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SUMMARY

Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disorder characterized by extraskeletal bone formation through
endochondral ossification. FOP patients harbor gain-of-function mutations in ACVR1 (FOP-ACVR1), a type I receptor for bone
morphogenetic proteins. Despite numerous studies, no drugs have been approved for FOP. Here, we developed a high-throughput
screening (HTS) system focused on the constitutive activation of FOP-ACVR1 by utilizing a chondrogenic ATDCS cell line that stably
expresses FOP-ACVR1. After HTS of 5,000 small-molecule compounds, we identified two hit compounds that are effective at sup-
pressing the enhanced chondrogenesis of FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) and suppressed the hetero-
topic ossification (HO) of multiple model mice, including FOP-ACVR1 transgenic mice and HO model mice utilizing FOP-iPSCs.
Furthermore, we revealed that one of the hit compounds is an mTOR signaling modulator that indirectly inhibits mTOR signaling.
Our results demonstrate that these hit compounds could contribute to future drug repositioning and the mechanistic analysis of

mTOR signaling.

INTRODUCTION

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic
disease characterized by extraskeletal bone formation
in soft tissue, including skeletal muscle, ligament, and
tendon, where bone is not normally observed. Such
ectopic bones are formed through endochondral ossifica-
tion, a process whereby bone tissue replaces mature carti-
lage (Kaplan et al., 2005, 2007, 2008, 2012a; Shore et al.,
2005; Shore and Kaplan, 2010; Zuscik et al., 2008). Approx-
imately 90% of FOP patients share an R206H (617G>A)
point mutation in the intracellular glycine- and serine-
rich domain of ACVR1 (Shore et al., 2006), a type I receptor
for bone morphogenetic proteins (BMPs) (Canalis et al.,
2003; Gu et al.,, 1999; Hogan, 1996; Massague et al.,
2000; Mishina et al., 1999; Miyazono et al., 2010; Mueller
and Nickel, 2012; Piek et al., 1999; Urist, 1965; Wozney
et al., 1988). This mutated ACVR1 (FOP-ACVR1) has
been shown to confer ligand-independent constitutive
activity and ligand-dependent hyperactivity in BMP
signaling (Billings et al., 2008; Chaikuad et al., 2012;
Fukuda et al., 2008). Moreover, by utilizing FOP patient-
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derived induced pluripotent stem cells (FOP-iPSCs) and
FOP-ACVR1 conditional-on knockin mice, it has been
shown that as its neofunction FOP-ACVR1 abnormally
transduces BMP signaling in response to activin A, a mole-
cule that normally transduces transforming growth factor
B (TGF-B) signaling but not BMP signaling (Hatsell et al.,
2015; Hino et al., 2015).

A number of studies have revealed drug candidates for
FOP, including direct kinase inhibitors of the catalytic
domain of BMP type I receptors, which consequently sup-
press the phosphorylation of the downstream effectors
SMAD1/5/8 (Engers et al., 2013; Hamasaki et al., 2012;
Hao et al.,, 2010; Mohedas et al., 2013; Sanvitale et al.,
2013; Yu et al., 2008); RARy agonists, which reduce the
expression of SMAD1/5/8 by protein degradation (Chakka-
lakal et al., 2016; Pavey et al., 2016; Shimono et al., 2011;
Sinha et al., 2016); an inhibitor of activin A signaling by
an activin A-specific neutralizing antibody (Hatsell et al.,
2015; Hino et al., 2015); mechanistic target of rapamycin
(mTOR) inhibitors, which target enhanced chondrogene-
sis, hypoxic signaling, and inflammatory signaling (Agar-
wal et al., 2016; Hino et al., 2017); and others (Brennan
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etal., 2017; Cappato et al., 2016; Convente et al., 2017; Ka-
plan et al., 2012b; Kitoh et al., 2013; Takahashi et al., 2012;
Wang et al., 2016). Among these drug candidates, the RARy
agonist palovarotene, the anti-activin A antibody, and the
mTOR inhibitor rapamycin are now under clinical trial.
Although many attempts are ongoing, no drug is available
for FOP, and a limited number of target molecules is
reported.

For the identification of potential drug target molecules
or pathways, phenotypic screenings that focus on the FOP
pathology are an attractive approach but generally highly
challenging to develop (Moffat et al., 2017). We previously
reported phenotypic screening to modulate the enhanced
chondrogenesis of FOP-iPSC-derived induced mesen-
chymal stromal cells (FOP-iMSCs) triggered by activin A
(Hino et al., 2017). In that strategy, our concept was
mainly based on the knowledge that trauma, surgery,
inflammation, or viral infection often evoke episodic
flare-ups that precede heterotopic ossification (HO) in
FOP (Kaplan et al., 2005) and that one of the crucial initi-
ators of HO is activin A activation (Hatsell et al., 2015;
Hino et al., 2015). In contrast, another study reported a
distinct feature of FOP pathology in that about half of
FOP patients experienced the progression of HO without
apparent flares, injury, or related events (Pignolo et al.,
2016). Accordingly, we assumed that this pathology might
be caused by ligand-independent constitutive activity
such that FOP-ACVRI1 transduces BMP signaling without
ligand binding.

