in 2032, and 4.52 billion m

3
 by 2048, more than enough wood to 

fully meet timber demand from stopping harvest on uneven-aged natural forests. While this 

would require markets to accommodate any shift in the species of timber delivered to market, 

this potential additional wood production from reforestation with plantations could more than 

compensate for wood production from private natural forest lands between 2030 and 2050. 

 

To replace production between 2025 and 2030, we estimate that an additional 1,211 million m
3
 

could be generated by carbon neutral thinning of fire prone western forests to enhance fire 

resilience (Skog et al. 2006a, Skog et al. 206b). Thinning for fire risk reduction would generate 

over 240 million m
3
 per year between 2025 to 2029. Thus, this material could meet the demand 

gap, recognizing that this approach requires use of newly available technology, such as cross 

laminated timber, to enable smaller diameter trees to meet demand for wood products. Removal 

of this biomass reduces the likelihood of high intensity fires with positive carbon benefits. 

Alternatively, improved practices that increase forest stocks, such as reduced-impact logging 

techniques and improved silvicultural methods that release more vigorous stand growth (125, 

126), could achieve mitigation without reducing production. These improved silvicultural 



practices include thinning from below and crop tree thinning (Davis et al. 2009, Hoover and 

Stout 2007). Further, increasing vine loads in eastern US forests have been decreasing tree 

growth rates (Matthews et al. 2016) and cutting vines can increase stand carbon stocks compared 

to a no-harvest scenario (van der Heijden et al. 2015). Also, we do not account for additional 

wood production that could be achieved by other means such as genetic improvements to 

plantation forests and advances to reduce wood waste from improved wood processing 

technologies and biomass markets (127). In summary, there are a variety of potential 

mechanisms that would achieve the maximum mitigation potential that we quantify, either 

through substitution from new sources or through improved practices. 

 

Estimating Avoided Emissions – Natural Forest Management and Improved Plantations 

We define harvest emissions as all carbon emitted in the first 20 years following harvest from 

aboveground biomass (AGB), belowground biomass (BGB), coarse woody debris, and harvested 

wood products pools (i.e. not retained in harvested wood products or coarse woody debris 

beyond 20 years after harvest) (fig. S2). The principal data source from which estimates were 

derived was the U.S. Forest Service RPA Assessment (106, 122, 128). 

 

The BAU scenario assumes constant annual harvest levels. BAU is set as the average of annual 

roundwood removals (disaggregated by softwood and hardwood) reported for 1986, 1996, and 

2006 [calculated from 2012 RPA data (106)]. Roundwood is defined as volume harvested for 

industrial and non-industrial products from growing stock and other sources (non-growing stock, 

i.e. saplings, stumps, tops, and limbs). Annual removals nationwide were fairly stable from 1986 

to 2006, and are currently recovering to pre-2008 economic crash levels (106). 

 

To calculate emissions based on roundwood production, we estimate associated emissions that 

occur in the field (from logging residue and belowground biomass) and at the mill (from mill 

residue). Ratios of logging residue volume:roundwood volume and mill residue 

volume:roundwood volume were calculated from 2012 RPA data (106), and are assumed to be 

constant among scenarios and through the projection period. Belowground biomass was 

estimated using a root:shoot ratio of 0.2 (129–131). 

 

Logging residues (includes both residual portion of trees and trees downed incidentally that are 

left on the ground following harvest) and belowground biomass remaining after 20 years are 

calculated by applying an annual coarse woody debris decomposition rate of 0.04 [review of 

North American values from (132)]. Based on this decomposition rate, 56% of logging residue is 

considered “committed emissions” and are counted in the year the forest is harvested. 

 

The portion of mill residues used as commercial fuel or “not used” is assumed to be emitted 

immediately at the time of harvest. This proportion is 29% of softwood mill residue in the PNW, 

50% of softwood mill residue in the South, and 46% of mill residue in the remainder of U.S. 

production, calculated from 2012 RPA data and assumed to be constant over projection period. 

Transformed wood products (= roundwood removals – mill residue used as commercial fuel or 

“not used”) that are retired and oxidized in the first 20 years (i.e. not remaining stored in-use or 

in landfills after 20 years), applying factors from Smith et al. 2006 (86), are assumed to be 

emitted immediately at the time of harvest. 



Volume removals (m
3
) were converted to Mg CO2e applying specific gravities of 0.41 g per cm

3
 

for softwood and 0.45 g per cm
3
 for hardwood [U.S. averages applied by (133)], a carbon 

fraction of biomass of 0.5, and a conversion factor of CO2e to carbon of 44/12. 

 

Results 

Average annual harvest emissions in the BAU scenario are estimated to be 389.9 Tg CO2e. 

Modeled annual benefits of IFM are 10.1 Tg CO2e for intensive forestry in the South, 2.1 Tg 

CO2e for intensive forestry in the PNW, and 267.2 Tg CO2e for extensive forestry. Total annual 

IFM benefit is modeled to be 279.4 Tg CO2e.  

 

Uncertainty for natural forest management and improved plantations 

The derived U.S. BAU estimate of total annual harvest emissions is 106.4 Tg C yr
-1

. Comparable 

estimates compiled by Williams et al. (133) range from 45 to 153 Tg C yr
-1

, with a 95% CI of 

±13%. The uncertainty represents not only differences in emission estimates for the same year, 

but also variation in emissions from year to year (estimates span the period from 1950 to 2012), 

and consequently offers a relevant gauge of uncertainty in annual emissions over the 34-year 

projection period. 

 

Marginal abatement costs for natural forest management 

We identified two analyses that estimate MAC for natural forest management in the U.S. for 

time horizons similar to ours. Using a 20-yr analysis horizon and a 5% discount rate for costs and 

carbon, Golub et al. (99) estimate the total average annual U.S. forest carbon supply for seven 

carbon price points (from USD 2 to USD 183 Mg CO2e
-1

) for combined changes in forest 

management and aging (“intensive margin”). They do not estimate maximum abatement 

potential for this pathway; at USD 183 Mg CO2e
-1

 they estimate annual sequestration potential at 

1051 Tg CO2 yr
-1

. Latta et al. (98) estimate annual carbon sequestration and MAC from natural 

forest management of existing private U.S. forests up to prices of USD 49 Mg CO2e
-1

 under a 

voluntary carbon program (yielding 60 Tg CO2e yr
-1

) and USD 60 Mg CO2e
-1

 under a mandatory 

carbon program (yielding 220 Tg CO2 yr
-1

), respectively, using a 100-yr analysis horizon and 4% 

discount rate for land management returns. 

 

We develop best-fit functions for Golub et al.’s (2009) MAC point estimates (fig. S3) and Latta 

et al.’s (98) voluntary and mandatory MAC point estimates (fig. S4) and use them to calculate 

the estimated mean MAC as the unweighted average of the three functions at USD 100, 50, and 

10 Mg CO2e
-1

, respectively.  

 

Marginal abatement costs for improved plantations 

Our estimates of the MAC of extending rotation length on forest plantations are based on 

Sohngen and Brown’s (134) analysis of the potential costs and quantity of sequestered 

aboveground carbon from extending rotation ages in softwood forests in 12 states in the southern 

and western USA using data from over 300 forest types and site classes. (The authors do not 

estimate changes in soil carbon, citing other studies that find that changes in rotation length do 

not affect soil carbon). Sohngen and Brown’s MAC and sequestration estimates are derived by 

discounting annual costs and sequestration over 300 years using a 6% discount rate for both costs 

and carbon. This approach avoids the arbitrary selection of a time horizon required for applying 



carbon flow summation or average carbon storage methods. The authors provide aggregate MAC 

curves for three regions: Southcentral, Southeast and West coast. 

 

To convert Sohngen and Brown’s estimates of total discounted sequestration to their annual 

equivalents (Tg CO2e yr
-1

, the metric used for all NCS in our study), we assume that total annual 

sequestration at given carbon prices is constant over time. This is justified given the large 

number of plantations, the different ages of trees within and across plantation, and the relatively 

small number of years (5-20) by which rotations are extended. We calculate average annual 

sequestration x from Sohngen and Brown’s total discounted (present value) sequestration (PVS) 

at given carbon prices by rearranging the standard equation used to calculate the present value of 

a constant annuity paid out once annually over n years, as 

 

x = PVS/(1+(1-(1+r)
-n

)/r) 

 

where r and n are the annual discount rate (6%) and time horizon (300 years), respectively, that 

Sohngen and Brown (134) used to calculate total discounted sequestration. Given that Sohngen 

and Brown (134) discount both costs and sequestration at the same annual rate (6%), their MAC 

estimates (in USD Mg CO2e
-1

) are not affected by our conversion of sequestration from 

discounted PV to annual. Figure S5 shows Sohngen and Brown’s (134) MAC curves with the x-

axis rescaled to annual sequestration. Estimated annual sequestration is 0.9 Tg CO2e yr
-1

 at USD 

10 Mg CO2e
-1

, 7.8 Tg CO2e yr
-1

 at USD 50 Mg CO2e
-1

, and 12.9 Tg CO2e yr
-1

 at USD 100 Mg 

CO2e
-1

.  

Note that Sohngen and Brown’s analysis assumes that landowners receive the carbon payment at 

the time of harvest rather than annually. This increases the cost of extending rotations compared 

to annual payments for stored carbon and thus increases estimated MACs. If landowners were to 

receive annual payments, MACs would be lower than our estimates, all else equal.   

 

Fire Management 

We quantified the potential carbon benefits that could result from increasing prescribed fire 

usage in the western U.S. We did so by comparing two scenarios, BAU scenario and a prescribed 

fire scenario (Rx) where 5% of the identified land area is burned per year. This represents 0.9 

Mha of prescribed fire per year. Current prescribed fire treatments averaged 0.26 Mha yr
-1

 on 

public lands in the six western USFS regions between 2006 and 2015 (135). Increasing the extent 

of prescribed fire is consistent with calls to reduce the risk of damaging wildfires to communities 

and their drinking water supplies (136). 

 

Analysis Area 

We defined the analysis area with LANDFIRE data (137), selecting existing vegetation types 

(EVT) in the western continental U.S. that 1) have a historical mean fire return interval (MFRI) 

of less than 40 years, 2) are considered forests based on a canopy cover of greater than 25% (45), 

and 3) are types where prescribed fire is appropriately used [see table S1 in (138)]. This led to an 

analysis area of 17 Mha that spanned 18 different EVT cover types. Because of strong 

geographic differences in vegetation type and fire return intervals, we subdivided the analysis 

area into seven regions: Black Hills (BH), Cascades (CS), Northern Rockies (NR), Sierra Nevada 

(SN), Southern Rockies (SR), Southwest (SW), and the Klamath-Siskiyou (KS) (fig. S6). We 



delineated regions following Westerling (139), and resampled and snapped the canopy cover 

data to the 30 m LANDFIRE equal area grid. 

 

Carbon Balance 

The carbon balance in each scenario is generally determined by the area burned by fire, the 

amount of carbon initially present, the amount of carbon lost through emissions, and net 

ecosystem productivity (NEP). For the BAU scenario, the key variables include unburned area, 

NEP in unburned areas, initial carbon present, extent of wildfire, wildfire emissions, and post-

wildfire NEP. For the Rx scenario, the model also includes additional area burned by prescribed 

fire, prescribed fire emissions, and NEP post-prescribed fire. 

 

Initial Carbon 

For each region, we calculated the mean and standard deviation of initial tree carbon using the 

National Biomass and Carbon Dataset (140). We assumed that carbon represented 50% of tree 

biomass (141). For other carbon pools (e.g. herb/shrub, duff/litter, coarse woody debris/fine 

woody debris) we used the LANDFIRE fuel loading model dataset (143). For all forest types, we 

calculated the mean and standard deviation of each fuel pool, assuming that carbon made up 49% 

of herb and shrub biomass, 37% of organic duff and litter, and 50% of fine and coarse woody 

debris (1 to 1000-hour fuel) biomass (141, 143). 

 

Fire Emissions 

To quantify emissions from wildfire we used percent consumption from Meigs et al. (144) for 

three fire severities (low, moderate, high) and two forest types (Ponderosa Pine and Mixed 

Conifer) to determine a mean and standard deviation for percent consumption of carbon by 

wildfire. To quantify emissions from prescribed fire we used generic forest type classifications 

and percent consumption values from Wiedinmyer and Hurteau (138) to calculate a mean and 

standard deviation for percent consumption of carbon by prescribed fire. We calculated 

prescribed fire emissions for herb and shrub biomass, organic matter biomass, and fine and 

coarse woody debris biomass, and assumed no loss of carbon from live trees. 

 

Net Ecosystem Productivity 

For each region, we calculated mean and standard deviation of NEP for unburned and 

prescribed-burned areas using values from Collatz et al. (145). We calculated mean and standard 

deviation of post-wildfire NEP using values for all three fire severity classes from Meigs et al. 

(144) and Dore et al. (146). Note that these post-wildfire NEP values may be conservative, as 

recent analyses suggest there have been significant decreases in post-wildfire regeneration after 

wildfire in the 21st century (24).  

 

Extent of Fire 

We calculated mean and standard deviation of log-transformed area burned by wildfire per year 

in each region using data from 2000 to 2014 in the Monitoring Trends in Burn Severity (MTBS) 

dataset (147, 148). For the BAU scenario, we assumed that the distribution of area burned by 

wildfire per year remained constant over the analysis period. It is important to note that these 

values inherently include the effect of any on-going treatment effort (e.g. thinning or prescribed 

burning) and fire suppression activities on area burned. For the prescribed fire scenario, we 

assumed that on average 5% of each region would be treated each year, leading to complete 



treatment after 20 years. To include a measure of inter-annual variability in our prescribed fire 

area (which can vary due to weather conditions), we assumed that the standard deviation of the 

area treated per year was 10%. We also assumed that for every hectare treated by prescribed fire, 

the area burned by wildfire was reduced by one hectare [e.g., a leverage of 1, (149)]. 

 

Analysis 

We used a Monte Carlo simulation to estimate carbon flux per year for both scenarios in each 

region. For each of 100,000 runs, we used the mean and standard deviation values for each 

component described above and sampled from normal distributions for each variable, except 

wildfire extent where we sampled from a lognormal distribution. We calculated the carbon 

balance for each region for each time-step as 

 

Cbalance = NEPWF + NEPRx + NEPUB – EWF – ERx 

 

Where NEP is net ecosystem productivity for the area burned by wildfire (WF), burned by 

prescribed fire (Rx), or unburned (UB) and E is emissions from wildfire (WF) or prescribed fire 

(Rx). We produced model outputs for a simulated 20 years, and tracked cumulative area burned 

in each time step by summing prior area burned (by prescribed fire and/or wildfire) with the 

current year’s extent. We then multiplied cumulative area by the appropriate post-fire NEP 

value. 

This model produced a mean and 95% CI for the carbon balance per year for both scenarios in 

each region. We summed the carbon balance across all seven regions and all years, to get an 

estimate of carbon sequestered under each scenario over a 20-year time horizon. 

 

We found that after 20 years, the prescribed fire scenario sequestered an additional 362 Tg CO2 

compared to the BAU scenario. This leads to a mitigation rate of 18 Tg CO2e yr
-1 

(95% CI: -5 to 

42). It is important to note, however, that the benefits of prescribed fire accrue non-linearly. 

Initially, the prescribed fire scenario releases more carbon than the BAU scenario because more 

area is burned. However, because prescribed fire releases fewer emissions and supports higher 

NEP post-fire than wildfire, eventually more carbon is sequestered in the Rx scenario. While this 

paper focuses on implementation through 2025, we present an average sequestration rate 

calculated over a 20-year time horizon to account for the benefit of past prescribed fire 

treatments that will be realized in future years. 

 

Uncertainty for fire management  

We took advantage of the variance produced from the Monte Carlo simulation to calculate 

overall uncertainty around the mitigation potential of the fire management pathway. We 

constructed a second Monte Carlo simulation that sampled from normal distributions around the 

mean carbon balance for each region in each year under the two scenarios. For each of the 

100,000 runs, we calculated the difference between the Rx and BAU for each region by year 

combination and summed these to determine overall mitigation. We used the resulting variance 

around the 100,000 runs to assess overall uncertainty. 

 

Marginal abatement costs for fire management 

Using USFS annual data on cost and treatment extent of prescribed burning by USFS forest 

region, we calculate the 2012-2015 average cost per hectare of prescribed burning in each USFS 



region. We use these USFS region-specific mean costs and the overlap of each of our six regions 

with the USFS regions to calculate (regional composition-weighted) mean cost per hectare of 

prescribed burning in each of our six forest regions. We then use these mean costs per hectare 

and our estimated 20-yr average annual net sequestration per hectare (assuming leverage = 1) in 

each of the six forest regions, and total hectares in each region treated during 2017-2025 (45% of 

suitable area in each region) to calculate for each region its estimated mean MAC (USD Mg 

CO2e
-1

; table S5). 

Our cost estimates likely are biased upward because prescribed burning reduces wildfire risk 

(150) and associated fire suppression costs and size of damages from wildfires (151). Further, 

managing natural fire ignitions that occur during benign weather conditions can be used to meet 

the objectives of prescribed fire at a lower cost. We do not account for those cost reductions in 

our analysis. 

 

Avoided Forest Conversion 

We calculate the maximum mitigation potential from avoided forest conversion by estimating the 

historic quantity of carbon released annually from forest conversion (i.e. deforestation) in 

CONUS. Most forest areas in the U.S. that are cleared are not converted to another land use. 

These are temporary clearings, primarily for harvesting timber, which are allowed to regenerate 

to forest rather than being converted to other land uses. To describe this important distinction, we 

use the term “cleared” to refer to land that is cleared, but may or may not be converted, and 

restrict the use of the term “converted” to that subset of cleared land that is converted to another 

land use instead of regenerating to forest. To quantify emissions from forest conversion, we 

calculate the biomass emissions from all pixels that experienced anthropogenic forest clearing 

between 2000 and 2010, and multiply each pixel’s emissions by the proportion of clearings that 

do not regenerate to forest (i.e. are converted to something other than forest), based on 

observations of this proportion from 1986 to 2000 within each forest type and USFS region. This 

approach involves the following sequential calculations, with data sources described further 

below 

 

Bclear(x, y) = BpreD(x, y) * D(x, y) 

 

where Bclear is the total woody dry biomass per m
2
 that was cleared from 2001 to 2010 and 

mapped for locations (x, y), BpreD is the pre-disturbance total woody biomass per m
2
 in a given 

location, and D is a binary variable (0 or 1) that only takes value 1 if a pixel is identified as 

having been cleared within the time frame of 2001 to 2010. 

 

Fc(x, y) = Bclear(x, y) * Conv(x, y, for, reg) * Z(x, y, for, reg) * Bscale * CB * EF * Apixel 

 

where Fc(x, y) is the committed emissions of carbon from forest conversion, Conv is the 

proportion of cleared forest that does not regenerate (i.e. is converted from forest), Z is a binary 

variable (0 or 1) that only takes value 1 for the forest type group and region specified for the 

given pixel, Bscale scales aboveground tree biomass to total woody biomass including 

belowground biomass, CB is the carbon fraction of dry biomass (assumed to be 0.5), EF is the 

emissions factor characterizing the proportion (%) of total woody biomass that is released to the 

atmosphere over the commitment time frame (nominally 20 years), and Apixel is the pixel area (30 

m x 30 m = 900 m
2
). Lastly, we compute the spatially summed mean annual rate of committed 



carbon emissions from forest conversion over the time frame (Nyears = 10 years) for each forest 

type group (for) and region (reg) 

 

Fcann(for, reg) = Σ Fc(for, reg) / Nyears 

 

Locations cleared each year from 2001 to 2010 (D(x, y)) are defined based on data from the 

NAFD project (82). The NAFD project reported CONUS forest and non-forest areas at 30 m 

resolution for every year from 1986 to 2010 based on Landsat spectral reflectances. The dataset 

also reports the year of the most recent disturbance, which have been attributed to fire, bark 

beetle, and other causes (133). Most of the other category is predominantly harvest and forest 

clearing activities but also includes some windthrow and severe damage by additional pests and 

pathogens. By removing natural disturbances such as fire and bark beetle outbreaks, we provide 

a spatially explicit map of locations that were cleared as a result of human activity from 2000 to 

2010. Forested wetlands were also spatially excluded from the analysis, as this would be 

considered a separate mitigation pathway related to avoided wetland loss. Wetlands were defined 

as all areas in the gridded Soil Survey Geographic Database (60) with a Histosol soil content 

greater than 5%. Where no soil survey data was available, we used data on the extent of riparian 

forests identified from the riparian category in the LANDFIRE BPS map (152). Urban areas 

were not excluded, as avoiding forest conversion in urban zones is considered a component of 

this pathway. 

 

To quantify conversion of forest (Conv), we estimated the percentage of cleared area that does 

note regenerate to forest within 10 years, based on the NAFD dataset. For disturbances that 

occurred between 1986 and 2000, we identified which of the cleared sites returned to forest 

within 10 years of disturbance, and which remained non-forest for at least 10 years. The 

conversion rate for disturbances detected for 2001 to 2010 cannot be confidently assessed 

because it may take at least 10 years post-disturbance for forest recovery to be detected in 

Landsat spectral reflectances. Therefore, we assume that the percent of clearing that indicates 

conversion as measured between 1986 to 2000 is representative of those for 2001 to 2010. The 

ratio of the total area converted to the total area cleared over the period (1986 to 2000) yields the 

conversion rate (Conv). We computed conversion for each forest type group (for) and region 

(reg). We defined forest types using the USFS forest cover definitions (88) and regions using the 

nine CONUS USFS Administrative Regions (153) (fig. S7). Large-scale evaluation of the 

conversion rates obtained with this method shows good agreement with statistics from the US 

government. Country-wide analysis indicated that about 16% of all non-fire, non-bark beetle 

forest clearing events did not involve a return to forest within 10 years (table S6). That 

corresponds to an annual rate of conversion of about 380,417 ha per year, or 0.16% of the 244 

Mha of forestland for CONUS as estimated from the NAFD dataset. This is a plausible rate of 

conversion, broadly consistent with (154) who reported a countrywide deforestation rate of about 

0.12% per year (or 355,000 ha yr
-1

), mostly related to housing and urban developments, 

according to the U.S. National Resources Inventory (155, 156). Spatial patterns of conversion 

rates are displayed in fig. S8. Many of the highest rates are concentrated around urban centers, 

with additional hotspots in areas of rapid exurban development. Some agricultural hotspots are 

also detected, such as in the Central Valley of California. Additional hotspots are scattered across 

semi-arid regions of the West, with some experiencing wholesale loss of forest cover (see 2010 

forest cover extent mapped in fig. S8). 



We estimated pre-conversion biomass stocks (BpreD) based on the North American Carbon 

Program Aboveground Biomass and Carbon Baseline Dataset (NBCD) (140). This dataset 

reports CONUS aboveground biomass at a 30 m resolution for the year 2000. We sampled the 

NBCD map for all pixels that the NAFD product indicated as disturbed from 2001 to 2010. The 

ratio of total tree dry biomass to aboveground tree dry biomass is assumed to be 1.25 (Bscale) 

based on the component ratios reported in Jenkins et al. [Table 2 in (130)]. 

 

We assume only partial emission of woody biomass stocks, because a portion of the harvested 

carbon is retained in wood products and a portion of the unharvested carbon decays too slowly to 

be considered contemporary. We assume that, in conjunction with the deforestation process, 8% 

of woody biomass is harvested as roundwood (157) and 31% of that roundwood is emitted as 

logging residues (122). In addition, 56% of woody biomass from the remaining unharvested 

“slash” biomass pool is lost within the 20-year committed emissions accounting horizon (132). 

Combining these assumptions, we prescribe an emissions factor (EF) of 54%. 

 

We applied a 50% deduction to mitigation benefits of avoided conversion of conifer-dominated 

forests to account for the direct warming effect of these dark trees (88), which have been shown 

to offset the climate effects of forest carbon sequestration because of changes in albedo (89, 

158). This deduction was applied to the following forest type groups: White/Red/Jack Pine, 

Spruce/Fir, Longleaf/Slash Pine, Pinyon/Juniper, Douglas-fir, Ponderosa Pine, Western White 

Pine, Fir/Spruce/Mountain Hemlock, Lodgepole Pine, Hemlock/Sitka Spruce, Western Larch, 

Redwood, Other Western Softwood, California Mixed Conifer, Exotic Softwoods. While soil 

carbon emissions are expected when temperate forests are converted to cropland, a minority of 

forest conversion is to cropland, so we do not consider that pool in our calculations. The overall 

effects of conversion of natural systems to residential development is unclear, but may lead to 

increases in soil carbon (159, 160).  

 

Figure S9 illustrates the relative emissions from areas with high risk of conversion. We assumed 

future conversion was more likely in areas with high rates of historic conversion nearby. For the 

purposes of mapping, we identified the 98 ha (1089 pixel) patches that experienced the top 25% 

rates of forest conversion during the historic period of 1986 to 2000 (>1.06%) as areas with high 

risk of conversion. We estimated the carbon emissions that would occur if any individual 30 m x 

30 m location that was forested in the year 2010 was to be converted to non-forest. We excluded 

protected areas as defined by Gap status 1, 2, or 3 in the Protected Area Database for the U.S. 

(161). 

 

Harvest Rate Results 

CONUS mean annual forest clearing for all clearing types (1986 to 2000): 2.369 Mha yr
-1

 

CONUS mean annual forest clearing for all clearing types (2001 to 2010): 2.883 Mha yr
-1

 

Results for specific forest types and regions are shown in tables S7 and S8.  

 

Conversion Rate Results 

Average annual cleared area that was converted (for area cleared 1986 to 2000): 380,417 ha yr
-1

 

Percentage of 1986 to 2000 clearing that was interpreted as conversion: 16% 

Variations by forest type and region are substantial (tables S9 and S10).  

 



Pre-Disturbance Biomass Results 

Tables S11 and S12 report pre-disturbance biomass by forest type and region. Multiply by 0.47 

to calculate the mass of carbon. 

       

Carbon Emissions Results 

Total CONUS carbon emissions from forest conversion: 14.37 Tg C yr
-1

 

Variations by forest type and region are substantial (table S13).  

       

Albedo-Adjusted Carbon Emissions Equivalent Results 

Albedo-adjusted CONUS carbon emissions from forest conversion: 10.46 Tg C yr
-1

 (table S14).  

  

Comparison with other studies 

We have found three reports to which our estimates can be formally compared. A recent study by 

Harris et al. (162) reported carbon emissions from CONUS deforestation equaling 6 ±1 Tg C yr
-

1
, over 0.1 Mha yr

-1
 of converted land. Their assessment is based on land previously classified as 

forested becoming re-classified as agriculture, barren land, or settlement in the NLCD during the 

period 2006 to 2011. Their carbon emissions estimate is about half of that reported here, possibly 

due to 1) a more conservative approach of requiring reclassification to another land use type, 2) a 

different forest biomass data product, or 3) a time period of analysis that was coincident with the 

pronounced economic downturn from 2008 to 2011 when harvesting and land clearing for the 

housing sector slowed. Another study that also used NLCD data estimated 729 Tg C lost from 

deforestation across CONUS from 1992 to 2001, equating to 81 Tg C yr
-1

 (163). The large 

discrepancy with what we report is likely related to their much larger estimate of the area 

deforested annually, 9.3 Mha yr
-1

, or 24 times the rate we estimate, as well as their assumptions 

regarding large soil carbon emissions. Lastly, the most recent U.S. Environmental Protection 

Agency (EPA) Greenhouse Gas Inventory Report (78) reports deforestation emissions of about 

22 Tg C yr
-1

 for 2011 to 2015. Eighty percent of the emissions (17.6 Tg C yr
-1

) are derived from 

loss of live biomass carbon stocks, which is the only component of forest carbon considered in 

this study’s estimate. Conversions to settlements and grasslands dominate, contributing 12.2 and 

8.8 Tg C yr
-1

 respectively, with a modest contribution (0.9 Tg C yr
-1

) from forest conversion to 

croplands. 

      

Uncertainty for avoided forest conversion 

We estimated 13% uncertainty of avoided forest conversion extent by combining the results of 

NAFD error matrixes for the 6 sites reported in (164) and calculated 95% CI following good 

practice guidelines for area-weighted accuracy from (165). We estimated 39% uncertainty of 

avoided forest conversion flux by combining (72) 5% uncertainty from a comparison of five 

estimates of CONUS carbon stocks (140, 166–169) reviewed in (170) and 38% decay 

uncertainty from the sixteen CONUS studies reviewed in (132). 

 

Marginal abatement costs for avoided forest conversion 

We were unable to locate studies for the U.S. that assess marginal abatement costs of avoided 

forest conversion. Both Golub et al. (99) and Lubowski et al. (171) estimate marginal abatement 

costs for both avoided forest conversion and reforestation combined. Because Lubowski et al. 

(171) use a 250-yr time horizon while Golub et al. (99) use a 20-yr horizon in their abatement 

estimates, we use the latter study. Note that Lubowski et al.’s (171) abatement cost estimates are 



an order of magnitude lower than Golub et al.’s (99). We use a best-fit (polynomial; R
2 
= 0.99) 

function for Golub et al.’s (99) data for their “extensive margin” (avoided conversion and 

reforestation) to interpolate the MAC for the abatement levels from avoided forest conversion 

estimated in our biophysical analysis. 

 

Urban Reforestation 

We estimated the potential for an increase in forest cover in urban areas to sequester carbon. We 

first estimated the current forest cover in U.S. cities and then estimated the potential to increase 

this cover. 

 

Estimate current forest cover in U.S. cities 

We used ESRI’s ARCMAP 10.2 to extract forest cover within municipal boundaries (48) (fig. 

S10) from the University of Maryland 30 m spatial resolution (UMd) continuous percent forest 

cover (%FC) for the year 2010 (172). The small percentage of areas lacking 2010 data (probably 

due to cloud cover) was filled by inserting older (2005) UMd %FC data. 

 

Because 30 m imagery may not detect many street trees, which in some cities account for a high 

percentage of all FC [e.g. (173)], we calibrated the UMd %FC data using National Agricultural 

Inventory Program (NAIP) 1 m resolution data (174), resampled to 2 m to exclude small shrubs 

and other non-tree vegetation. The NAIP data was from 2012 to 2015, depending on city (50). 

NAIP %FC is strongly correlated (R
2
 = 0.92) with %FC as estimated using an even higher-

resolution (0.15 to 2 m), image analysis-based forest cover assessment (175) in a sample of 15 

U.S. cities (50). Because NAIP data is not available for all U.S. urban areas, we estimate %FC in 

all urban areas using UMd 2010 %FC, adjusted by the relationship between UMd 2010 %FC and 

NAIP-calibrated %FC (fig. S11; R
2
 = 0.53) using data for 27 cities from Kroeger et al. (50). We 

estimate city-wide average % tree cover for all U.S. urban areas (N = 3,535) by dividing total 

forest cover by total municipal land area. 

 

Potential for adding urban tree cover by 2025 

We estimate current potential %FC increase for all U.S. municipalities as the mean (and 95% CI) 

of estimates of total potential %FC increases in the 27 cities from Kroeger et al. (50) (mean: 

17.7%, 95% CI: 14.9 to 20.6%, expressed as share of city land area). Kroeger et al. (50) identify 

the potential street tree planting area in each street segment in each of the 27 cities as the 

difference between current NAIP % tree cover (TC) in a 16 m-wide buffer around the segment 

centerline and the city’s 95th percentile NAIP segment %TC, multiplied by buffer area. In each 

city, they identify potential patch planting sites outside of street segments by first excluding 

impervious, agriculture, water and wetland areas and current NAIP tree cover within 2010 U.S. 

Census city boundaries. To exclude non-impervious areas likely not available for tree planting, 

Kroeger et al. (50) extract Normalized Difference Vegetation Index (NDVI) data, adjust NDVI 

thresholds for each city to account for image variation across the U.S., and use a combination of 

NDVI and a city-specific entropy-based texture analysis to remove smooth-texture NDVI areas, 

which correlate with golf-courses, sports fields and lawns. They exclude patches <100 m
2
 in size, 

and, to avoid potential biodiversity conflicts, in non-forest biomes [identified using (176)] 

patches ≥20 ha or >50% in natural land cover.  

 



We use this potential %FC increase and city land area to calculate, for each city, the potential 

increase in forest cover (in hectares). We assign this potential %FC increase to patch and street 

plantings using the mean share of potential street (0.46) and patch (0.54) planting area in the 27 

cities from Kroeger et al. (50). To avoid potential biodiversity conflicts or water constraints, we 

conservatively assume that in cities not located in forest biomes (176), only street tree planting 

will occur. This biases our estimates of available planting area downward since biodiversity 

conflicts are unlikely for most patches given the already highly altered ecology of most private 

yards and public parks, and because tree irrigation requirements in arid cities can be minimized 

through the use of species tolerant of low soil moisture [e.g. (177)]. 

 

We assume that the total area of potentially reforestable patches within existing urban boundaries 

will decline over time as a result of gradual increase in impervious surface area (ISA). We 

assume that increases in ISA will negatively impact the potential for patch tree plantings, but not 

street tree plantings, because street trees are, by definition, incorporated into areas with primarily 

impervious surface cover. We note that avoided forest loss from urban growth is included in the 

analysis for the avoided forest conversion pathway, and so is intentionally excluded here. 

Bounoua et al. (178) give projected 2001 to 2020 population and %ISA (as percent of urban 

area) change for 12 urban areas in the U.S. Assuming average annual %ISA change during their 

20-year period is the same, on average, as during our 2017 to 2025 projection period for all U.S. 

municipalities, we scale their average %ISA change to 2017 to 2025 after excluding the desert 

cities in their sample (because large-scale patch tree planting would likely not be an option in 

desert cities). 

 

We multiply the resulting estimated total 2017 to 2025 %ISA change (5.1%) by the average 

share (0.86) of %ISA increase in Nowak and Greenfield’s (175) 20 study cities that comes at the 

expense of a reduction in non-forest covers (grass/herb, soil), to derive the estimated reduction in 

potentially reforestable area. This yields an estimated average ISA increase of 4.4% (as share of 

urban land area) during 2017 to 2025 that will come at the expense of reforestable area. We 

subtract this percentage from the previously estimated average share of U.S. municipal area 

currently potentially available for urban tree patch plantings (9.5% of urban land area, 95% CI: 

8.0 to 11.1%, calculated as 54% of total urban area potentially available for reforestation) to 

derive our estimates of potentially reforestable city area in 2025, calculated separately for cities 

in forest (13.3%, 95% CI: 10.5 to 16.2%) and non-forest biomes (8.2%, 95% CI: 6.9 to 9.5%).  

 

We estimate potential absolute increase in tree cover in each of the 3,535 U.S. municipalities 

(48) as the product of the estimated potential %FC increase in a city in 2025 and its terrestrial 

area (48). 

 

Because urban tree planting and maintenance costs are reported per tree (see below), we made 

estimates of the number of trees for a given canopy area, with separate estimates for street trees 

and patch trees. These estimates are based on mean growing space requirements for trees without 

lateral restrictions (50). We conservatively assume an average stem diameter at breast height 

(dbh) at age 40 of 45 cm [63 to 85% of the estimated dbh of 40-year-old urban camphor trees, 

red oak, and green ash, respectively (179–181)] and calculate the estimated average crown radius 

(5.0 m) as the mean of the crown radii derived using Pretzsch et al.’s (182) pooled 95
th

 percentile 

crown radius-stem diameter allometric equations for large (1 equation) and medium size (3 



equations) urban trees with dbh = 45 cm. We calculate number of street trees planted ha
-1

 of 

canopy cover at maturity by dividing canopy area ha
-1

 (10,000 m
2
) of street trees by the 

estimated mean crown area (77.1 m
2
). For patch tree plantings, we note that urban plantings are 

typically not as dense or uniform as reforestation plantings. We assume that reforestation patches 

have the same sequestration rate used in our reforestation pathway (1.33 Mg C ha
-1

 yr
-1

). 

Because this rate is equivalent to 61% of the mean net C sequestration rate of urban tree canopy 

cover calculated from Nowak et al. [2.18 Mg C ha
-1 

of
 
canopy cover yr

-1 
from

 
(183), see next 

sub-section], we calculate the number of patch trees planted as 0.61 of the potential patch 

reforestation area, divided by mean crown area at maturity (77.1 m
2
). 

 

Given the estimated total potential increase in U.S. urban tree cover in 2025 (2.65 to 4.04 Mha), 

this requires the planting of an estimated 296 to 435 million trees in total. This is equivalent to 

approximately 7 to 11% of the current estimated total U.S. urban tree population of 

approximately four billion (184). For comparison, annual forestry-associated tree seedling 

production in the U.S. in 2011 to 2012 was 1.2 billion seedlings yr
-1

 with approximately 1Mha 

yr
-1

 planted (185). This does not include urban tree planting, which is much smaller in scale. 

Urban plantings generally require larger growing stock (i.e., trees rather than seedlings or 

saplings) than wildland plantings to better withstand accidental damage and vandalism (186). 

Note that our cost estimates assume replacement of all tree mortality due to impacts from 

disease, pest, or other events. We therefore do not correct numbers of planted trees for annual 

survivorship. 

 

Large-scale urban tree cover increases therefore will require a substantial increase in nursery 

capacity and likely contract-growing to produce the required output, especially of larger stock 

sizes. We assume that implementation is spread evenly over 9 years (2017 to 2025), with 33 to 

48 million new urban trees planted annually (i.e., above and beyond mortality replacement), or 

approximately 9,300 to 13,400 on average per municipality per year. 

       

C sequestration through urban reforestation 

For street trees, we calculate the estimated total net C sequestration from U.S. urban reforestation 

in a given year as the product of the cumulative canopy cover (number of trees planted by that 

year, starting in 2017, multiplied by the estimated average canopy area per tree in m
2
) and the 

average annual street tree C sequestration rate. We calculate the street tree C sequestration rate as 

the population-weighted (187) average annual whole tree (shoot and roots), net C sequestration 

rate by urban trees in the 50 U.S. states and the District of Columbia [0.218 kg C m
-2 

tree cover 

yr
-1

, 95% CI: 0.202 to 0.234 kg C m
-2 

tree cover yr
-1

; (183)]. Because Nowak et al. (183) do not 

present uncertainty for their state-level average net sequestration rates, we constructed the 95% 

CI for net sequestration rates by scaling the 95% CI for their gross sequestration estimate for all 

urban forests in the U.S., which we calculated using their estimate (25.6 Tg C yr
-1

) and with a 

95% CI of 23.7 to 27.4 Tg C yr
-1

 for total annual gross sequestration by urban forests in the 50 

states. This net sequestration rate reflects whole tree (shoot and roots) carbon sequestration 

minus carbon emissions from decomposing dead trees. We reduce this rate by 5%, which is a 

conservative estimate of the share of annual whole-tree net carbon sequestration by urban trees 

that is offset by emissions from urban tree planting and maintenance activities [Fig. 4 in (67); 

(188)]. It does not reflect the avoided carbon emissions from reduced residential energy use due 

to the shading of structures or the reduction of ambient air temperature by trees (50, 189), which 



can exceed net sequestration by urban trees depending on location (67, 190, 191). It also does not 

reflect any soil C accumulation that may result from reforestation. 

For patch tree plantings, we calculate the estimated total net C sequestration from U.S. urban 

reforestation in a given year as the product of the hectares of patches reforested and the estimated 

mean annual sequestration rate used in our reforestation pathway (1.33 Mg C ha
-1

 yr
-1

). This rate 

is lower than for street trees because it represents sequestration per hectare of patch reforestation 

area—which does not always have full canopy cover—rather than sequestration per hectare of 

canopy cover. 

 

Our estimates of annual net carbon sequestration by newly planted urban trees are likely 

conservative for two reasons. First, they do not include potential soil carbon sequestration for 

street trees. Second, they are based on net sequestration rates of existing urban trees representing 

a mix of young, mature, and old trees, not newly planted urban trees. Given that mean life 

expectancy of urban street trees in the U.S. may be around 11 to 28 years (192) and that of non-

street trees is perhaps 40 years under moderate maintenance levels (67), the average annual net 

sequestration rates from the literature we used in our analysis represent averages for trees 

ranging from a few years to many decades. Given that stand-level, whole ecosystem carbon 

sequestration declines with stand age (193) and that our cost estimates assume replacement of 

any tree mortality, use of those average literature sequestration rates biases our sequestration 

estimates downward. 

       

Results for urban reforestation 

We estimate the total potential for urban forest cover increase in 2025 at 3.34 Mha (95% CI: 2.6 

to 4.04 Mha), and total annual net C sequestration (reduced by planting and maintenance-related 

C emissions, but not adjusted for avoided C emissions from reduced building energy use) in 

2025 at 23 Tg CO2e yr
-1

 [(95% CI: 19 to 30 Tg CO2e yr
-1

); table S15]. 

 

For comparison, existing U.S. urban forests sequester an estimated 18.9 Tg C yr
-1

 net (based on 

the estimate in Nowak et al. (183) of 25.6 Tg C yr
-1

 gross sequestration and their reported 0.74 

net:gross ratio). 

 

The average estimated cost (street and patch plantings combined) per Mg CO2 avoided by 2025 

is USD 602 (95% CI: USD 452 to 735), which is within the range of estimated costs per Mg CO2 

of four urban reforestation projects in Colorado, if avoided C emissions from reduced energy use 

resulting from tree shading are excluded (191). 

 

An estimated average annual 0.2 Tg CO2 (0.1 to 0.5 Tg CO2) could be sequestered by 2025 at 

USD ≤100 Mg CO2
-1

 table S16), while zero could be abated at USD ≤10 Mg CO2
-1

. 

 

Uncertainty for urban reforestation 

Estimates of potential %FC increase are based on the estimated average feasible %FC increase 

from the 27 U.S. cities in Kroeger et al. (50), adjusted using three scenarios of future loss of 

potentially plantable areas due to urban in-fill development. These scenarios were developed 

from published estimates of rates of ISA increase and conversion of non-tree vegetative covers 

and bare soil to ISA. The estimate of currently available planting area from Kroger et al. (50) 

represents an ambitious reforestation scenario. Our scenarios are more conservative since we 



assume that in non-forest biomes only street trees would be planted. Our rate of assumed %ISA 

increase is the mean of published estimates of predicted %ISA increases in 9 U.S. cities located 

in forest or grassland/woodland biomes, and may not be representative of the average rate of 

%ISA increase across U.S. cities. Our rate of conversion of potentially reforestable (grass, herb, 

soil covers) sites to ISA is based on a 20-city average rate, which likewise may not be 

representative of the U.S. average rate of this land cover conversion type. 

 

Nowak et al. (183) provide the standard error (SE) for their estimate of total annual, whole-tree 

gross C sequestration by urban forests in all 50 states (US50), which is based on field data across 

the U.S. Our use of those rates results in conservative net C sequestration estimates (and upward-

biased MAC estimates) for two reasons. First, forest stand-level C accumulation exceeds whole-

tree C accumulation in forest stands (193). Second, since stand-level C sequestration declines 

with stand age (193), the C sequestration rate in new plantings is expected to exceed the average 

C sequestration rate in existing urban forests–the rate we used in our analysis. 

 

We use the ratio of 2*SE to the mean of the Nowak et al. (183) US50 total gross C sequestration 

estimates to construct a 95% CI for our estimate of the average annual net sequestration rate by 

urban street tree plantings in the U.S., thus assuming that the SEs of grass and net sequestration 

are proportional to their sequestration ratio. Given that Nowak et al. (183) state that net C 

sequestration equals 74% of gross sequestration, we do not think this assumption increases the 

uncertainty in our estimates. 

 

For patch plantings, we use a mean sequestration rate for reforestation of natural ecosystems (see 

reforestation pathway). 

 

Marginal abatement costs for urban reforestation 

We calculate average annual urban reforestation costs ha
-1

 for street tree plantings as the average 

annualized costs ha
-1

 of urban street and patch tree planting in the 27 U.S. cities analyzed in 

Kroeger et al. (50). These costs include all planting and maintenance-related tree costs including 

tree replacement. For patch plantings, we multiply Kroeger et al.’s (50) cost ha
-1

 by the ratio of 

our (52%) and their (100%) estimated percent of patch tree canopy cover. We assume that urban 

reforestation projects would be financed through municipal bonds and increase the above costs 

by the 2011 to 2016 average of municipal bond interest rates for Aa, A, and Baa rated bonds with 

20-year maturity (4.25%) (194). We calculate annual urban reforestation costs by multiplying the 

total areas of street and patch trees, respectively, planted by a given year in 2017-2025 by the 

average annualized, finance cost-augmented street and patch planting costs ha
-1

. 

 

We assume that Kroeger et al.’s (50) 27-city average street and patch tree planting and 

maintenance costs ha
-1

 of street and patch tree increases are representative of average urban 

street and patch tree costs in the U.S. 

 

Avoided Grassland Conversion 

We used data on the spatial location of previous conversion of grassland and shrubland (<25% 

tree cover) to cropland (2008 to 2012) to estimate annual emissions from conversion, and then 

assume that this rate continues (fig. S12). Conversion to other sources (e.g. residential 



development) has an ambiguous impact on soil carbon pools, so conversion to land uses other 

than cropland are not considered. 

 

We considered emissions from biomass and soil carbon. In grasslands, we only consider 

belowground biomass. In both grasslands and croplands, aboveground biomass is annually 

harvested, burned, grazed, or decomposed within a few years and therefore is not considered in 

avoided emissions calculations. In shrublands, we considered carbon in aboveground biomass, 

belowground biomass, and litter. 

 

For soil carbon flux, we assume the average percent loss of soil organic carbon from the top 1 m 

to be 28% following conversion to cropland (95% CI: 15 to 41%) (26). This estimate, from a 

recent literature review, is based on the average of studies that compared uncultivated grasslands 

to paired cultivated soils in the U.S. (N = 18) where soil organic carbon data was available to a 

depth of 1 m and reflects the committed emissions that occur over time (~20 years) when 

grassland is converted to cropland. We applied this loss rate to the amount of soil carbon as 

estimated to a depth of 1 m by the SoilGrids250m v.2 soil carbon database to get a national map 

of potential soil carbon emissions (195). SoilGrids250m contains globally gridded, 250 m 

resolution maps of soil organic carbon that were generated using machine learning techniques 

and explicitly considers land cover as reported by the 2010 CCI Land Cover Product (196) when 

determining the soil organic carbon stock of a given pixel. Due to temporal and thematic 

disagreement between our land use change layer (25) and the classification scheme used to 

generate SoilGrids250m (195), we limited our analysis to pixels that are classified as grasslands 

or shrublands by both datasets to best reflect potential C emissions from conversion of these land 

cover types to cropland. 

 

We assume all perennial root biomass is lost when converted to an annual cropping system. We 

used root biomass data from U.S. grasslands in Mokany et al. (52) to develop a predictive model 

for root biomass in grassland based on mean annual temperature (MAT), mean annual 

precipitation (MAP), and their interaction. We set the minimum root biomass in grasslands to 

1.15 Mg biomass ha
-1

 (197) to avoid unrealistically low model predictions in the most hot and 

dry places in the country. This is based on values observed on grazed grassland at the hot and dry 

Jornada experimental station in southern New Mexico [MAT: 15 C, MAP: 250 mm; (198)]. We 

assumed that shrubland contained 10 Mg C ha
-1

 in biomass (199, 200). 

 

We then used an analysis of the spatial location of conversion to cropland from Lark et al. (25) 

to estimate the committed emissions from soil carbon and root biomass for the years 2008 to 

2012. The conversion data is based on analysis of the USDA Cropland Data Layer combined 

with additional processing and data to correct for biases, account for cropland rotations, and 

improve identification of conversion locations (25). 

 

Lark et al. (25) estimate a rate of grassland loss of 0.69 Mha per year. Our analyses found an 

average rate of 34.2 Mg C ha
-1

 of soil carbon loss, and 8.3 Mg C ha
-1

 biomass loss on these 

lands, resulting in a total potential avoided loss of 29.3 Tg C yr
-1

. 

 

 

 



Uncertainty for avoided grassland conversion 

We estimated uncertainty for area and for flux per hectare. For area, we used the temporal 

variation, based on four years of conversion from 2008 to 2012, which found a 95% CI of ±13%. 

For flux per hectare we calculated uncertainty in the percentage of soil carbon lost and used the 

model uncertainty for root biomass. 

 

Marginal abatement costs for avoided grassland conversion 

We used county-level average per hectare payments from the CRP to estimate the spatial 

variation in the cost of avoiding conversion of grassland and shrubland (201). We averaged 

county level per-hectare payments from the last three years for which data were available, U.S. 

federal fiscal years 2007-2009. Before averaging, we adjusted payments to 2015USD. We 

created MAC curves based on this spatial variation in cost and the spatial variation in soil carbon 

and root biomass that we mapped, as described above (fig. S13). 

 

Cover Crops  

Within the cover crops pathway, we focus on cover crops as a practice that has consistent 

positive recorded effects on carbon sequestration. Cover crops are defined as the cultivation of 

additional crops in fallow periods between main crops (52). To estimate the maximum potential 

extent of cover crops, we assume that they could be implemented on all five major field crops in 

the U.S., which cover 97.5 Mha of land (202). The most recent USDA Census of Agriculture 

(203) reported the use of cover crops on 4.2 Mha. Therefore, we quantify the benefit of 

expanding this practice by 88.2 Mha. It is possible for cover crops to be used on all of these 

acres, although interseeding (planting of the cover crop before harvest of the main crop) may be 

the best practice for establishing cover crops in northern latitudes in order to ensure successful 

establishment before winter (204). 

 

Poeplau and Don (51) is the most comprehensive and rigorous meta-analysis of carbon 

sequestration from cover crops to date, and finds an average effect of 0.32 Mg C ha
-1

 yr
-1

 that is 

consistent across crop choice, tillage regime, and climate. It is also similar to other prior 

estimates (e.g. Eagle et al.’s (6) estimate of 0.37 Mg C ha
-1

 yr
-1

). Poeplau and Don’s estimate is 

based on field observations of cover crop implementation for up to 54 years. Their model 

suggests that a new equilibrium is reached after 155 years. We assume that their sequestration 

rate applies for at least 50 years. 

 

In total, we find a potential of increasing mitigation from cover crops by 109.5 Tg CO2e yr
-1

. 

We do not include no-till as a carbon sequestration practice. Although several studies report 

carbon sequestration benefits of no-till [e.g. (205)], more recent research has questioned this 

finding, suggesting that no-till fields have less carbon than conventional fields at depths below 

25-30 cm, largely offsetting the increased carbon at shallower depths (206–210). Another 

sampling issue is that failure to correct for changes in soil bulk density in no-till soils has led to 

overestimates of the benefit of no-till (209). No-till has also been shown to increase N2O 

emissions for a decade after it is initiated (211, 212). Therefore, any potential benefits of no-till 

would likely require continuous implementation of the practice for over a decade. However, less 

than 14% of no-till fields in the corn belt have been in continuous no-till for at least 6 years 

(213). In total, while it is possible that cropping systems including reduced or zero tillage do 



have potential to sequester carbon in soils, the current state of knowledge does not enable a 

reliable estimate, and consequently this practice is not included here. 

       

Uncertainty for cover crops 

There is minimal uncertainty in the number of acres planted in the five major crops in the U.S., 

and we do not consider this as a source of uncertainty. Poeplau and Don (51) report a 

sequestration rate with a 95% CI of 0.16 to 0.48 Mg C ha
-1

 yr
-1

, which translates to a 95% CI of 

53 to 154 Tg CO2e yr
-1

 for total mitigation potential. 

    

Marginal abatement costs for cover crops 

Cover crops can generate a variety of benefits and costs, both internal and external to the farm 

(214, 215). The net effect of these impacts on farm-level profitability is a function of many 

factors and in a given case may be either negative or positive (216), though appropriate selection 

of cover cropping design can dramatically reduce the likelihood of negative outcomes (217). We 

identified studies that assessed the profitability impact of cover crops for corn, corn-soybean 

rotation and cotton. 

 

We calculate estimated costs for cover crops on corn as the average of the mean absolute change 

in profitability per hectare of corn under cover crops reported in the three observations for corn 

shown in table S17. (We calculate low and high costs the same way from low and high 

profitability impacts per hectare shown in table S17). We calculate the estimated cost of cover 

crops on soybean as the change in short-term profitability per hectare reported for the first 

rotation and for the following rotations (table S17), weighted by 1/9 and 8/9, respectively, to 

account for the fact that the first rotation cost estimate only applies to 1 out of the 9 years of our 

analysis period. For cotton, we calculate the cost of cover crops for three different scenarios. For 

conventional till cotton, we calculate cover crop cost as the reduction in profit from planting the 

most competitive cover crop under conventional tillage with no cover crop, from data in Cochran 

et al. (218). For cotton under no-till, we calculate cost as the reduction in profit from switching 

from no cover crop to planting the most competitive cover crop [from (218)]. For strip-till 

cotton, we calculate cost based on the profit impact from cover crops under reported by Smith et 

al. (219). (For soybeans, we calculate the estimated low and high costs —not provided in the 

source study—based on the average of the ratios of the percent difference of the low to the mean 

(-110%) or the high to the mean (+193%) impacts on profitability, respectively, of the corn and 

cotton observations shown in table S17. We calculate the estimated profitability impacts of cover 

crops on the other two major cereal crops (wheat, rice) as the average of the profitability impacts 

on corn, cotton and soybean. The profit enhancing impact of cover crops on corn or corn and 

soybean (table S17) is confirmed by three additional studies on cover crop profitability impacts 

we were able to locate (220–222). Except for cotton, were one of the studies we found reported 

negative impacts of cover crops on profitability (218), all other studies report profit increased 

from planting at least one of the cover crop options the studies examined. Thus, the studies we 

reviewed support the hypothesis that well-chosen cover crops increase profitability. A survey by 

the Conservation Technology Information Center and the Sustainable Agriculture Research and 

Education program (223) confirms this assessment, reporting that among respondents who could 

evaluate how cover crops impacted their profit on average, only 9% indicated that cover crops 

reduced their profits. 



For each crop, we calculate GHG MAC as the estimated change in profitability (USD ha
-1

 yr
-1

) 

divided by the average GHG sequestration (Mg CO2e ha
-1

 yr
-1

). Total annual abatement potential 

of cover crops for each crop is derived as the product of average annual abatement potential of 

cover crops per hectare (0.32 Mg CO2e) and total crop production area of the crop in 2016 (202). 

For cotton, we calculated the potential application extent as 4.1 Mha [cotton cropland (202) 

reduced by 4.2%, which is the average cropland extent under cover crops (203)]. We assumed 

that the share of cotton currently (2012) under conventional till is equal to the share of all 

croplands under conventional till [44%; (203)], and assigned the cost of applying cover crops on 

conventional till cotton to 44% of the cotton cropland currently not under cover crops. We 

assigned the two conservation till (strip and no till, table S17) cover crop cost estimates for 

cotton to the remaining 56% of cotton cropland currently assumed not under conventional till 

based on the relative extent of croplands in no till and conservation till [0.56:0.44; (203)]. 

 

Table S18 shows the estimated MACs and total annual abatement levels for cover crops on the 

five rows crops included in our analysis. Under mean cost assumptions, abatement costs are 

negative, and the full potential abatement is achieved at any of the three carbon prices. 

 

Biochar 

Biochar is a form of charcoal designed to be incorporated into soils. When applied, it can 

significantly increase soil carbon, and has potential agronomic benefits (224). The potential for 

biochar to sequester carbon depends on the supply of suitable biomass feedstocks. We constrain 

our estimate to biochar that can be produced from agricultural residues, at residue removal levels 

that do not negatively affect soils. Because some agricultural residues are already harvested (e.g. 

for use as forage or bedding), we only consider the potential for increased harvest of agricultural 

residues beyond this non-biochar demand for agricultural residue. An estimate of crop residue 

availability for biochar in 2025 was taken from the Department of Energy’s 2016 Billion Ton 

Report baseline scenario (225), which considers both recoverable field residues from the five 

major crops and secondary agricultural wastes from the processing of harvested biomass. The 

scenario projects 144 Tg yr
-1

 of dry biomass from crop residues available in 2025, additional to 

that already being harvested, at a farmgate cost (i.e. not including the cost of transportation 

beyond the farm gate) of USD <66 Mg
-1

. 

 

Estimating Carbon Sequestration 

To estimate the long-term carbon sequestration per Mg of dry biomass, we assume the average 

carbon content of residues is 45% (226). We assume that, after the pyrolysis used to create the 

charcoal from biomass, 50% of the carbon is retained in biochar (227). Of that carbon, 97% of it 

is recalcitrant, meaning that it decomposes very slowly when the biochar is incorporated into the 

soil. This recalcitrant carbon has a mean residence time in soils estimated at 556 years (56). 

Assuming the recalcitrant fraction decays exponentially, we used the mean residence time to 

calculate that an average of 81% of char carbon persists for at least 100 years (using the formula 

F100 = exp (- 100/MRT), where F100 is the fraction remaining after 100 years and MRT refers to 

the mean residence time). As such, “long-term” mitigation per unit of dry biomass feedstock is 

0.18 Mg C per Mg of dry feedstock. Our estimate is conservative because we do not assume that 

heat or gases generated during the pyrolysis process are used to offset fossil fuel use. Although 

this may increase the total emissions abatement potential in some contexts, this is likely to be a 

minority of cases and this heat is also useful for drying the biomass prior to pyrolysis. 



Additionally, we do not include any second order effects of biochar on soil organic matter or 

emissions of N2O or CH4, based on recent meta-analyses showing these effects to be neutral or 

only weakly beneficial on average (55, 56). 

 

Uncertainty for biochar 

To estimate uncertainty in the mitigation per unit of biomass, we conducted a Monte Carlo 

analysis in R to combine uncertainties across each term in the following equation 

 

M = B * FC * YC * R * exp (- 100/MRT) 

 

Where M is total mitigation, B is biomass supply (in Tg yr
-1

), FC is carbon content of residue 

feedstocks by mass (in %), YC is “carbon yield” (% of feedstock carbon retained in char during 

pyrolysis), R is the fraction of char carbon that is recalcitrant (in %), and MRT is mean residence 

time of recalcitrant carbon. The Billion Ton Report (225) does not provide internal estimates of 

uncertainty for biomass supply. To capture the uncertainty in biomass supply from agricultural 

residues, we combine the 2015 estimate from the Billion Ton Report with five other estimates 

within the U.S. since 2000 (228–232). Mean and standard error estimates for R and MRT are 

drawn from a recent meta-analysis of 121 data points (56). We derived means and confidence 

intervals for FC and YC based on data points drawn from studies of residue feedstocks (226, 233–

236) and pyrolysis yields (234–237). 

 

Marginal abatement costs for biochar 

Using a sequestration factor of 0.18 Mg C per Mg of dry feedstock, the USD 66 Mg
-1 

of 

feedstock cost threshold for residues in the Billion Ton Report (225) corresponds to a mitigation 

cost of USD 100 Mg CO2e
-1

, excluding capital or operation costs for pyrolysis equipment and 

value generated by biochar or co-products. To generate an estimate at USD 50 Mg CO2e
-1

, we 

therefore repeat the process using supply curves provided by the 2016 Billion Ton Report at a 

farmgate cost of USD 33 per Mg. Biochar is not viable at USD 10 Mg CO2e
-1

, although research 

demonstrating agronomic benefits could inspire adoption even in the absence of payments for 

carbon storage. 

 

To summarize, we estimate total mitigation potential at USD <100 Mg CO2e
-1

 as 

144 Tg dry matter yr
-1

 * 0.18 Mg C per Mg dm = 95 Tg CO2e yr
-1

 

At USD <50 Mg CO2e
-1

, the available feedstock, and thus mitigation potential, is much lower 

13.3 Tg dm yr
-1

 * 0.18 Mg C per Mg dm = 8.8 Tg CO2e yr
-1

 

Alley Cropping 

Alley Cropping is planting rows of trees at wide spacings with a companion crop grown in the 

alleyways between the rows. Udawatta and Jose (238) estimate a maximum potential of alley 

cropping on 10% of U.S. cropland (15.4 Mha). Based on a literature review of biomass and soil 

sequestration rates compared to cropping systems without trees, we estimate an average 



additional sequestration from alley cropping of 1.45 Mg C ha
-1

 yr
-1

 (239–245). This yields a total 

annual mitigation potential of 82 Tg CO2 yr
-1

. 

 

To estimate uncertainty, we estimated the expected range as 7.7 to 80 Mha by taking the 

maximum value from the literature (246) and halving Udawatta and Jose’s (238) more 

conservative estimate to set the minimum. For flux uncertainty, we calculated a 95% CI of ±49% 

based on the range of values observed in the literature. Combined, this yields a range of 35 to 

166 Tg CO2 yr
-1

. 

 

The MAC curve depends on multiple agronomic factors. Alley cropping can increase total farm 

productivity if soil moisture availability is sufficient and if tree-based intercropping systems are 

designed in a locally adapted way and allow the crops to interact in a complementary rather than 

competitive manner (247–249). The economic attractiveness of alley cropping systems relies, to 

a large extent, on the high value of tree products (often nuts) in addition to the value of the 

timber at harvest (250), but the direct net effect on profits of switching to alley cropping depends 

on the particulars of the operation (251). Alley cropping also indirectly affects profits by 

enhancing or diversifying a farm enterprise by adding tree products (e.g., nuts and high-value 

timber, or wood as energy feedstock), by reducing surface water runoff and soil erosion, by 

altering water table depths, by improving utilization and reducing offsite movement of nutrients, 

and by modifying the microclimate for improved crop production (252, 253). 

       

Marginal abatement costs for alley cropping 

Frey et al. [(254); see also Mercer et al. (255)] is the only study that estimates break-even net 

revenue per metric ton CO2 for alley cropping, compared to soybeans with average crop revenue 

election (ACRE) or fixed direct payment (FDR) payments. They study three alley cropping 

systems (pecan-soybeans, cottonwood-soybeans, hard hardwoods-soybeans) in the Lower 

Mississippi Alluvial Valley (LMAV) on moderately marginal lands [land capability class (LCC) 

3]. At a 5% discount rate (DR), the economic return of three different alley cropping systems 

was positive, but varied threefold among the three tree species studied, with none of them 

competitive with monoculture soybean or corn cropping. On the most marginal lands, 

cottonwood alley cropping exceeded the economic performance of the monoculture row 

cropping systems at 5% DR (255). 

 

We assume that alley cropping could be carried out on all crop lands (LCC1 thru LCC8). We 

calculate break even prices for alley cropping for all LCCs by fitting linear functions to the 

break-even prices (updated to 2015USD) reported in Frey et al. (254) on LLC3 and LCC5 lands 

for pecan-soybean, hard hardwoods-soybean and cottonwood-soybean, respectively. We 

distribute total potential alley cropping area (15.4 Mha) across LCCs using the percent 

distribution of croplands among LCCs in 2012 [Table 13 in (256)]. Our estimated MAC curve 

for alley cropping is composed of 18 segments (3 break-even prices per LCC, multiplied by 6 

LCCs, noting that LCC6, 7, and 8 are lumped since there is very low acreage in the latter two 

categories). To partition lands within each LCC across the 3 break-even prices, we assume they 

are evenly distributed (i.e. with 1/3 in of the three cost classes). Across these 18 segments, we 

find MAC costs span USD -16.5 to 70.9 Mg CO2e
-1

. 

 



Our estimates are consistent with other studies in the literature, which also show that the cost-

effectiveness of alley cropping varies widely depending on the location and cropping system. For 

example, for a site in Missouri, Stamps et al. (252) report an average annual profit increase of 

USD 98.84 ha
-1

 yr
-1

 over the life of a plantation (including sale of nuts but not timber) with 

walnut-alfalfa alley cropping (in their case, using wide alleyways with 24.4 m between tree 

rows) compared to alfalfa mono-cropping. In another example, using the mean annual C 

sequestration rate of black walnut-soybean alley cropping (1.8 Mg C ha
-1

 yr
-1

 over 25 yrs) and 

the net carbon loss from soybean mono-cropping (-1.2 Mg C ha
-1

 yr
-1

) reported in southern 

Ontario (257), this translates into a break-even price of USD 9.0 Mg CO2e
-1 

— lower than the 

prices reported in Frey et al. for their three tree species on LCC 3 lands, and comparable to Frey 

et al.’s average of the three tree species on LCC 5 lands (254). 

       

Cropland Nutrient Management 

Current and future nitrogen fertilizer use under BAU was projected to be 11.86 Tg N yr
-1

 (year 

2016) and 12.41 Tg N yr
-1

 (year 2025) based on a linear trend from reported data from 1980 

through 2010 (fig. S14).  

Translating nitrogen fertilizer use into N2O emissions, we follow Davidson (258) in using a total 

emissions factor of 2.54% for fertilizer N. This is slightly higher than the IPCC central value of 

emissions factors (2% direct + indirect), but is on the low end of the range of estimates reviewed 

by Snyder et al. (259) of 2 to 5%. Total N2O emissions from fertilizer under BAU are therefore 

0.473 Tg N2O yr
-1

 in 2016 and 0.495 Tg N2O yr
-1

 in 2025. 

       

Saving in N2O emissions under maximum mitigation 

To model the effect of Improved Nutrient Management, we reviewed the literature on various 

best management practices (BMPs) for improved management of inorganic N fertilizer. We 

found adequate support to estimate four different improved practices: 1) reduce whole-field 

application rate, 2) switch from anhydrous ammonia to urea, 3) improve timing of fertilizer 

application, 4) use variable application rate within field. Practices 1 and 4 reduce the total N 

application rate, while practices 2 and 3 reduce the N2O emissions per unit of N applied. 

Notably, the studies demonstrating these benefits also demonstrate that they can be achieved 

without reductions in yields and have significant health benefits due to improved air quality 

(260, 261). For each of these practices, we estimated the potential reduction in emissions 

weighted by the area for which the practice is applicable (table S19). For the use of variable rate 

within field, we assembled literature results including both N2O reductions and N rate reductions 

due to this practice, and calculated the average reduction across all studies to be 15% (tables S19 

and S20). Finally, we calculated the combined reduction in emissions for all practices, 

comparing the overall projected emissions under BAU with our conservation scenario that 

implements multiple fertilizer practices (table S19). We found that all practices together could 

reduce N fertilizer use to 78% of the BAU total and overall field emissions (i.e., not including 

upstream) to 67% of BAU (table S19). 

 

Multiplying the potential reduction in emissions by the total projected fertilizer use we find that 

under BMP in 2025, field N2O emissions will be 0.333 Tg N2O yr
-1

. 

The N2O emissions reduction in 2025 is calculated as the BAU emission (0.495 Tg N2O yr
-1

) 

minus the BMP emission (0.333 Tg N2O yr
-1

) for a total of 0.164 Tg N2O yr
-1

. To calculate 



emissions reduction in carbon dioxide equivalents, we multiply this value by the 100-year global 

warming potential (GWP) value of 298 (262) resulting in 49 Tg CO2e yr
-1

. 

 

In addition to direct field emissions, fertilizer production itself is a significant source of 

“upstream” greenhouse gas emissions, both through CO2 emitted during ammonia production 

and excess nitrous oxide emitted during nitric acid production. We calculated these upstream 

emissions for both the BAU and BMP scenarios, accounting for the differences in upstream 

emissions across fertilizer type. We note the BMP of switching from anhydrous to urea increases 

upstream emissions, but that this is more than offset by the downstream benefits calculated 

above. We used values presented by Snyder et al. (259) for the most common nitrogen fertilizer 

formulations to estimate upstream emissions as shown in table S21, substituting the average 

value for any formulations without a specific emission factor identified. We estimated average 

upstream emissions for the current mix of N fertilizer formulations to be 4.41 kg CO2e kg N
-1

 

(table S21). Applying this upstream rate to the total projected N fertilizer under the future BAU 

(12.41 Tg N yr
-1

) we project upstream BAU emissions in 2025 of 54.78 Tg CO2e yr
-1

 (table S21). 

 

To estimate the reduction in upstream emissions, we subtract the upstream BMP emissions from 

the BAU emissions calculated above. The CO2 emissions per unit of N manufactured under BMP 

practices in 2025 actually increase compared to the current value because of greater production 

of urea relative to anhydrous ammonia (table S19), which has a higher average emission factor 

(table S21). Total upstream emissions using BMP practices in 2025 are calculated by multiplying 

the total fertilizer use (9.66 Tg N yr
-1

) by the upstream emissions factor calculated for 2025 (4.62 

kg CO2 kg N
-1

), resulting in upstream emissions for the BMP of 44.62 Tg CO2e yr
-1

 (table S21). 

Upstream emissions reductions are simply the BAU emissions (54.78 Tg CO2e yr
-1

) minus the 

BMP emissions (44.62 Tg CO2e yr
-1

), which equals 10.16 Tg CO2e yr
-1

. Total emissions 

reductions are the sum of the in-field (48.4 Tg CO2e yr
-1

) and upstream emissions (10.16 Tg 

CO2e yr
-1

), a total of 59 Tg CO2e yr
-1

. 

       

Uncertainty for cropland nutrient management 

To estimate uncertainty in our result, we simplified the calculation to the following 

 

M = F * (EFN2O (1 – r1 * r2 * r3 * r4) + EFCO2 (1 – r1 * r4)) 

 

Where M is overall mitigation, F is BAU fertilizer use in 2025 in Tg N, EFN2O and EFCO2 are in-

field and upstream emissions per unit of N applied in Tg CO2e Tg N
-1

, and r1-4 are the fractions 

of total emissions that would remain if each of the four practices were implemented on their 

maximum land area. For example, practice 1 is reduction of application rates across the whole 

field by 21%, which is an opportunity across 64% of cropland (6, 263); the total reduction 

achievable through this practice alone would thus be 21% * 64% = 13.5%, so r1 is thus (1 - 0.21 

* 0.64) = 0.865. We approximate EFCO2 as constant. 

 

We estimate percentage confidence intervals in each parameter through a survey of literature-

reported values for F (264), EFN2O (258, 259), EFCO2 (259), r2 [switch from anhydrous ammonia 

to urea, (265–268)], and r3 [improve timing of fertilizer application, (269–272)]. We estimated 

uncertainty in the product of r1 * r4 (reduce whole-field rate and use variable rate within field) 



through literature estimates in potential to reduce rate or improve N-use efficiency (273–276). 

We calculated overall uncertainty bounds through a Monte Carlo analysis conducted in R. 

 

Marginal abatement costs for cropland nutrient management 

Ribaudo et al. (277) find that 53% of all N applied in U.S. cropping systems is applied on fields 

on which N application (commercial and manure) rates exceed 140% of the N removed with the 

crop at harvest. In 2006, 66% of all N fertilizer use was on corn (277). 

 

N application rate and timing 

In 113 field trials of the Adapt-N tool in New York and Iowa that covered four growing seasons, 

Sela et al. (263) found that N fertilizer application rates on corn could be reduced on average by 

34% and 37%, respectively, compared to grower N fertilizer rate, leading to no statistically 

significant differences in yields and increasing average grower profits by USD 65 ha
-1

. Similarly, 

Smith et al. (205) estimated that a 20% reduction in N application rates was feasible without 

severely negative yield impacts, and Millar et al. (278) estimated that 12% to 15% reductions are 

possible by shifting from the high to the low end of the profitable N rate range for grain corn. 

 

We calculate a MAC curve for N fertilizer application rate from Sela et al.’s (263) 113 

observations (site × year combinations), where change in grower profit indicates MAC (fig. 

S15). This curve includes upstream CO2e emissions as well as both direct and indirect N2O 

emissions calculated as described in the supplementary information for the cropland nutrient 

management pathway. Based on this curve, 72% of observations cost USD 0 Mg CO2e
-1

 or less, 

73% cost USD 10 Mg CO2e
-1

 or less, 81% cost USD 50 Mg CO2e
-1

, and 86% cost 100 Mg CO2e
-

1
 or less. We assume that this MAC curve is representative of all nitrogen fertilizer rate and 

timing practices. 

  

Variable rate technology 

In research sites in Germany, decreasing N fertilizer application rates in low-yielding portions of 

fields from 150 to 125 kg ha
-1

 resulted in no decrease in yield (279). An analysis of corn fields in 

Iowa estimated the average profit loss for low-yielding portions of fields without VRT at USD 

250 ha
−1

 yr
−1

 (37). This indicates large economic potential for application of VRT. For example, 

crop canopy reflectance sensors (280) reduced N application rates on Missouri corn by 8% (16 

kg ha
-1

) on average while increasing yield (1%, or 110 kg ha
-1

), resulting in partial producer 

profit (value of grain yield minus fertilizer cost) gains of USD 45 ha
-1

. Schimmelpfenning (281) 

finds that the impact of VRT on profits for U.S. corn producers is positive, though small, 

increasing both net returns (including overhead) and operating profits by about 1%, for both 

small (57-162 ha) and large (>486 ha) farms. 

 

We use Scharf et al.’s [Table 2 from (280)] field-level data on partial profits (value of grain yield 

minus fertilizer cost; updated to 2015 prices) and N reductions per ha from 55 replicated on-farm 

VRT demonstrations in Missouri, and account for upstream emission reductions, to construct a 

partial profit MAC curve for VRT (fig. S16). Based on this curve, 49% of observations cost USD 

0 Mg CO2e
-1

 or less, 53% cost USD 10 Mg CO2e
-1

 or less, 62% cost USD 50 Mg CO2e
-1

, and 

67% cost 100 Mg CO2e
-1

 or less. We assume that this MAC curve is representative of all VRT 

applications. 



While VRT entails fixed costs for equipment purchase, we do not include those costs in our 

analysis. According to Scharf et al. (280), on a hypothetical 200 ha farm using sidedress N 

application, VRT should pay for itself within a few average years. Thus, for reasonable 

amortization periods, in 2025, the focal year of this analysis, any fixed costs associated with 

adoption of VRT now (2017) would be minimal. 

  

Switch from anhydrous ammonia to urea 

We calculate the cost of switching from anhydrous ammonia to urea fertilizer as the mean 

difference in the average 2011-2013 prices ((282); converted to 2015 dollars) of the two per kg N 

[anhydrous ammonia, 82.2% N by weight (283); urea, 46% N by weight; (284)]. Adjusting for 

differences in upstream emissions (anhydrous ammonia, 2.6 kg CO2e kg N
-1

; urea, 3.2 kg CO2e 

kg N
-1

), we calculate the MAC of switching from anhydrous ammonia to urea by dividing the 

increased cost of urea per kg N (USD 0.28 kg N
-1

) by the difference in total emissions between 

the two fertilizers per kg N (reduction of 0.00285 Mg CO2e kg N
-1

). This MAC of switching 

from anhydrous to urea is USD 99 per Mg CO2e, meaning that all emission reductions from 

switching to urea can be obtained at USD 100 Mg CO2e
-1

, and zero for USD 10 and USD 50. 

We assume that these MAC curves are representative to the total area to which each of the 

respective N management strategies are applicable. 

 

To calculate the percentage of the total feasible mitigation potential that all four N management 

strategies can achieve if applied in conjunction (59 Tg CO2e yr
-1

) on the respective applicable 

areas, we multiply the percentage of its total abatement that each individual control strategy can 

achieve at a given MAC by its relative contribution to total feasible abatement from all four N 

control strategies. We then multiply the weighted joint abatement percentage at USD 10, 50 and 

100 Mg CO2e
-1

 by the aggregate abatement potential of all four N management strategies to 

derive aggregate abatement at each of our three MAC values. This yields a total estimated 

abatement of 28.4 Tg CO2e yr
-1

 at USD 10, 32.1 Tg CO2e yr
-1

 at USD 50, and 49.9 Tg CO2e yr
-1

 

at USD 100, respectively. 

 

Improved Manure Management 

Dairy cattle and hogs account for >85% of the CH4 emissions from manure in the U.S. (8). The 

USDA estimates the potential for improved manure management on dairy farms with over 300 

cows and hog farms with over 825 hogs (8). They considered seven types of mitigation options 

and six baseline manure management practices. Mitigation options vary based on the existing 

management practice, with between three and six options available depending on the existing 

management practice. Based on these factors, the USDA estimates MAC curves for manure 

management in ten U.S. regions (85). Overall, they find a mitigation potential of 24 Tg CO2e yr
-1 

for confined dairy and swine operations at a cost of up to per USD 100 Mg CO2e.  

 

Uncertainty for improved manure management 

The mitigation potential for this pathway is roughly proportional to the number of head of 

livestock in production. Based on USDA numbers from 2000 to 2017, the variation in the 

number of head of livestock for dairy cattle and hogs is relatively low with a 95% CI of ±1.3% 

(85). The EPA estimated uncertainty for this pathway, finding that “the largest sources of 

uncertainty are associated with the estimated CH4 emission calculations related to animal 

population data, the estimates of the number of animals using each type of manure management 



system, the volatile solids excretion rates, the maximum CH4 production capacity data, and the 

CH4 conversion factors.” (8). Considering all of these sources, they estimate the overall 

uncertainty range of 25%. This suggests a potential mitigation range of 18 to 30 Tg CO2e yr
-1

. 

 

Marginal abatement costs for improved manure management 

Pape et al. (8) estimate a highly detailed MAC curve for U.S. animal production systems. They 

find that changes in manure management on confined dairy and swine operations have the 

potential to mitigate about 24 Tg CO2e yr
-1

 for break-even prices (2010USD) between USD 1 

and USD 100 per Mg CO2e, or about 50% of total CH4 emissions related to manure management 

on livestock operations. We update their MAC from 2010 to 2015 prices, which reduces 

mitigation potential at USD 100 Mg CO2e
-1

 to 22 Tg CO2e yr
-1

. 

  

Windbreaks  

Windbreaks are rows of trees or shrubs planted around fields to protect cropland from wind 

erosion and control snow accumulation. Pape et al. (8) identified the potential for planting 

windbreaks on 0.88 Mha of cropland. This is based on an estimate of 17.6 Mha of cropland that 

would benefit from windbreaks, and that windbreaks would optimally occupy ~5% of that 

cropland (8, 285). We estimated that windbreaks provide 3.56 Mg C ha
-1

 yr
-1

 additional 

sequestration in cropland biomass and soils, calculated as the mean of available literature 

estimates (286–290). This yields a maximum mitigation potential of 11.47 Tg CO2e yr
-1

. 

 

To generate MAC curves we used region-specific low and high break-even prices for carbon 

sequestration by windbreaks, based on farm-level installation, annual operation and maintenance 

costs, and opportunity costs (216). We assume windbreaks to be distributed according to the 

share of total cumulative windbreak acreage installed under the CRP in 2010, considering both 

the CRP’s CP-5A (field windbreak establishment) and CP-16A (shelterbelt establishment) (291). 

These break-even prices do not account for any farm-level benefits of wind breaks such as 

reduced soil erosion or reduced desiccation of crops. We use the average break-even prices in 

each region (adjusted to 2015 prices), the average estimated C sequestration rate of windbreaks, 

and the estimated regional potential increase in windbreak acreage to construct a U.S. MAC 

curve for windbreaks. 

       

Uncertainty for Windbreaks 

To estimate area uncertainty, we estimated a range of 0.45 to 1.7 Mha (i.e. windbreaks on 9 to 34 

Mha of cropland) by taking the maximum value from the literature (238) and halving Pape et 

al.’s (8) more conservative estimate to set the minimum. For flux uncertainty, we estimated a 

range of ±47%, based on the range of values observed in the literature. Combined, this yields a 

range of 3 to 30 Tg CO2e yr
-1

. 

 

Marginal Abatement Costs for Windbreaks 

To generate cost curves, we used farm region-specific means of low and high break-even prices 

for carbon sequestration by windbreaks, based on farm-level installation, annual operation and 

maintenance costs and opportunity costs (216). Because those prices are based on an assumed C 

flux rate of windbreaks of 0.94 Mg C ha
-1

 yr
-1

 (216), we divide them by 3.77, the ratio of our flux 

estimate (3.56 Mg C ha
-1

 yr
-1

) and 0.94 Mg C ha
-1

 yr
-1

. We assume windbreaks to be distributed 

among farm regions according to the combined share of total cumulative shelterbelt and field 



windbreak acreage installed under the CRP in 2010 (291). These break-even prices do not 

account for any farm-level benefits of wind breaks such as reduced soil erosion or reduced 

desiccation of crops. We use the average break-even prices in each region (adjusted to 2015 

prices), the average estimated C sequestration rate of windbreaks and the estimated regional 

potential increase in windbreak area to construct a U.S. MAC curve for windbreaks. 

 

Grazing Optimization and Legumes in Pastures 

These two NCS increase soil carbon based on 1) grazing optimization on rangeland and planted 

pastures and 2) sowing legumes in planted pastures. Our estimates are derived directly from a 

recent global study by Henderson et al. (58). Grazing optimization prescribes a decrease in 

stocking rates in areas that are over-grazed and an increase in stocking rates in areas that are 

under-grazed (fig. S17). Henderson et al. found that optimizing forage offtake would result in an 

increase in carbon storage on 22.1% of the grazing lands in the U.S. (other locations show no 

effect or a decrease in carbon storage). Implementing grazing optimization on the lands with a 

carbon benefit would also generate a net increase in forage offtake and livestock production. 

Henderson et al. (58) found that sowing legumes would generate net sequestration (after taking 

into account the increases in N2O emissions associated with the planted legumes) on 13.2% of 

planted pastures in the U.S. (fig. S18). Henderson et al. (292) also conducted an assessment of 

the MAC of each practice (table S22). 

 

Uncertainty for Grazing Optimization and Legumes in Pastures 

The climate impacts of these practices have high spatial variability. We measured uncertainty in 

these projections by the reported spatial coefficient of variation across the subset of rangeland 

and pastures where these practices are beneficial (58), which translates to a 95% CI of ±227% 

for grazing optimization and ±137% for legumes in pastures. 

 

Marginal abatement costs for Grazing Optimization and Legumes in Pastures 

Henderson et al. (58) estimated the marginal abatement cost of grazing optimization and planting 

legumes in pastures. The costs associated with grazing optimization include reduced livestock 

production in some areas (offset by increased production in other areas). The costs associated 

with legume seeding include fertilizer, seed, labor, herbicide, and machinery requirements, and 

were assumed to be incurred every five years to maintain legume cover at roughly 20%. 

  

Grassland Restoration 

We assumed that 2.1 Mha were available for restoration of grassland from cropland. This is 

based on a scenario of 5.1 Mha of total cropland set aside for restoration (e.g., via the federal 

CRP), with the remaining 3 Mha restored to forests or wetlands (8). 

 

We considered sequestration in both root biomass and soil carbon. Aboveground biomass, in 

both grasslands and croplands, is annually harvested, burned, grazed, or decomposed within a 

few years and therefore is not considered in our calculations of sequestration from restoration. 

We did not consider shrubland restoration here, as shrubland restoration is expensive and prone 

to establishment failure (293), and is therefore less likely to occur at large scales, compared to 

grassland restoration. 

For soil carbon sequestration rate, we used a recent meta-analysis of grassland restoration studies 

(294). Kämpf et al. (294) estimated that soil carbon stocks increased 18% (95% CI: 8 to 28%) in 



the upper 20 cm of soil. Since carbon change occurs beyond 20 cm depth (26, 295), we applied 

an exponential curve of the form found to fit global average carbon change data [fig. S8 in (26)] 

such that the average gain in the top 20 cm equaled 18%. Using this exponential extrapolation to 

100 cm suggested that soil carbon in the whole 100 cm profile would increase by 12% (95% CI: 

6 to 20%) with restoration of grasslands. Further, consistent with IPCC methodologies, we 

assume that soil carbon restoration occurs linearly over a 20-year period. Using these 

methodologies, a cropping soil with 125 Mg C ha
-1

 to 100 cm would sequester soil carbon at a 

rate of 0.73 Mg C ha
-1

 yr
-1

, which is consistent with previous syntheses [e.g., 0.69 Mg C ha
-1

 yr
-1

; 

(296)]. 

 

We spatially applied the 12% carbon gain value to the 100 cm soil carbon stocks reported in 

SoilGrids250m (195) for locations of recently abandoned cropland that have returned to 

grassland (25) (fig. S19). We limit our analysis to pixels that are classified as croplands by both 

Lark et al. (25) and SoilGrids250m (196) to quantify the initial soil carbon in areas likely to be 

restored to grassland. The carbon gain values from each pixel are then divided by 20 to get an 

annual sequestration rate. Finally, since we do not know the location of future restoration 

projects, these pixels are averaged to give a nationwide mean annual sequestration rate for 

grassland restoration. We found an average sequestration rate of 0.82 Mg C ha
-1

 yr
-1

 (95% CI: 

0.40 to 2.02).  

 

We assume that perennial root biomass is completely restored over 20 years, and therefore 

estimate an annual average rate of sequestration of 1/20
th

 the expected grassland root biomass in 

restored grasslands. We used root biomass data for U.S. grassland from Mokany et al. (52) to 

develop a predictive model for root biomass in grassland based on mean annual temperature, 

mean annual precipitation, and their interaction. Note that this is the same model that we used to 

predict grassland root biomass in the avoided grassland conversion NCS. 

 

We used spatially explicit data on the location of recently abandoned cropland that returned to 

grassland (25) to estimate average per hectare root biomass in restored grasslands, under the 

assumption that the temperature and precipitation in these areas are representative of future 

grassland restoration sites. This model predicts an average rate of 0.51 Mg C ha
-1

 yr
-1 

sequestered 

in root biomass. 

 

Combining both sequestration rates, we find a total sequestration rate of 1.19 Mg Ce ha
-1

 yr
-1

. 

Applied to the 2.1 Mha of restorable croplands, we estimate a mitigation potential of 9 Tg CO2e 

yr
-1

. 

 

Uncertainty for grassland restoration 

Our area estimate is based on a policy determination of cropland area available for restoration, 

rather than an empirical estimate of biophysical potential for grassland restoration, and therefore 

has no associated uncertainty. To estimate uncertainty for flux per hectare, we combined the 

uncertainty associated with the soil carbon sequestration rate (95% CI: 0.49 to 2.43 Mg C ha
-1

 yr
-

1
) and the root biomass sequestration rate, which suggests an overall 95% CI of 3.1 to 21.4 Tg 

CO2e yr
-1

. 

 

 



Marginal abatement costs for grassland restoration 

We used county-level average per hectare payments from the CRP to estimate the spatial 

variation in the cost of restoring marginal cropland to grassland (201). We averaged county-level 

per-hectare payments from the last three years for which data were available, U.S. federal fiscal 

years 2007 to 2009. Before averaging, we adjusted payments to 2015USD. We created MAC 

curves based on this spatial variation in cost and the spatial variation in soil carbon and root 

biomass that we mapped, as described above (fig. S20). 

 

Improved Rice Management 

Much of the world’s rice is grown in standing water, generating anaerobic conditions in the soil, 

which causes CH4 and N2O emissions. Rice paddy CH4 emissions comprise 10 to 14% of 

anthropogenic CH4 emissions (219, 297, 298). The EPA reports the mitigation potential from 

improved rice management for North America (59). Because over 97% of rice grown in North 

America is grown in the U.S. (299), we adopt those mitigation potential numbers directly. Water 

management techniques such as alternate wetting and drying (AWD) and midseason drainage 

(MSD) limit the time rice paddies spend in an anaerobic state and thereby reduce annual CH4 

emissions (297). The EPA modeled 26 mitigation scenarios representing AWD and MSD under 

different management regimes for fertilizer, residue incorporation, and tillage, using the 

Denitrification-Decomposition (DNDC) model. They report a maximum potential mitigation for 

North America in 2030 of 3.7 Tg CO2e yr
-1

, with potentials of 3.4, 2.8, and 1.5 Tg CO2e yr
-1

 at 

USD 100, 50, 30, and 10 per Mg CO2e, respectively. 

 

Uncertainty for improved rice management 

For flux uncertainty, we reviewed the literature on improved water management practices (AWD 

and MSD) (297, 300–302) and found that the 95% CI of the mean percent emission reduction 

(considering both CH4 and N2O, converted to carbon dioxide equivalents) was ±12%. For area 

uncertainty, we used USDA data on temporal variability in planted rice acreage (86). Over ten 

years (2008 to 2017), the 95% CI was ±8%. We combined these uncertainties (72) to estimate an 

overall uncertainty of 3.2 to 4.2 Tg CO2e yr
-1

. 

    

Marginal abatement costs for improved rice management 

Our MAC estimates for abating U.S. GHG emissions from rice management are based on the 

break-even prices for CO2e for North American rice production reported in US EPA [Table 2-8 

in (59)]. The latter include both Mexico and the US, but with US rice production in 2016 

accounting for 97.6% of all North American rice production [Table 10 in (202)], any errors from 

applying US EPA’s (59) break-even prices for North American rice production to US rice 

production will be negligible given the size of reductions analyzed here. Break-even prices 

assume changes in rice field management that cause no impact on baseline rice production. We 

update the US EPA (59) North American break-even prices to 2015USD, fit a 3
rd

 order 

polynomial to the ten data points (R
2
=0.99; fig. S21) and use that function to estimate annual 

abatement at our three carbon price points.  

 

Tidal Wetland Restoration 

Over one-quarter of the tidal marsh in the U.S. has impaired or disconnected tidal connection 

with the sea, making these marshes subject to freshwater inundation and turning this formerly 

robust carbon sink into a potent CH4 emitter (30). We define tidal wetlands to include both 



estuarine marshes and mangroves. We first estimated the area of disconnected or impaired marsh 

with freshwater inundation as the target area for restoration. Using data from eight studies that 

surveyed 55% of the total tidal marsh area along the eastern coast of the United States, Kroeger 

et al. (30) found that, of the 0.97 Mha of marsh surveyed, 0.38 Mha (39%), were landward of a 

dike, transportation infrastructure, or other tidal restriction (30). Of the 0.38 Mha of tidally 

restricted marsh, an estimated 70% is considered “freshened” due to impaired drainage of fresh 

water. Freshened marshes have salinity levels below 18 psu (Practical Salinity Unit), allowing an 

increase in methanogenesis and CH4 emissions to occur. Therefore, an estimated 27% of tidal 

marsh area is currently releasing CH4 at an enhanced rate due to human actions (30). We apply 

this percentage to the current area of both tidal estuarine marsh and mangroves in the U.S. [1.79 

Mha, (303)] to estimate that 0.48 Mha of tidal marsh in the U.S. is emitting anthropogenic CH4 

and could potentially be restored. Using estimates of CH4 emissions from natural, unimpaired 

tidal marsh (0.46 g C m
-2

 yr
-1

) and CH4 emission estimates from freshened salt marsh [41.6 g C 

m
-2

 yr
-1

, (30, 304, 305)] suggests an average anthropogenic CH4 emission rate of 24.7 Mg CO2e 

ha
-1

 yr
-1

. This is based on a sustained global warming potential (GWP) conversion factor of CH4 

to CO2e of 45 (306). The sustained GWP is substantially higher than the standard GWP of 32 

over this time frame because the latter is based upon a single pulse of GHG release to the 

atmosphere. In contrast, the sustained GWP is based upon continuous release of CH4 over the 

time frame and thus is substantially more realistic. Thus, we find that 12 Tg CO2e yr
-1

 can be 

prevented by the reintroduction of tidal saline flows into impacted tidal marshes. We expect that 

this may also have some mitigation benefit from increasing carbon sequestration in soils and 

sediments, but this is poorly quantified and is not included in our estimate. 

 

We note that our estimate omits drained tidal marshes due to lack of information about the extent 

to which they could be restored. Many drained tidal marshes are developed and thus are unlikely 

to be restored. However, drained tidal marshes that were cropped have the potential to recover 

large amounts of soil carbon (307). Inclusion of these additional restoration opportunities would 

reveal even greater potential for tidal marsh restoration than quantified here. 

 

Uncertainty for tidal wetland restoration 

To estimate uncertainty in extent, we combine three sources. Kroeger et al. (30) breaks tidally 

restricted marsh into two categories: “transportation related restrictions” and “diked and 

impounded.” Across states, these were found to vary by ±62% (95% CI) and ±84% (95% CI), 

respectively. When summed, these have a CI of 52%. We estimate a 95% CI of ±10% for total 

tidal marsh extent based on Bridgham et al. (308). When multiplied, we find an overall 

uncertainty for the extent of tidal marsh that could be restored to have a 95% CI of ±53%. 

 

To estimate uncertainty in flux, we calculated the 95% CI for CH4 emissions from freshened 

(±53%) and restored (±90%) salt marsh (304). Combined, the 95% CI for the difference between 

these two numbers is ±89%. We then calculated the overall 95% CI for the mitigation potential 

as 0 to 24 Tg CO2e yr
-1

. We consider negative mitigation (i.e., an increase in CH4 emissions) to 

be implausible because there is no mechanistic basis or empirical evidence for increased salinity 

to cause sustained increase in CH4 emissions. 

   

Marginal abatement costs for tidal wetland restoration 



Our MAC curve for saltwater marsh restoration (fig. S22) was constructed analogously to that 

for seagrass restoration (see section Marginal abatement cost in the seagrass restoration NCS), 

except that it was not possible to correct flux intensity for probability of project success due to 

the very small number of saltwater marsh restoration studies that report on success (N = 4). Our 

analysis indicates that 60% of potentially feasible abatement is achievable for USD 100 Mg 

CO2e
-1

 (fig. S22). 

 

Peatland Restoration 

Peatlands are drained in order to convert them to cropland or other uses, which results in removal 

of live vegetation, decomposition of the stored peat, and subsequent release of carbon dioxide to 

the atmosphere, and a decrease in CH4 emissions. Some peatlands are degraded by drainage 

without wholesale conversion of the natural vegetation, often for forestry. CH4 emissions are 

reduced in drained peatlands because draining limits the anaerobic conditions that promote 

methanogenesis. Restoration of peatlands involves rewetting them, and sometimes also 

replanting vegetation. Rewetting reduces decomposition and allows carbon to build up in the 

organic soils (i.e. builds peat), but it also increases CH4 emissions. We calculated the net GHG 

benefit from restoring converted and degraded peatlands in CONUS, considering both carbon 

storage and CH4 emissions. 

 

We calculated separate estimates for regions of the U.S. based upon IPCC climate zones (tropical 

moist, warm temperate, cool temperate) (309) due to varying climate effects on peatland types 

and carbon cycling (tables S23 and S24). For states that occupy more than one climate zone, we 

categorized all the peatlands in that state into the climate zone that contains most of the peatlands 

in that state. Of particular interest are peatlands in Virginia, North Carolina, and South Carolina 

(a.k.a. pocosins) because many of these peatlands have been previously degraded (310) and 

evidence suggests that intact pocosin peatlands have low CH4 emissions (311–313). 

 

Peat soils are officially classified in the U.S. as Histosols. Maps of Histosol soils provide an 

estimate of the historic distribution of peatlands; even when a peatland is converted to a new land 

use, the soil type is still Histosol unless decomposition over many decades removes the peat. To 

estimate Histosol area by state, we first used the SSURGO database (314), which maps soils at 

scales ranging from 1:12,000 to 1:63,360. However, there are extensive areas of CONUS that are 

incomplete or unavailable in SSURGO, and some of these have large areas of peatlands. 

Therefore, we also used the much coarser STATSGO database, with a scale of 1:250,000, for 

areas with large data gaps in SSURGO and where STATSGO gave higher estimates for area of 

peatlands than SSURGO (315). Our final estimate was 10.3 Mha of Histosols in CONUS. 

 

We are unaware of any previous direct estimate of the total area of restorable peatlands. To 

estimate this area, we used the area of intact peatlands defined as areas with Histosol soils that 

are also mapped as wetlands by the National Wetlands Inventory (316), which uses aerial 

imagery to identify extant wetlands. We consider the total area of restorable peatlands as the 

Histosol area minus the area of remaining peatlands. The area of forested and non-forested 

peatlands were taken from the USDA-FS Forest Inventory and Analysis database (167). 

 

We estimated subsets of the total area of disturbed peatlands: those that were converted to crops, 

those that were converted to pasture, and those considered disturbed but still retaining semi-



natural vegetation. This latter category of disturbed peatlands have often been drained for 

commercial forestry operations. We obtained the area of former peatlands that are currently in 

crops and pasture from U.S. EPA (309). 

 

In order to differentiate between cool and warm temperate disturbed peatlands, we first 

calculated a separate estimate of restorable Histosols in the southeastern U.S. (AL, FL, GA, LA, 

MS, NC, SC, VA) because this is where the large majority of warm temperate peatlands occur in 

the U.S. Histosols were identified with SSURGO. Histosol polygons were then overlaid with 

areas categorized as agriculture or non-wetland with the National Land Cover Database (317) to 

find the area of disturbed warm temperate peatlands. Finally, the area of disturbed cool temperate 

Histosols was estimated by subtracting the area of southeastern disturbed Histosols from the total 

for CONUS. Disturbed Histosols in warm temperate states outside of the southeast would be 

lumped in with cool temperate Histosols by this calculation, but we expect this area to be small. 

 

To calculate maximum potential restoration extent, we assume that all restorable peatlands in 

CONUS could be restored. We note that this only requires the restoration of 0.7 Mha of 

cropland, a small portion of the 5.1 Mha of cropland restoration we assume across all NCS. Food 

production is safeguarded because restoring 5.1 Mha of cropland is equivalent to setting aside 

the same amount of land that was retired via the CRP in 2007, at its peak enrollment (8). 

 

The peatland areas calculated above were then multiplied by the relevant sequestration/emission 

rates, broken out by IPCC climate zone when possible, to determine a carbon budget for peatland 

restoration in CONUS. The carbon budget (including changes in soil carbon and CH4 emissions) 

depends on the converted use from which the peatland is being restored, which included pasture, 

cropland, horticulture and other degraded (including forestry). Rates for pocosins were 

calculated separately using a site-specific study (318). Rates of carbon dioxide emissions from 

currently degraded peatlands were taken from USEPA (309). Net carbon accumulation/loss rates 

for rewetted Histosols were taken from the IPCC Wetland Supplement (305); we used rates for 

“rich” Histosols for areas in cropland and for “poor” Histosols for areas converted to other uses. 

The rate of decrease in dissolved organic carbon export upon rewetting was also taken from the 

IPCC Wetland Supplement (305). 

 

We assumed that only restored forested peatlands would produce substantial annual increases in 

live standing stocks of plant biomass, assuming that other plant functional types would relatively 

rapidly reach a steady-state standing stock. We estimated the increase in live biomass due to 

rewetting by assuming that the proportion of forested peatlands in restored peatlands would 

reflect the proportion of forested peatlands observed in intact peatlands today. To arrive at this 

estimate, we multiplied the area of all restorable peatlands by the percentage of forested/non-

forested intact peatlands. The rate of biomass accumulation in restored forested peatlands was 

assumed to be 1.83 Tg CO2e m
-2

 yr
-1

 (308). 

 

We estimated the change in CH4 emissions from a drained to a rewetted state. Emissions from 

drained Histosols were taken from the IPCC Wetland Supplement (305). Because of limited CH4 

emission data from rewetted peatlands in the U.S., we assumed that restored wetlands have 

similar CH4 emissions to natural U.S. wetlands in the same climatic zone. Bridgham et al. (308) 

summarizes all known studies of CH4 emissions from peatlands in CONUS at that time. We 



updated that summary to include 79 studies and we used the geometric mean flux broken out by 

climatic zone. The IPCC Wetland Supplement (305) gives 2.3 times higher CH4 fluxes from 

temperate rewetted rich Histosols than from poor Histosols, which the natural wetland emission 

dataset (308) does not capture because many of the published results do not allow a 

discrimination between “poor” and “rich” peatlands. Therefore, we estimated CH4 emissions 

from restored, temperate-zone cropped Histosols from the IPCC Wetland Supplement (305). We 

converted CH4 emissions to CO2 equivalents based on a 100-year sustained GWP of 45 (306).  

       

Uncertainty for peatland restoration 

Most of our sources for sequestration/emission rates provide uncertainty calculated with IPCC 

Approach 2 (i.e., Monte Carlo simulations) (72) (table S25). CH4 emission factors used the 

variation of the reported geometric mean from 79 peatland studies as described above. 

Uncertainties for soil carbon dioxide emissions from Histosols in agriculture, grasslands, and 

horticulture include uncertainty for both emission factors and area in the published estimates. 

However, in the other estimates we use our derived areas, as described above, which did not 

provide uncertainty estimates. Therefore, the calculated uncertainty in these cases only includes 

emission factors and will underestimate the true uncertainty. The uncertainties were combined by 

their weighted sums (72) to provide an overall 95% CI of -46% to 26%.  

 

Marginal abatement costs for peatland restoration 

To generate the MAC curve for peatland restoration, we combined the regional estimates of per 

hectare mitigation potential described above with state-level estimates of restorable peatland and 

county-level estimates of wetland restoration costs (319), aggregated to the state level. 

  

Avoided Seagrass Loss 

Mangroves, tidal marsh, and seagrasses are all being lost globally, contributing to blue carbon 

emissions (320). Of these three types of tidal wetlands, only seagrasses have meaningful rates of 

ongoing avoidable conversion in the continental U.S. Due to their protected status, the relatively 

small losses of mangroves and tidal marsh are due to sea level rise and sedimentation and cannot 

be avoided by improved management in the near term (17). Therefore, the climate change 

mitigation potential of avoiding tidal wetland loss is based on recent seagrass loss that is 

predominantly caused by poor water quality from various land-use practices (70). 

 

We determined an annual loss rate for seagrasses in the U.S. (0.02 Mha yr
-1

) by applying the 

mean loss rate of 1.5% (61) to the estimated 1.44 Mha of remaining seagrass (17, 321). 

Assuming 50% of the carbon stocks (89 Mg C ha
-1

) contained in disappearing seagrass beds are 

lost to the atmosphere upon conversion (62), we calculated a maximum mitigation potential of 

avoiding the loss of seagrasses in the U.S. of 6.5 Tg CO2e yr
-1

.  

 

Uncertainty for avoided seagrass loss 

We use Pendleton et al. (62) to estimate a 95% CI of ±60% for avoided per hectare emissions. 

For their 1.5% decline per year estimate, Waycott et al. (61) report a standard error of 1.1, which 

translates to a 95% CI of 0 to 3.7% (we truncate the range at zero, because there is no empirical 

support for a net increase in seagrass area). We combine these uncertainties to calculate an 

overall 95% CI of 2.5 to 10.6 Tg CO2e yr
-1

. 

 



Marginal abatement costs for avoided seagrass loss 

Because nutrient pollution (primarily N, but also P) is the dominant driver of seagrass loss (17, 

322), the cost of avoided seagrass loss is the cost of reducing N loading into coastal waters 

though improved fertilizer application, reduced N export from concentrated animal production 

facilities and decentralized (septic) and centralized (municipal) wastewater treatment facilities 

(113, 322), and reduced atmospheric loading through fossil fuel power plant N emission controls. 

We note that reductions in fertilizer application have direct benefits in terms of N2O emission 

reductions (see cropland nutrient management NCS), which are not captured in this analysis of 

MAC for avoided seagrass loss, suggesting that our MAC estimates may be conservative. 

 

We were unable to locate any study that estimates the MAC of avoided U.S. coastal wetland 

loss. Such MAC curves could be constructed for each remaining seagrass area based on data 

about current and predicted N concentrations in each of these areas and on least-cost approaches 

for reducing N loading in each area to levels that sea grass can tolerate. Such an analysis was 

beyond the scope of our study. Instead, we estimate the MAC using data on the cost of reducing 

nitrogen pollution (which allowed recovery of seagrass in Tampa Bay, Florida). We use data on 

the cost of reducing nitrogen pollution from both Tampa Bay and from the Mississippi River 

watershed. 

 

Tampa Bay had lost approximately half its 1950 seagrass extent by the 1970s, primarily due to 

extreme eutrophication (323). Actions implemented since 1980 in the Tampa Bay watershed to 

reduce nutrient loading into the then heavily eutrophied Bay included waste water treatment 

plant upgrades, stormwater treatment (to reduce N) and phosphate industry BMPs (to reduce P) 

(323) as well as, most recently, fossil fuel power plant upgrades for N control (324). These 

actions have reduced annual N loading into the Bay by an estimated 70% (6,900 Mg yr
-1

) from 

its peak, from around 10,000 Mg N yr
-1

 in the 1970s (325) to 3,100 Mg N yr
-1

 in 2011 (326). 

Bricker (327) reports that a 60% N loading reduction from 1970 levels — achieved around 2005 

(325) — carried an estimated average annual cost of USD 28.7M, while Cooper (328) reports 

that the 952 Mg N yr
-1

 reduction achieved between 1992 and 2011 had a total cost of >USD 

760M, or USD 38M yr
-1

. We conservatively assume that these annual average costs are 

calculated from current dollar values. To adjust these values to 2015USD, we assume equal 

distribution of current dollar-value costs across their respective time periods [Bricker (327): 

1980-2005; Cooper (328): 1992-2011] and adjust them using the U.S. Bureau of Labor Statistics 

Consumer Price Index (75). This results in a time series length-weighted mean of these average 

costs of 2015USD 51.25M yr
-1

, and an estimated average annual cost-effectiveness of N load 

reductions of USD 7,420 per Mg of N. 

 

Largely attributed to N (and P) load reductions, sea grass extent in Tampa Bay has increased 

from a low of around 8,200 ha in the 1970s (323) to 16,860 ha in 2016, slightly surpassing extent 

in the 1950s (329). 

 

Given estimated GHG emissions from seagrass loss of 1.67 Mg C ha
-1 

yr
-1

 (62) and assuming 

that the N loading reductions in Tampa Bay achieved between 1980 and the present would have 

prevented the historic reduction in seagrass extent in the Bay had they been implemented in the 

1950s and 1960s, the avoided loss of the 8,660 ha of sea grass recovered between the 1970s and 

2016 would have avoided annual emissions of 53,040 Mg CO2e yr
-1

. 



Given the estimated annual cost of the N loading reductions, this results in an estimated cost of 

avoided GHG emissions from sea grass loss in Tampa Bay of USD 966 Mg CO2e
-1

 yr
-1

. 

 

The representativeness of this estimate for the MAC of avoided sea grass loss nationally may be 

limited for two reasons: first, the Tampa Bay N control effort appears not to have employed any 

market-based policy instruments to produce efficiency gains and result in lower control costs, 

such as cap-and-trade mechanisms for N loading coupled with point-nonpoint sources trading. 

Second, in many estuaries, agricultural BMPs may account for an important portion of total 

potential N load reductions. However, agricultural BMPs were not part of the Tampa Bay N 

loading control strategy. Finally, the relation between N loadings and seagrass loss is a function 

of the residence time and volume (depth) of coastal water in the area in question; the conditions 

of which in Tampa Bay may not represent the national average for remaining seagrass habitat.  

 

Rabotyagov et al. (330) estimate the MAC of reducing the extent of the Gulf of Mexico hypoxic 

zone through implementation of cost-effectively targeted nutrient load reductions from 

agricultural lands in the Mississippi-Atchafalaya River Basin. Based on the eight hypoxia 

reduction extents and associated costs shown in their table S2, and assuming that hypoxia 

avoidance would have had the same costs as ex-post reduction of hypoxia and that hypoxia 

prevention would have avoided seagrasses loss, the MAC of avoided sea grass loss through 

prevention of hypoxic conditions in the Gulf of Mexico would have the MAC shown in fig. S23. 

Note that the actual potential for GHG emission reductions from avoided sea grass loss in the 

Gulf of Mexico is much lower than indicated in the figure given that much of the reduction in 

hypoxia extent modeled in Rabotyagov et al. (331) occurs in waters too deep for sea grass. These 

cost estimates per Mg CO2e are up to one order of magnitude lower than those calculated for 

Tampa Bay. A 3
rd

 order polynomial fits the data well and intersects the y axis at USD 200 Mg 

CO2e
-1

, indicating that no avoided GHG emissions from avoided sea grass loss would be 

obtainable for USD 100 Mg CO2e
-1

 or less.  

 

Seagrass Restoration 

To calculate restoration potential, we assumed that, if steps were taken to improve water quality 

in areas that previously supported seagrasses, seagrasses could be restored to their historic 

extent. Because seagrass distribution is limited by light attenuation, sea level rise may submerge 

seagrasses to depths at which they do not have enough light survive, thereby limiting the ability 

to restore seagrasses to their full historic extent. However, restoration activities that clean waters 

(i.e. reduce turbidity) allow seagrass growth at greater depths (332). Notably, in clear waters, 

seagrass can occur up to depths of 90 m (333). Therefore, our analysis assumes that any seagrass 

area lost due to the modest increase in sea level rise expected by 2025 is offset by increased 

growth from reductions in turbidity and landward migration of seagrass. 

 

We used the mean of two approaches to determine the area available for seagrass restoration in 

the U.S. The first approach uses the Waycott et al. (61) finding that seagrasses have declined by 

at least 29% since the beginning of the 20
th

 century (a conservative estimate generated by 

comparing current extent with the area of mapped seagrasses at the turn of the 20
th

 century, 

surely an underestimate because of incomplete mapping of historic extent). The second method 

uses the Waycott et al. (61) average loss rate of 1.5% yr
-1

 and our current estimate of seagrass 

extent. We started with the current estimated area of 1.44 Mha (17) and back-calculated to find 



the area that would have existed in 1940 based on a 1.5% annual loss rate. These two approaches 

suggest a range of 0.59 to 3.00 Mha of former seagrass habitat that could be restored, with a 

mean of 1.79 Mha. We use data from six seagrass restoration sites in the U.S. older than two 

years (63, 334) to estimate an average sequestration rate in restored seagrass sediments of 0.89 

Mg C ha
-1

 yr
-1

. We apply this rate to the mean area calculated above (1.79 Mha), to find a 

mitigation potential from seagrass restoration of 5.9 Tg CO2e yr
-1

. 

       

Uncertainty for seagrass restoration 

To calculate extent uncertainty, we used the results from the two approaches to estimate both the 

mean and the upper and lower bounds (61), which results in a range of ±67%. To calculate flux 

uncertainty, we used the measurements from the six restoration sites that were used to estimate 

sequestration rate to calculate a 95% CI of ±58% (64, 337). Combined, this yields an overall 

expected range of ±89%, or 0.65 to 11.2 Tg CO2e yr
-1

 

 

Marginal abatement costs for seagrass restoration 

The MAC curve for this pathway was generated using the data on U.S. seagrass restoration 

projects in the Bayraktarov et al. (335) database, with costs updated to their 2015 values (75). 

Emissions reductions were calculated using the total project area from the database and our 

estimated annual sequestration rate ha
-1

, multiplied by the mean probability of restoration 

success as reported for those projects in Bayraktarov et al. We calculate restoration costs per Mg 

CO2e as (restoration costs ha
-1 

* #ha)/(#ha * emissions reductions ha
-1

). The cost data in the 

Bayraktarov et al. database include technical restoration costs (capital and operating costs) but 

not monitoring, opportunity or transaction costs. Even though costs are reported in the database 

as ha
-1 

yr
-1

, they appear to refer to costs during project implementation, causing a temporal 

mismatch between reported annual costs and reported annual carbon sequestration estimates, 

which are given as Tg ha
-1 

yr
-1

. To remove this mismatch, we annualized restoration costs using 

the formula 

 

AC=PVC*(r*(1+r)
n
) / ((1+r)

(n+1)
-1) 

  

(336), where r is the discount rate, n is the duration of the policy, PVC is the present value of the 

costs, and AC is the annualized value of the costs. As the discount rate, we used the U.S. Lending 

Interest Rate, which averaged 3.26% in 2015 (337). For the duration of the policy we used 100 

years, based on the time until saturation, which for seagrass is >100 years (table S1). We find 

that all seagrass restoration projects were substantially more expensive than USD 100 Mg CO2e
-

1
. 

  



Fig. S1. Mapped reforestation opportunity areas in the lower 48 states. Dark green areas 

represent reforestation opportunities in areas historically forested that are currently unforested. 

We do not depict crop or pasture land as we removed the majority of these lands (see text). 

  



 

 
Fig. S2. Conceptual framework for improved forest management carbon accounting. All 

carbon that starts as forest biomass is, twenty years after harvest, either emitted as CO2 via 

decomposition or combustion or is retained in woody biomass or long-lived wood products.  



 

 
Fig. S3. MAC for carbon sequestration through forest management and aging, after Golub 

et al. (99). 
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Fig. S4. MAC for natural forest management after Latta et al. (98) and best-fit functions.   
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Fig. S5. MAC curves for improved plantations. From Sohngen and Brown (130), with 

sequestration converted from discounted present value to annual equivalents. 
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Fig. S6. Fire management analysis area. 



 

 
 

Fig. S7. Regions used for reporting avoided forest conversion results. 



 

 
Fig. S8. Forest conversion from 1986 to 2000. Percentage of forest pixels converted, mapped at 

a 990 m x 990 m resolution. All cities with a population greater than 250,000 are displayed as 

black dots. 



 

 
Fig. S9. Potential carbon emissions from areas at high risk of forest conversion. Potential 

carbon emissions that would occur if areas forested in 2010 were to be converted to non-forest, 

shown only for areas at highest risk of conversion, and adjusted for an albedo-related cooling 

offset in coniferous forests. High conversion risk was defined as 990 m x 990 m areas which 

experienced the top 25% rates of forest conversion during the historic period of 1986 to 2000 

(>1.06% of forest converted per year). 



 

 
Fig. S10. Cities included in the urban reforestation analysis. In cities in forest biomes, we 

estimated the mitigation potential for both street trees and patches of trees. In cities in non-forest 

biomes, we only estimated the mitigation potential from street trees. 

  



 

 
Fig. S11. Calibration of remote sensing data for forest cover estimation in urban areas. 

Linear regression to produce the correction equation used to account for under-representation of 

street trees in the 30-meter forest dataset (168). Relationship between UMd 2010 %FC and 

NAIP-calibrated, centered UMd 2010 %FC in 27 U.S. cities (see text). 
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Fig. S12. Avoided grassland conversion map. Pixels show the per hectare emissions from 

grasslands and shrublands converted in the conterminous U.S. in 2008 to 2012 (25). 



 

 
Fig. S13. MAC curve for avoided grassland conversion. Costs are based on county-level 

average payments for Conservation Reserve Program easements. Mitigation is based on avoided 

loss of soil carbon and root biomass (see text). 

  



 

 

Fig. S14. Nitrogen fertilizer use in the United States. Data from 1960 through 2010 with linear 

model based on data from 1980 to 2011 extrapolated to 2030 (334). 
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Fig. S15. Marginal abatement cost curve for reducing N fertilizer rate. Rate reduction uses a 

precision tool based on field trials from maize fields in the USA. Includes upstream, direct, and 

indirect N2O emissions [based on data in (259)]. 
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Fig. S16. Marginal abatement cost curve for applying variable rate technology fertilizer 

application. Based on field trials from maize fields in Missouri. Includes upstream, direct, and 

indirect N2O emissions (see text for details) [data source for N reduction and profit change: 

(276)]. 
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Fig. S17. Grazing optimization map. Colors indicate the annual per hectare sequestration rate 

from grazing optimization. White areas do not contain “managed grasslands,” where managed 

grasslands are defined as having >1 head of cattle per square km. Gray areas are “non-amenable” 

because grazing optimization would not result in additional carbon sequestration.  

  



 

 
Fig. S18. Legumes in pastures map. Colors indicate the annual per hectare mitigation rate from 

interseeding legumes in planted pastures. Note this mitigation rate accounts for both increased 

soil carbon accumulation and increased emissions of N2O associated with legumes. White areas 

do not contain “managed grasslands”, where managed grasslands are defined as having >1 head 

of cattle per square km. Gray areas are “non-amenable” because interseeding legumes would not 

result in additional net mitigation. 

  



 

Fig. S19. Grassland restoration map. Pixels show annual per hectare sequestration rates for 

likely areas of grassland restoration, defined as areas in the conterminous U.S. where cropland 

was abandoned to grassland 2008-2012 (25). 



 

 
Fig. S20. MAC curve for grassland restoration. Costs are based on county-level average 

annual payments for Conservation Reserve Program easements. Mitigation is based on annual 

carbon sequestration in soils and root biomass (see text). 



 

 
Fig. S21. Break-even prices for GHG abatement from rice production. 
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Fig. S22. MAC curve for salt marsh restoration. We used restoration projects in the U.S. with 

a MAC of up to approximately USD 120 Mg CO2e
-1

 in Bayraktarov et al. (331) database and 

best-fit (exp.) function to estimate the MAC curve. The X-axis indicates the percentage 

accounted for by these relatively affordable projects out of the total sequestration achievable by 

all U.S. saltmarsh restoration projects in the database. Bayraktarov et al. (331) database. 

  

y = 4.2871e0.0521x 
R² = 0.9998 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

2
0
1

5
U

S
D

 p
e

r 
M

g
 C

O
2
e
 

Percentage of total CO2e sequestration potential 



 

 
Fig. S23. MAC of avoided GHG emissions from seagrass. Avoided emissions due to avoided 

hypoxic conditions
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Table S1. Mitigation potential of NCS in 2025. The length column refers to the number of years following NCS implementation 

until saturation, after which additional carbon storage slows or stops. Biochar, cropland nutrient management, and improved manure 

management are not based on areal estimates, but rather the amount of agricultural residue, nitrogen fertilizer, and hog and dairy head, 

respectively. See text for additional details. 

     MAC USD 

NCS Name 

Area 

(Mha) 

Flux 

(Mg Ce ha
-1

) 

Length 

(yr) 

Max 

(Tg CO2e yr
-1

) 

100 50 10 

(Tg CO2e yr
-1

) 

Reforestation 63 (34-92) 1.33 (0.17-5.01) yr
-1

 >90 307 (90-777) 252 252 11 

Natural Forest Mgmt. 123 0.59 yr
-1

 25 267 (232-302) 267 229 64 

Fire Mgmt. 17 0.29 (-0.09-0.67) yr
-1

 >100 18 (-5-42) 13 10 0 

Avoided Forest Conv. 0.38 (0.33-0.43) yr
-1

 27 (17-38) >100 38 (22-53) 38 38 37 

Urban Reforestation 3.3 (2.6-4.0) 1.90 (1.62-2.47) yr
-1

 >40 23 (19-30) 0 0 0 

Improved Plantation 31 0.11 yr
-1

 50 12 (11-14) 12 8 1 

Avoided Grassland Conv. 0.69 (0.60-0.78) yr
-1

 42 (22-70) >100 107 (55-188) 107 107 24 

Cover Crops 88 0.32 (0.16-0.48) yr
-1

 >50 103 (53-154) 103 100 100 

Biochar 

  

>100 95 (64-135) 95 9 0 

Alley Cropping 15 (8-80) 1.45 (0.74-2.16) yr
-1

 >50 82 (35-166) 82 66 4 

Cropland Nutrient Mgmt. 

  

>100 52 (17-121) 50 32 28 

Improved Manure Mgmt. 

  

>100 24 (18-30) 22 20 12 

Windbreaks 0.9 (0.4-1.7) 3.56 (1.88-5.23) yr
-1

 >50 11 (3-30) 11 11 5 

Grazing Optimization 53 0.05 yr
-1

 >100 11 (-13-35) 9 8 6 

Grassland Restoration 2.1 1.19 (0.49-2.43) yr
-1

 >50 9 (3-21) 9 7 0 

Legumes in Pastures 5.5 0.35 yr
-1

 >100 7 (-3-17) 6 5 3 

Improved Rice Mgmt. 1.1 (1.0-1.2) 0.92 (0.81-1.03) yr
-1

 >100 3.7 (3.2-4.2) 3 3 2 

Tidal Wetland Restoration 0.48 (0.23-0.73) 6.7 (0.8-12.6) yr
-1

 >100 12 (0-24) 7 5 2 

Peatland Restoration 3.0 0.80 (0.43-1.01) yr
-1

 >100 9 (5-11) 9 7 0 

Avoided Seagrass Loss 0.02 (0.00-0.05) yr
-1

 89 (36-142) 67 7 (2-11) 0 0 0 

Seagrass Restoration 1.8 (0.6-3.0) 0.89 (0.37-1.41) yr
-1

 >100 6 (1-11) 0 0 0 

Total 

       

1,204 (855-1,644) 1,097 918 299 



Table S2. Co-benefits of NCS. We summarize publications providing evidence that a given type of ecosystem service is enhanced 

due to implementation of a pathway. Cells in white indicate cases where we did not identify clear evidence of enhanced ecosystem 

services. See Materials and Methods section for definition of each of the four service types (biodiversity, water, soil, air). 

 
Pathway 

Air 

(filtration) 

Biodiversity 

(alpha, beta, gamma) 

Soil 

(enrichment) 

Water 

(filtration, flood control) 

Forests 

Reforestation Ozone abatement benefits 

of reforestation (101). 

Multiple modeling studies 

describe health benefits of 

air filtration by forests (183, 

339). 

Tree plantings can create 

wildlife corridors and buffer 

areas that enhance biological 

conservation (340). 

Measured increase in soil 

fauna in reforested sites. 

During drought conditions 

earthworms only survived in 

reforested areas (341). 

Improved availability of water 

for crop irrigation, drought 

mitigation; avoided 

sedimentation and water 

regulation for hydroelectric 

dams (342). 

Natural Forest Management  "Species richness of 

invertebrates, amphibians, and 

mammals decreases as logging 

intensity increases" (343). 

Timber harvesting that 

removes large amounts of 

woody debris reduces soil 

biological and physical 

properties thereby reducing 

health and productivity (344). 

Harvesting that removes large 

proportions of biomass 

increases water flows and 

flooding thereby altering 

freshwater ecosystem integrity 

(345). 

Fire Management “Possibility of small 

increases in mortality due 

to abrupt and dramatic 

increases in particulate 

matter concentrations from 

wildfire smoke" (346). 

Fire management that mimics 

natural historic fire regimes 

can improve forest biodiversity 

(347). 

Forests that survive fires (i.e. 

reduced catastrophic wild 

fires) contain more organic 

matter, improved soil 

properties, and lower recovery 

times enhance water 

infiltration and retention (132). 

Increased runoff associated with 

severe forest fires due to 

eliminating the water holding 

capacity of the near surface 

organic layer and surface 

vegetation (132). 

Avoided Forest Conversion Ozone abatement benefits 

of reforestation (101). 

Multiple modeling studies 

describe health benefits of 

air filtration by forests (183, 

339). 

"Results indicate the 

irreplaceable value of 

continuous primary forests for 

conserving biodiversity" (348). 

Water retention and flow 

regulation (346). Maintains 

soil biological and physical 

properties ensuring health and 

productivity of forests (344). 

Improved availability of water 

for crop irrigation, drought 

mitigation; avoided 

sedimentation and water 

regulation for hydroelectric 

dams (342). 

Urban Reforestation Pollutant removal including 

O3, SO2, NO2, CO, and 

particulate matter (349, 

350). 

Researchers found that "urban 

green space with natural 

structures can maintain high 

ecological diversity" of bird 

species (351). 

 Urban forests can attenuate 

flooding for extreme weather 

events by storing water and 

limiting runoff (352). 



Pathway 

Air 

(filtration) 

Biodiversity 

(alpha, beta, gamma) 

Soil 

(enrichment) 

Water 

(filtration, flood control) 

Improved Plantations  Forest plantations that consider 

community type such as 

polycultures over 

monocultures, native over 

exotics, disturbance pattern 

replication, longer rotations, 

and early thinning can enhance 

biodiversity (353). 

  

Agriculture and Grasslands 

Avoided Grassland Conversion Cropland causes air quality 

issues due to ammonia and 

particulates that have 

significant health impacts 

(260, 261). 

Important habitat for nesting 

and foraging birds (354). 

Perennial grasses have little 

soil and nutrient loss compared 

to cropland (355, 356). 

Permanent grasslands provide 

"biological flood control" and 

maintain ecosystem water 

balance assuring adequate water 

resources (357). 

Cover Crops   Reduces soil erosion and 

redistribution maintaining soil 

depth and water retention 

(358). 

Reduces agricultural water 

demands with appropriate cover 

crops (359). 

Biochar   The addition of biochar 

enhances soil quality and 

fertility in temperate regions 

(360). 

 

Alley Cropping  Tree planting helps capture 

airborne particles and 

pollutant gasses (358). 

Agroforestry provides habitat 

for species and supports 

connectivity (361). 

Decreased soil erosion (362). Sediment retention and water 

recharge (361). 

Cropland Nutrient Management Nitrogen fertilization 

causes air quality issues due 

to ammonia and 

particulates, which are 

reduced at lower 

fertilization rates (363). 

Increased indicators of stream 

health from macroinvertebrates 

(364) and leaf litter breakdown 

(365) 

 Reduced nitrate leaching (366) 

has benefits associated with 

improved drinking water 

quality, increased opportunities 

for recreation, and health 

benefits (367). 

Improved Manure Management Reduced N2O and CH4 

emissions from manure 

management (368). 

Hypoxic conditions related to 

manure runoff from agriculture 

causes attributed to Gulf of 

Mexico "dead zone" (369). 

Manure management increase 

soil nutrients (368). 

Proper management and timing 

of the use of manure as a soil 

amendment limit the chances of 

increased Nitrogen and 



Pathway 

Air 

(filtration) 

Biodiversity 

(alpha, beta, gamma) 

Soil 

(enrichment) 

Water 

(filtration, flood control) 

Phosphorus runoff (370). 

Windbreaks Tree planting helps capture 

airborne particles and 

pollutant gasses (358). 

Agroforestry provides habitat 

for species and supports 

connectivity (361). 

Decreased soil erosion (362). Erosion control and water 

recharge (361). 

Grazing Optimization  A gradient of intensive to 

extensively grazed pastures 

reduces overall disturbance to 

plant-insect interactions (371). 

Over grazing can reduce the 

soils ability to trap 

contaminants and cause a 

release of these and other 

suspended sediments (358). 

Nearly 70% of water use for 

cattle occurs during farm 

grazing, managed grazing 

practices can reduce water use 

on managed pastures (372). 

Grassland Restoration Cropland causes air quality 

issues due to ammonia and 

particulates that have 

significant health impacts 

(258, 259). 

Important habitat for nesting 

and foraging birds (354). 

"Soil macroinvertebrates are 

important prey for breeding 

wading birds on lowland wet 

grassland" (354). 

Permanent grasslands provide 

"biological flood control" and 

maintain ecosystem water 

balance assuring adequate water 

resources (357). 

Legumes in Pastures  The presence of legumes in 

prairie leads to higher insect 

herbivore and insect predator 

diversity (373). 

"Legumes provide other 

ecological services including 

improved soil structure, 

erosion protection and greater 

biological diversity" (374). 

 

Improved Rice Management    Alternating wet dry and 

midseason drainage of irrigated 

rice fields reduces water 

demands for agriculture (297). 

The use of gray water in 

agriculture can reduce gross 

water consumption (375). 

Wetlands 

Tidal Wetlands Restoration  Maintains the provision of 

structure, nutrients and primary 

productivity and nurseries for 

commercial fish and shrimp 

(321, 376–378). 

Benefits of cross-system 

nutrient transfer to coral reefs, 

coastal protection, and water 

quality regulation (379). 

Remove nutrients and sediments 

from estuarine waters (380). 



Pathway 

Air 

(filtration) 

Biodiversity 

(alpha, beta, gamma) 

Soil 

(enrichment) 

Water 

(filtration, flood control) 

Peatland Restoration Exposure to pollutants from 

peat fires increases in the 

need for health services to 

treat lung and pulmonary 

disorders (381). Rewetting 

peatlands reduces fire risk 

(382). 

Regeneration of peatlands re-

establishes diverse 

communities (383). 

Restoring degraded lands to 

high productivity depend on 

faunal species that help 

develop soil structure and 

fertility (384). 

Removal of nutrients from 

surface and groundwaters and 

storm water remediation (378, 

385). 

Avoided Seagrass Loss  Increases faunal species 

richness, abundance and 

diversity and serves as 

nurseries for commercially 

important fish and shrimps 

(380, 386). 

Wave attenuation protects 

shorelines from erosion (380). 

Remove nutrients and sediments 

from marine waters (380). 

Seagrass Restoration  “increases faunal species 

richness, abundance and 

diversity” and serves as 

nurseries for commercially 

important fish and shrimps 

(386). 

Wave attenuation protects 

shorelines from erosion (380). 

Remove nutrients and sediments 

from marine waters (380). 

 

  



Table S3. Literature MAC estimates for reforestation of agricultural lands. 

 

MAC  Alig 

et al. 

(96) 

Golub 

et al. 

(99) 

Haim  

et al. 

(97) 

Latta et 

al. (98), 

voluntary 

Latta et  

al. (98), 

mandatory 

Mean 

2015USD 

Mg CO2e
-1 

Tg CO2e yr
-1 

10 0 37 0 7 15 12 

50 388 280 346 47 96 231 

100 557 595 495 108 212 393 

  

 

  



Table S4. Literature estimates of reforestation costs used to estimate MAC of reforesting natural ecosystems. 

 

Source Reforestation 

location and type 

Detail of cost Cost ha
-1

, 

2015USD 

Kroeger et al. 

(101) 

TX bottomland 

hardwoods 

Average of low and high cost 

assumptions; 730 seedlings ha
-1

 

728 

Stanturf et al. 

(103) 

MS bottomland 

hardwoods 

Seedlings planted at density needed to 

achieve 309 stems ha
-1

 target density 

524 

USDA (387) U.S. National forests Average cost in FY 2007 of forest 

vegetation establishment on National 

Forests [from pp. 8-28 and 8-30 in 

USDA (387)] 

1525 

Sessions et al. 

(102) 

OR, reforestation in 

Siskiyou NF 

following severe fire 

Average cost of most cost-effective 

reforestation approach in each of 4 

post-burn years at two study locations 

1145 

Atkinson and 

Fitzgerald (100) 

OR Average of low and high cost data, 730 

seedlings ha
-1

 

722 

 



Table S5. Estimated marginal abatement cost of fire management by major forest region. It is assumed that leverage = 1. 

Forest region 

MAC  

(USD per Mg 

CO2e) 

Tg CO2e yr
-1

 Cumulative  

Tg CO2e yr
-1

 

Black Hills 15.8 2.8 2.8 

Southwest 19.5 3.2 6.0 

Sierra Nevada 46.7 3.2 9.2 

Cascades 57.9 2.5 11.7 

Northern 

Rockies 129.1 

4.3 16.0 

Southern 

Rockies 3024.8 

0.1 16.1 

  



Table S6. Forest disturbance rates by source. Areas and rates of forest, forest disturbance by all disturbance types, anthropogenic 

clearing events (i.e., disturbance not due to fire or bark beetle), and forest conversions (i.e. cleared areas that did not return to forest 

within 10 years). 

 

  Area (Mha) % per year ha per year 

Area of forest in the NAFD product 

(82) 

243.7 -- -- 

Area disturbed from 1986 to 2000 39.5 1.1% 2,630,056 

Areas cleared from 1986 to 2000 35.5 1.0% 2,369,308 

Area cleared from 1986 to 2000 that 

persisted as non-forest through 2010 

5.7 0.16% 380,417 

 



Table S7. Mean annual forest hectares cleared per year from 1986 to 2000. 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 4670 13249 68 0 0 0 0 106 607 

Spruce/Fir Group 26652 8705 0 0 0 0 0 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 23745 89265 

Loblolly/Shortleaf Pine Group 4447 0 84 0 0 0 0 340475 203125 

Pinyon/Juniper Group 198 68 982 3669 4896 2991 62150 5145 59 

Douglas-fir Group 2 0 3 112657 2289 60513 2753 0 0 

Ponderosa Pine Group 0 0 4945 46417 8945 15505 16339 1 0 

Western White Pine Group 0 0 0 18 25 6 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 19075 3716 26656 11606 0 0 

Lodgepole Pine Group 0 0 2 9846 1013 15611 8732 0 0 

Hemlock/Sitka Spruce Group 0 0 0 14084 0 2224 0 0 0 

Western Larch Group 0 0 0 352 0 821 0 0 0 

Redwood Group 0 0 0 0 3508 0 0 0 0 

Other Western Softwood Group 0 0 0 143 235 893 1822 0 0 

California Mixed Conifer Group 0 0 0 908 27135 125 146 0 0 

Exotic Softwoods Group 42 4 0 0 0 0 0 0 0 

Oak/Pine Group 2187 91 1171 0 0 0 0 70221 46797 

Oak/Hickory Group 65402 12738 79413 0 0 0 13 265803 156555 

Oak/Gum/Cypress Group 330 0 172 0 0 0 0 70308 62031 

Elm/Ash/Cottonwood Group 2163 2988 8923 790 0 941 240 27063 2313 

Maple/Beech/Birch Group 87348 19639 9111 0 0 0 0 580 323 

Aspen/Birch Group 2674 61152 653 75 38 2762 10245 59 0 

Alder/Maple Group 0 0 0 13187 137 0 0 0 0 

Western Oak Group 0 0 0 1600 39301 113 6484 1895 0 

Tanoak/Laurel Group 0 0 0 730 5717 0 0 0 0 

Other Western Hardwoods Group 0 0 0 750 680 350 5896 2535 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 894 

Exotic Hardwoods Group 0 0 0 0 169 0 0 1066 15 



Table S8. Mean annual forest hectares cleared per year from 2001 to 2010. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 6899 15971 53 0 0 0 0 177 568 

Spruce/Fir Group 28185 11197 1 0 0 0 0 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 40526 140121 

Loblolly/Shortleaf Pine Group 3946 0 96 0 0 0 0 491651 275870 

Pinyon/Juniper Group 181 39 1604 3916 3674 2198 123239 7830 70 

Douglas-fir Group 1 0 20 109945 1489 56645 8256 0 0 

Ponderosa Pine Group 0 0 7106 38173 8524 15580 28402 2 0 

Western White Pine Group 0 0 0 23 41 4 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 11883 2944 21052 17392 0 0 

Lodgepole Pine Group 0 0 3 5207 1146 10343 6137 0 0 

Hemlock/Sitka Spruce Group 0 0 0 17066 0 2831 0 0 0 

Western Larch Group 0 0 0 242 0 687 0 0 0 

Redwood Group 0 0 0 0 2727 0 0 0 0 

Other Western Softwood Group 0 0 0 198 331 559 3015 0 0 

California Mixed Conifer Group 0 0 0 971 25938 172 205 0 0 

Exotic Softwoods Group 40 3 0 0 0 0 0 0 0 

Oak/Pine Group 2018 80 1162 0 0 0 0 87857 56833 

Oak/Hickory Group 70606 10135 76882 0 0 0 15 319725 179412 

Oak/Gum/Cypress Group 404 0 149 0 0 0 0 87133 77963 

Elm/Ash/Cottonwood Group 2321 2545 9220 1085 0 2762 457 31369 2837 

Maple/Beech/Birch Group 104232 18943 8562 0 0 0 0 575 295 

Aspen/Birch Group 2706 60810 795 46 36 1742 15073 73 0 

Alder/Maple Group 0 0 0 9990 92 0 0 0 0 

Western Oak Group 0 0 0 1850 36395 476 14746 1976 0 

Tanoak/Laurel Group 0 0 0 628 3639 0 0 0 0 

Other Western Hardwoods Group 0 0 0 656 496 334 5151 4300 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 1155 

Exotic Hardwoods Group 0 0 0 0 276 0 0 1369 12 



Table S9. Mean annual forest hectares converted per year from 1986 to 2000. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 802 1888 14 0 0 0 0 28 88 

Spruce/Fir Group 620 572 0 0 0 0 0 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 2955 13594 

Loblolly/Shortleaf Pine Group 471 0 7 0 0 0 0 33176 19823 

Pinyon/Juniper Group 41 5 146 934 566 510 18964 1042 5 

Douglas-fir Group 0 0 1 19538 269 20032 842 0 0 

Ponderosa Pine Group 0 0 1075 15948 1771 4690 4081 0 0 

Western White Pine Group 0 0 0 11 8 1 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 5922 1147 7381 3286 0 0 

Lodgepole Pine Group 0 0 1 4779 267 5718 3424 0 0 

Hemlock/Sitka Spruce Group 0 0 0 1460 0 545 0 0 0 

Western Larch Group 0 0 0 97 0 245 0 0 0 

Redwood Group 0 0 0 0 213 0 0 0 0 

Other Western Softwood Group 0 0 0 24 23 218 464 0 0 

California Mixed Conifer Group 0 0 0 307 5325 77 19 0 0 

Exotic Softwoods Group 9 1 0 0 0 0 0 0 0 

Oak/Pine Group 404 11 163 0 0 0 0 11174 7717 

Oak/Hickory Group 10547 1017 12422 0 0 0 1 43276 29708 

Oak/Gum/Cypress Group 53 0 10 0 0 0 0 7420 7050 

Elm/Ash/Cottonwood Group 327 397 1244 250 0 220 72 5179 504 

Maple/Beech/Birch Group 6144 1206 1969 0 0 0 0 209 20 

Aspen/Birch Group 256 5867 102 30 3 322 2067 8 0 

Alder/Maple Group 0 0 0 1745 19 0 0 0 0 

Western Oak Group 0 0 0 511 8601 11 1462 414 0 

Tanoak/Laurel Group 0 0 0 90 382 0 0 0 0 

Other Western Hardwoods Group 0 0 0 133 304 57 2507 657 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 403 

Exotic Hardwoods Group 0 0 0 0 15 0 0 256 10 



Table S10. Proportion of areas cleared from 1986 to 2000 that had not regenerated to forest by 2010. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 0.17 0.14 0.21 0.00 0.00 0.00 0.00 0.27 0.14 

Spruce/Fir Group 0.02 0.07 0.07 0.00 0.00 0.00 0.27 0.00 0.00 

Longleaf/Slash Pine Group 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.15 

Loblolly/Shortleaf Pine Group 0.11 0.00 0.09 0.00 0.00 0.00 0.00 0.10 0.10 

Pinyon/Juniper Group 0.21 0.07 0.15 0.25 0.12 0.17 0.31 0.20 0.09 

Douglas-fir Group 0.01 0.00 0.31 0.17 0.12 0.33 0.31 0.00 0.00 

Ponderosa Pine Group 0.00 0.07 0.22 0.34 0.20 0.30 0.25 0.01 0.00 

Western White Pine Group 0.00 0.00 0.00 0.59 0.32 0.13 0.00 0.00 0.00 

Fir/Spruce/Mountain Hemlock Group 0.00 0.00 0.00 0.31 0.31 0.28 0.28 0.00 0.00 

Lodgepole Pine Group 0.00 0.00 0.30 0.49 0.26 0.37 0.39 0.00 0.00 

Hemlock/Sitka Spruce Group 0.00 0.00 0.00 0.10 0.08 0.24 0.00 0.00 0.00 

Western Larch Group 0.00 0.00 0.00 0.28 0.00 0.30 0.00 0.00 0.00 

Redwood Group 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 

Other Western Softwood Group 0.00 0.00 0.00 0.17 0.10 0.24 0.25 0.00 0.00 

California Mixed Conifer Group 0.00 0.00 0.00 0.34 0.20 0.61 0.13 0.00 0.00 

Exotic Softwoods Group 0.21 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oak/Pine Group 0.18 0.12 0.14 0.00 0.00 0.00 0.92 0.16 0.16 

Oak/Hickory Group 0.16 0.08 0.16 0.00 0.00 0.00 0.11 0.16 0.19 

Oak/Gum/Cypress Group 0.16 0.28 0.06 0.00 0.00 0.00 0.00 0.11 0.11 

Elm/Ash/Cottonwood Group 0.15 0.13 0.14 0.32 0.00 0.23 0.30 0.19 0.22 

Maple/Beech/Birch Group 0.07 0.06 0.22 0.00 0.00 0.00 0.00 0.36 0.06 

Aspen/Birch Group 0.10 0.10 0.16 0.40 0.07 0.12 0.20 0.13 0.00 

Alder/Maple Group 0.00 0.00 0.00 0.13 0.14 0.00 0.00 0.00 0.00 

Western Oak Group 0.00 0.00 0.00 0.32 0.22 0.10 0.23 0.22 0.00 

Tanoak/Laurel Group 0.00 0.00 0.00 0.12 0.07 0.00 0.00 0.00 0.00 

Other Western Hardwoods Group 0.00 0.00 0.00 0.18 0.45 0.16 0.43 0.26 0.00 

Tropical Hardwoods Group 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 

Exotic Hardwoods Group 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.24 0.67 



Table S11. Mean predisturbance dry biomass (kg m
−2

) in forest areas converted from 1986 to 2000. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 14 7 14 0 0 0 0 13 13 

Spruce/Fir Group 10 7 6 0 0 0 6 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 8 8 

Loblolly/Shortleaf Pine Group 11 0 11 0 0 0 0 9 10 

Pinyon/Juniper Group 12 6 7 6 6 5 4 5 12 

Douglas-fir Group 12 0 6 19 26 10 8 0 0 

Ponderosa Pine Group 0 9 6 8 11 6 7 7 0 

Western White Pine Group 0 0 0 17 17 13 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 15 20 11 10 0 0 

Lodgepole Pine Group 0 0 8 8 18 10 9 0 0 

Hemlock/Sitka Spruce Group 0 0 0 23 21 14 0 0 0 

Western Larch Group 0 0 0 11 0 10 0 0 0 

Redwood Group 0 0 0 0 33 0 0 0 0 

Other Western Softwood Group 0 0 0 15 15 8 7 0 0 

California Mixed Conifer Group 0 0 0 9 19 5 13 0 0 

Exotic Softwoods Group 13 9 0 0 0 0 0 0 0 

Oak/Pine Group 12 7 9 0 0 0 6 7 10 

Oak/Hickory Group 14 8 10 0 0 0 6 9 12 

Oak/Gum/Cypress Group 11 11 10 0 0 0 0 9 9 

Elm/Ash/Cottonwood Group 13 8 10 9 0 5 5 6 11 

Maple/Beech/Birch Group 13 8 12 0 0 0 0 10 17 

Aspen/Birch Group 12 8 11 10 14 7 8 6 0 

Alder/Maple Group 0 0 0 19 23 0 0 0 0 

Western Oak Group 0 0 0 13 10 5 6 4 0 

Tanoak/Laurel Group 0 0 0 21 28 0 0 0 0 

Other Western Hardwoods Group 0 0 0 20 6 7 5 4 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 8 

Exotic Hardwoods Group 0 0 0 0 11 0 0 6 7 



Table S12. Mean predisturbance dry biomass (kg m
−2

) in forest areas converted from 2001 to 2010. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 14 8 14 0 0 0 0 15 14 

Spruce/Fir Group 11 8 6 0 0 5 6 0 14 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 9 8 

Loblolly/Shortleaf Pine Group 11 0 12 0 0 0 0 10 10 

Pinyon/Juniper Group 12 7 6 6 5 5 4 4 12 

Douglas-fir Group 13 0 6 23 27 10 8 0 0 

Ponderosa Pine Group 0 8 7 9 11 6 7 9 0 

Western White Pine Group 0 0 0 18 15 10 15 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 14 18 11 10 0 0 

Lodgepole Pine Group 0 0 8 9 16 9 9 0 0 

Hemlock/Sitka Spruce Group 0 0 0 27 21 14 0 0 0 

Western Larch Group 0 0 0 11 0 11 0 0 0 

Redwood Group 0 0 0 0 34 0 0 0 0 

Other Western Softwood Group 0 0 0 14 12 8 7 0 0 

California Mixed Conifer Group 0 0 0 9 18 4 10 0 0 

Exotic Softwoods Group 13 9 0 0 0 0 0 0 0 

Oak/Pine Group 13 8 9 0 0 0 5 9 10 

Oak/Hickory Group 14 9 10 0 0 7 6 10 12 

Oak/Gum/Cypress Group 12 10 12 0 0 0 0 10 10 

Elm/Ash/Cottonwood Group 12 8 9 8 0 5 4 8 13 

Maple/Beech/Birch Group 13 9 12 0 0 0 6 11 17 

Aspen/Birch Group 11 8 7 12 11 6 7 5 0 

Alder/Maple Group 0 0 0 21 27 0 0 0 0 

Western Oak Group 0 0 0 12 10 4 5 4 0 

Tanoak/Laurel Group 0 0 0 21 28 0 0 0 0 

Other Western Hardwoods Group 0 0 0 21 9 5 5 3 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 8 

Exotic Hardwoods Group 0 0 17 0 10 0 0 8 7 



Table S13. Carbon emissions (Mg C year
−1

) from estimated forest conversion from 2001 to 2010. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 52211 53792 472 0 0 0 0 2195 3610 

Spruce/Fir Group 22725 18117 1 0 0 0 0 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 140744 549807 

Loblolly/Shortleaf Pine Group 14741 0 304 0 0 0 0 1435094 868798 

Pinyon/Juniper Group 1417 63 4769 19032 7338 5688 452465 22166 226 

Douglas-fir Group 1 0 126 1387391 14712 587091 66952 0 0 

Ponderosa Pine Group 0 0 32905 360068 58743 94518 149199 0 0 

Western White Pine Group 0 0 0 768 641 18 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 166003 52547 205701 158826 0 0 

Lodgepole Pine Group 0 0 19 70617 15135 111425 70721 0 0 

Hemlock/Sitka Spruce Group 0 0 0 152676 0 31252 0 0 0 

Western Larch Group 0 0 0 2297 0 6978 0 0 0 

Redwood Group 0 0 0 0 17652 0 0 0 0 

Other Western Softwood Group 0 0 0 1419 1262 3265 17553 0 0 

California Mixed Conifer Group 0 0 0 9015 295218 1408 802 0 0 

Exotic Softwoods Group 340 15 0 0 0 0 0 0 0 

Oak/Pine Group 14685 237 4591 0 0 0 4 383466 302054 

Oak/Hickory Group 506998 22143 373186 0 0 0 30 1602213 1298905 

Oak/Gum/Cypress Group 2378 2 333 0 0 0 0 302177 292391 

Elm/Ash/Cottonwood Group 13003 8886 35586 8728 0 10300 1741 155111 24562 

Maple/Beech/Birch Group 308940 33460 70049 0 0 0 0 7191 1012 

Aspen/Birch Group 9312 155598 2781 700 83 3967 68072 162 0 

Alder/Maple Group 0 0 0 87751 1106 0 0 0 0 

Western Oak Group 0 0 0 23058 251565 590 50946 4820 0 

Tanoak/Laurel Group 0 0 0 5083 21449 0 0 0 0 

Other Western Hardwoods Group 0 0 0 7699 6276 811 33316 11471 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 12515 

Exotic Hardwoods Group 0 0 0 0 752 0 0 8032 173 



Table S14. Albedo-adjusted carbon emissions equivalent (Mg Ce year
−1

) from estimated forest conversion from 2001 to 2010. 

 

Forest Type Group NE NLS NPS PNW PSW RMN RMS SC SE 

White/Red/Jack Pine Group 26106 26896 236 0 0 0 0 1097 1805 

Spruce/Fir Group 11362 9058 0 0 0 0 0 0 0 

Longleaf/Slash Pine Group 0 0 0 0 0 0 0 70372 274904 

Loblolly/Shortleaf Pine Group 7371 0 152 0 0 0 0 717547 434399 

Pinyon/Juniper Group 709 31 2384 9516 3669 2844 226232 11083 113 

Douglas-fir Group 0 0 63 693695 7356 293546 33476 0 0 

Ponderosa Pine Group 0 0 16453 180034 29372 47259 74599 0 0 

Western White Pine Group 0 0 0 384 321 9 0 0 0 

Fir/Spruce/Mountain Hemlock Group 0 0 0 83002 26273 102851 79413 0 0 

Lodgepole Pine Group 0 0 9 35308 7567 55713 35360 0 0 

Hemlock/Sitka Spruce Group 0 0 0 76338 0 15626 0 0 0 

Western Larch Group 0 0 0 1149 0 3489 0 0 0 

Redwood Group 0 0 0 0 8826 0 0 0 0 

Other Western Softwood Group 0 0 0 710 631 1633 8776 0 0 

California Mixed Conifer Group 0 0 0 4508 147609 704 401 0 0 

Exotic Softwoods Group 170 7 0 0 0 0 0 0 0 

Oak/Pine Group 14685 237 4591 0 0 0 4 383466 302054 

Oak/Hickory Group 506998 22143 373186 0 0 0 30 1602213 1298905 

Oak/Gum/Cypress Group 2378 2 333 0 0 0 0 302177 292391 

Elm/Ash/Cottonwood Group 13003 8886 35586 8728 0 10300 1741 155111 24562 

Maple/Beech/Birch Group 308940 33460 70049 0 0 0 0 7191 1012 

Aspen/Birch Group 9312 155598 2781 700 83 3967 68072 162 0 

Alder/Maple Group 0 0 0 87751 1106 0 0 0 0 

Western Oak Group 0 0 0 23058 251565 590 50946 4820 0 

Tanoak/Laurel Group 0 0 0 5083 21449 0 0 0 0 

Other Western Hardwoods Group 0 0 0 7699 6276 811 33316 11471 0 

Tropical Hardwoods Group 0 0 0 0 0 0 0 0 12515 

Exotic Hardwoods Group 0 0 0 0 752 0 0 8032 173 



Table S15. Urban reforestation maximum potential annual net C sequestration in 2025. 

 

Reforestation extent 
Tg C yr

-1
 (95% CI) Tg CO2 yr

-1
 (95% CI) 

95% CI Low 5.12 (4.28–6.48) 18.80 (15.72–23.79) 

Mean 6.35 (5.22–8.21) 23.30 (19.17–30.15) 

95% CI High 7.58 (6.16–9.95) 27.80 (22.62–36.51) 

 

  



Table S16. Uncertainty in urban reforestation average annual abatement (Tg CO2) by 2025 at a cost of USD 100 per Mg CO2.       

 

Reforestation extent Low net C seq. 

rate 

Mean net C seq. 

rate 

High net C seq. 

rate 

Low 0.1 0.2 0.4 

Mean 0.1 0.2 0.4 

High 0.1 0.3 0.5 

  



Table S17. Profitability impacts of cover crops for selected crops. 

 

Main crop  Profitability change vs. 

no cover crop, 

2015USD ha
-1 

Benefits analyzed 

 Low Mean High  

No-till corn (388) -0.8 55.8 127.9 Increased soil productivity 

Corn
 
(389)

 
-11.3 24.4 89.1 Reduced erosion, increased SOM, water 

holding capacity and nutrients (N) 

Corn w/ stover 

removal
 
(389)

 
-3.9 25.0 88.7 At the lower of their 2 assessed stover prices 

No-till corn-

soybean
 
(390)

  
n/a 58.2 n/a First rotation, short-term benefits only 

No-till corn-

soybean
 
(390)

 
n/a 109.7 n/a After first rotation, short-term benefits only 

No-till corn-

soybean
 
(390)

 
n/a 128.7 n/a After first rotation, including long-term 

benefits (increased soil fertility and water 

holding capacity) 

Strip-till cotton
 

(391)
 

34.6 143.3 318.6 Average of 4 different nitrogen application 

levels 

No-till cotton
 
(218)

 

 
n/a -66.8 n/a Long-term impacts (years 14 to 20 after plot 

establishment) 

Conventional till 

cotton
 a 

(218)
 

n/a -85.7 n/a 

 

 

a. For Cochran et al. (218), cost is calculated from the difference in profits ha
-1

 between the most profitable no cover crop and the 

most profitable cover crop option. 

 

  



Table S18. Marginal abatement costs of cover crops in the five primary crops. 

 

 Potential 

abatement 

Cost, USD per Mg CO2e 

 Tg CO2e yr
-1

 Low Mean High 

Corn 42.7 -86.8 -29.9 4.5 

Soybean 37.9 -170.9 -88.6 8.6 

Cotton–strip till 1.2 -271.6 -122.1 -29.5 

Cotton–conventional till 2.0 n/a 73.0 n/a 

Cotton–no-till 1.5 n/a 56.9 n/a 

Rice 1.4 -179.2 -80.2 -12.5 

Wheat 22.8 -179.2 -80.2 -12.5 

 

 

  



Table S19. Maximum feasible N2O reduction for multiple nitrogen fertilizer practices. 

 

Practice Reduction 

Applicable 

area
a
 

Proportion 

remaining 

after 

reduction 

Calculate new 

emission 

(cumulative, 

multiplicative)
b
 

Source of 

reduction value 

  

(ratio for 

treated ha) 

(fraction of 

total) (ratio) (ratio) 
   

     Reduce rate 0.21 0.64 0.87 0.87 Sela et al. (265) 

Switch from 

anhydrous to 

urea 0.29 0.35 0.90 0.78 Eagle et al. (6) 

Improve timing 0.09 0.50 0.96 0.74 Eagle et al. (6) 

Use variable 

rate within field 0.15 0.64 0.90 0.67 
Our estimate (see 

table S20). 

  

     New Emission (Fraction of total BAU emission) 0.67 
 

  

 

 

    a. Applicable area estimates derived from (6). 

 b. Effects of each practice are multiplied together to calculate the total new emission. 

   



Table S20. Results from the literature of the potential for reducing N fertilizer rate using within-field management. 

 

Reference Crop Region Comments Site-years Reduction 

Reduction 

units 

Reduction 

(ratio over 

control 

treatment) 

Sehy et al. 

(279) 

Maize Germany 

(near 

Munich) 

Within-field treatment included 25 kg N 

ha
-1

 more on 66% of field with higher 

yields and 25 kg N ha
-1

 less on 34% of 

lower yielding portion of field. Includes 

freeze-thaw period. 

1 0.41 kg N2O-N ha
−1

 0.12 

Brandes et 

al. (37) 

Maize, 

Soybean 

State of 

Iowa 

Model analysis of entire state at sub-field 

scale over multiple years to determine 

portion of crop area that incurs a loss of 

greater than or equal to USD 250 ha
-1

 

4 years, all 

fields in IA 

0.27 portion of 

cropland area 

with negative 

profit. 

0.27 

Roberts et 

al. (392) 

Maize USA: MO Across a range of soil types, N sensor-

based applications and use of adjacent N-

rich reference strips could reduce N rate 

by 10–50 kg N ha
-1

. 

16 0.16 N Rate 0.16 

Scharf et al. 

(397), Hong 

et al. (394). 

Maize USA: MO Half of each field is over or under-

fertilized by 34 kg N, based on 

calculations of EONR for 20x40 m 

regions within each field. This variation is 

similar for the upper and lower quartiles, 

therefore 25% of each field is 

overfertilized by 34 kg N (393). 

8 0.06 N rate 0.06 

AVERAGE 

      

0.15 

 

  



Table S21. Current and projected GHG emissions from nitrogen fertilizer manufacturing in the United States. 

 

Fertilizer type 

Average 

upstream 

emissions
a
 

Current N 

fertilizer use
b
 

Projected 

BAU N 

fertilizer use 

in 2025 

Projected BMP 

N fertilizer use 

in 2025 

  

(kg-CO2e 

kg-N
-1

) 
(% of total) (% of total) (% of total) 

Anhydrous ammonia 2.60 31% 31% 0% 

Aqueous ammonia 2.60 0% 0% 0% 

Ammonium nitrate 9.70 3% 3% 3% 

Urea 3.20 27% 27% 58% 

Urea-ammonium nitrate 6.86 31% 31% 31% 

Ammonium sulfate 

 

3% 3% 3% 

Other 

 

5% 5% 5% 

  

    Sum 

 

100% 100% 100% 

Average upstream emission factor 

(g-CO2e g-N
-1

) 4.41 4.41 4.41 4.62 

Total N fertilizer use (Tg N yr
-1

) 

 

11.86 12.41 9.66 

Total upstream GHG emissions (Tg 

CO2e yr
-1

) 

 

52.37 54.78 44.62 

 

    

 a.
 
Source: Snyder et al. (395) 

     b.
 
Source: AAPFCO 2014 (396) 

         



Table S22. Mitigation potential for grazing optimization and legumes in pasture NCS at different marginal abatement costs. 

  

Carbon price 

(USD Mg CO2e
-1

) 

Grazing optimization 

(Tg CO2e) 

Legumes interseeding 

(Tg CO2e) 

0 5.31 2.50 

10 6.09 3.36 

20 6.90 4.40 

50 7.77 5.44 

100 8.51 5.62 

Maximum 10.60 7.03 

 

  



Table S23. Areas and carbon fluxes for Histosols in the conterminous United States. Negative values indicate net fluxes to the 

atmosphere. 

 
IPCC Climate 

Zone
a,b

 

 Undisturbed 

Histosols
 b

 Crop Pasture 

Other 

disturbed  

Net CO2 

flux 

Net CH4 

flux 

Total 

flux 

 
 

Thousands of ha 
 

Mg CO2e yr
-1

 ha
-1 

Tropical Moist  15,943 2,100
b
 1,100

b
 3,365

b
  7.04 -2.51 4.52 

VA,NC,SC  6,151 ---------- 448
b
 ------- 749

b
  5.67 -0.21 5.46 

Warm Temp.   15,099 663
c
 589

c
 414

b
  11.09 -2.89 8.20 

Cool Temp.  66,258 3,900
c
 3,200

c
 2,967

b
  5.61 -2.14 3.47 

 

 

    

 

   Total  103,451 7,111 4,889 7,495  NA NA NA 

 

 

a. Tropical Moist = FL; Warm Temperate = AL, AR, AZ, CA, DE, GA, IA, IL, IN, KS, KY, LA, MD, MO, MS, NJ, OK, TN, TX; 

Cool Temperate = CO, CT, ID, MA, ME, MI, MN, MT, ND, NE, NH, NM, NV, NY, OH, OR, PA, RI, SD, UT, VT, WA, WI, WV, 

WY. 

b. See main text. 

c. US EPA (309). 

 

  



Table S24. Peatland restoration mitigation calculations for climate zones within the United States. 

 

 
 

BAU emissions 
 

Benefit from restoring: 
 

CH4 emissions from restoring: 
 

 

 

 

Crop & 

Pasture 

soils 

Horti-

culture 

soils 

Other 

Soils 

 

Crop 

Soils 

Pasture 

Soils 

Bio-

mass 

DOM 

export 

reduc-

tion 

 

Crop Pasture Hort. Other 

 

Total 

IPCC 

Climate 

Zone
a,b

 

 

Tg C yr
-1

 

 

Tg CO2e 

Tropical 

Moist 

 

-3.33
c,d

 -0.09
c,g 

-0.87
f
 

 

0.00
h
 0.00

h
 0.25

k,l
 0.08

m
 

 

-0.52
n
 -0.27

n
 -0.02

g,u
 -0.84

r
  2.97 

VA,NC,SC  -0.20
e
 -0.03

c,g
 -0.25

e
  0.03

e
 0.04

e
 0.12

e
 0.01

e
  -----0.01

e
 ----- 0.00

e
 -0.02

e
  0.00 

Warm Temp.  -1.60
c,d

 -0.08
c,g

 -0.11
f
  -0.03

i
 0.02

j
 0.05

k,l
 0.02

m
  -0.23

o
 -0.13

p
 -0.02

g,v
 -0.09

s
  1.37 

Cool Temp. 

 

-4.46
c,d

 -0.02
c,g

 -0.77
f
 

 

-0.20
i
 0.14

j
 0.32

k,l
 0.12

m
 

 

-1.38
o
 -0.38

q
 

-

0.04
g,w

 -0.35
t
  3.50 

 

 

   

 

    

 

  

   

 Total  -9.58 -0.23 -2.00  -0.20 0.21 0.74 0.23  -2.14 -0.79 -0.08 -1.30  8.49 

 

 

a. Tropical Moist = FL; Warm Temperate = AL, AR, AZ, CA, DE, GA, IA, IL, IN, KS, KY, LA, MD, MO, MS, NJ, OK, TN, TX; 

Cool Temperate = CO, CT, ID, MA, ME, MI, MN, MT, ND, NE, NH, NM, NV, NY, OH, OR, PA, RI, SD, UT, VT, WA, WI, WV, 

WY. 

b. See main text. 

c. US EPA (309). 

d. Does not include soil C change associated with federal croplands, CRP enrollment after 2010, or sewage sludge application to soils. 

e. Richardson et al. (318). 

f. Using an emission factor of -2.6 Mg CO2 ha
-1

 yr
-1

 for drained, forested, temperate Histosols (305). 

g. Values were apportioned to the different climate zones by the proportion of peat extracted from nutrient-rich and nutrient-poor 

peatlands, with the former primarily from southern states (i.e., tropical moist and warm temperate zones) and the latter from northern 

Sphagnum bogs (i.e., cool temperate zone) (309). 



h. Using an emission factor of 0.00 Mg CO2 ha
-1

 yr
-1 

for tropical rewetted Histosols (305). 

i. Using an emission factor of -0.50 Mg CO2 ha
-1

 yr
-1

 for temperate rich rewetted Histosols (305). 

j. Using an emission factor of 0.23 Mg CO2 ha
-1

 yr
-1

 for temperate poor rewetted Histosols (305). 

k. Using an annual live biomass increment of 50 g m
-2 

yr
-1

 (308).  

l. Assuming all Other Disturbed Histosols will be restored to forests and the proportion of crop and pasture areas restored to forests 

will reflect the current distribution of forested peatlands. 

m. Using a decrease in dissolved organic carbon flux upon rewetting of 12.2 g C m
-2 

yr
-1

 (305). 

n. Using geometric mean CH4 flux from 12 studies in mostly natural wetlands in the U.S. [-156 Kg CH4 ha
-1

 yr
-1

; (308), updated] 

minus flux from drained, tropical and sub-tropical, cropland and grassland Histosols [-5.3 Kg CH4 ha
-1

 yr
-1

, (305)]. 

o. Using an emission factor of -216 kg CH4 ha
-1

 yr
-1

 for temperate, rich, rewetted Histosols (305) minus flux from drained, boreal and 

temperate, rich Histosols [0 Kg CH4 ha
-1

 yr
-1

, (305)]. 

p. Using geometric mean CH4 flux from 14 studies in natural wetlands in the U.S. [-141 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from drained, temperate, nutrient-poor, grassland Histosols [-1.4 Kg CH4 ha
-1

 yr
-1

, (305)]. 

q. Using geometric mean CH4 flux from 53 studies in natural wetlands in the U.S. [-74 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from drained, temperate, nutrient-poor, grassland Histosols [-1.4 Kg CH4 ha
-1

 yr
-1

, (305)]. 

r. Using geometric mean CH4 flux from 12 studies in mostly natural wetlands in the U.S. [-156 Kg CH4 ha
-1

 yr
-1

; (308), updated] 

minus flux from drained, tropical and sub-tropical, forested Histosols [-3.7 Kg CH4 ha
-1

 yr
-1

, (305)]. 

s. Using geometric mean CH4 flux from 14 studies in natural wetlands in the U.S. [-141 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from drained, temperate, forested Histosols [-1.9 Kg CH4 ha
-1

 yr
-1

, (305)]. 

t. Using geometric mean CH4 flux from 53 studies in natural wetlands in the U.S. [-74 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from drained, temperate, forested Histosols [-1.9 Kg CH4 ha
-1

 yr
-1

, (305)]. 

u. Using geometric mean CH4 flux from 12 studies in mostly natural wetlands in the U.S. [-156 Kg CH4 ha
-1

 yr
-1

; (308), updated] 

minus flux from peat extraction sites [-4.6 Kg CH4 ha
-1

 yr
-1

, (305)]. 

v. Using geometric mean CH4 flux from 14 studies in natural wetlands in the U.S. [-141 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from peat extraction sites [-4.6 Kg CH4 ha
-1

 yr
-1

, (305)]. 

w. Using geometric mean CH4 flux from 53 studies in natural wetlands in the U.S. [-74 Kg CH4 ha
-1

 yr
-1

; (308), updated] minus flux 

from peat extraction sites [-4.6 Kg CH4 ha
-1

 yr
-1

, (305)]. 

 

     



Table S25. 95% CIs for Histosol calculations. 

 

 

Mean 

Tg C yr
-1

 

lower 

bound % 

upper 

bound % 

Soil C Loss from Crop, Pasture
a
 -9.58 43 33 

Soil C Loss from Other Disturbed
b
 -2.00 23 23 

Oxidation due to Horticulture
c
 -0.20 19 19 

Change in Soil C from Crop Restored
b 
 -0.23 342 242 

Change in Soil C from Pasture, Disturbed Restored
b 
 0.21 178 278 

Live Biomass Accumulation Restored
d
 0.74 25 25 

Reduction in DOM Export Restored
b
 0.23 50 50 

Change in CH4 Emissions Due to Restored Crop
e
 -2.14 22 22 

Change in CH4 Emissions Due to Restored Pasture
e
 -0.79 22 22 

Change in CH4 Emissions Due to Restored Other 

Disturbed
e
 -1.30 22 22 

Change in CH4 Emissions Due to Restored Horticulture
e
 -0.03 22 22 

    
0verall

f
 

 

46 29 

 

 

a. From USDA (397) for just agriculture. 

b. From IPCC (305) for emission factor, but does not include error for area. 

c. From EPA (309). 

d. Brown et al. (398) gave only a 2% sampling error for wetland forest growth in the South Atlantic States, but this was increased to 

25% to account for wetland forests on mineral soil in the South Atlantic States and the majority of U.S. Histosols are elsewhere. 

e. Using the variation of the geometric mean of CH4 emissions for all U.S. Histosols [update of (308)]. 

f. The uncertainties were combined by their weighted sums (72). 
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