Featuring ligand-independent constitutive activity, here
we established a phenotypic assay-based high-throughput
screening (HTS) system focused on alkaline phosphatase
(ALP), a well-established prehypertrophic chondrogenic
marker (Zuscik et al., 2008), utilizing a chondrogenic
ATDCS cell line (Akiyama et al., 2000; Shukunami et al.,
1997) that stably expresses FOP-ACVR1 (ATDCS/FOP-
ACVR1). After HTS of approximately 5,000 small-mole-
cule compounds, we identified three hit compounds:
AZDO0530 (also known as saracatinib), PD 161570, and
TAK 165 (also known as mubritinib). These compounds
suppressed the enhanced chondrogenesis in FOP-iMSCs,
a critical step of HO in the FOP pathology. We subse-
quently showed their therapeutic effects on HO in three
different in vivo models: a BMP-7-induced HO model,
FOP model mice expressing FOP-ACVR1, and a FOP-
iPSC-based HO model in which ectopic bones derived
from FOP patient-derived cells are formed in mice. Mech-
anism-of-action studies indicated that AZD0530 and PD
161570 were inhibitors of both BMP and TGF- signaling.
On the other hand, TAK 165 was an mTOR signaling
modulator that indirectly controlled mTOR signaling.
These data extend the molecular basis of the HO induced
in FOP patients.

RESULTS

Development of an HTS System Focused on
Constitutive Activity of FOP-ACVR1

FOP-ACVR1 has been shown to render ligand-independent
constitutive activity and ligand-dependent hyperactivity in
BMP signaling (Billings et al., 2008; Chaikuad et al., 2012;
Fukuda et al., 2008), and direct ACVR1 kinase inhibitors of
the catalytic domain of BMP type I receptors are reported
(Engers et al., 2013; Hamasaki et al., 2012; Hao et al., 2010;
Mohedas et al.,, 2013; Sanvitale et al., 2013; Yu et al,,
2008). Although these inhibitors are promising and effective
on FOP model mice (Dey et al., 2016; Yu et al., 2008), new
drug candidates that modulate FOP pathological conditions
through undescribed mechanisms are also beneficial. There-
fore, to screen direct BMP signaling inhibitors and FOP
phenotype modulators at the same time, we focused on a
chondrogenic cell line, ATDCS. ATDCS cells are known to
increase the expression of ALP by BMP stimulation in several
days (Akiyama etal., 2000; Shukunami et al., 1997), and ALP
activity can be detected by a chromogenic phosphatase sub-
strate in an HTS format. Although ALP is also known tobe a
pluripotent marker, it is upregulated during chondrogenic
induction consistently with other chondrogenic markers
in ATDCS cells (Shukunami et al., 1997), indicating that
ALPisachondrogenic marker atleastin ATDCS cells. We de-
signed an ACVRI1 expression vector utilizing the doxycy-
cline (Dox)-inducible vector KW111 (Hayakawa et al.,
2013; Woltjen et al., 2009) and generated ATDCS cells stably
expressing FOP-ACVR1 (R206H) or wild-type (WT)-ACVR1
(Figure 1A). After Dox treatment, ACVR1 expression was
increased in a concentration-dependent manner (Figures
1B and S1). Expectedly, without BMP stimulation, ALP activ-
ity was increased in ATDCS cells expressing FOP-ACVR1,
but not in WT-ACVR1 (Figure 1C). This result indicates the
constitutive activity of BMP signaling was triggered by
FOP-ACVR1 expression. In addition to this constitutive
activity, hyperactivity against BMP-4 and acquired respon-
siveness to activin A were observed in ATDCS-expressing
FOP-ACVR1 (Figure 1D). These results indicated the validity
of our assay system. DMH-1, a direct ACVR1 kinase inhibi-
tor, suppressed the ALP activity of ATDCS cells expressing
FOP-ACVR1 without BMP stimulation in a concentration-
dependent manner, also demonstrating that the constitu-
tive activity of BMP signaling can be measured by ALP activ-
ity (Figure 1E). These results indicate that Dox-inducible
ATDCS cells enable us to screen inhibitors against the consti-
tutive activity of FOP-ACVRI1.

HTS and Follow-Up Screens Identified Seven Hit
Compounds

Utilizing this HTS system, we performed a first screening
(n = 2; test compounds = 1 pM, Figure 2A) against our
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Figure 1. Construction and Validation of
the Compound Screening System

(A) Vector map of the Dox-inducible ACVR1
expression vector.

(B) The expression of ACVR1 and mCherry in
ATDC5/FOP-ACVR1 24 hr after 2 ng/mL Dox
treatment. Scale bar, 100 pum.

(C) ALP activity of ATDC5/WT-ACVR1 or FOP-
ACVR1 72 hr after Dox treatment.

(D) Concentration response curves of BMP-4
and activin A in ATDC5/WT-ACVR1 or FOP-
ACVR1 72 hr after 3 ng/mL Dox and ligand
treatment.

(E) DMH-1 (ACVR1 kinase inhibitor) inhibited
the ALP activity but not the viability
(AlamarBlue) of ATDC5/FOP-ACVR1. ALP and
AlamarBlue assays were performed 72 hr after
Dox and DMH-1 treatment.

Results are the mean + SE, n = 1 (C) or bio-
logical triplicate in three independent ex-
periments (D and E).
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HTS library, which contains approximately 5,000 small-
molecule compounds, most of which are marketed or
bioactive (see also Supplemental Experimental Proced-
ures). The scatterplot distribution of ALP activity and cell
viability (Figures 2B and 2C), and Z' factor and S/B ratio
(Figures 2D and 2E) confirmed the validity of the HTS
campaign. From the first screening, we obtained 160 hit
compounds that fulfilled the criteria that more than 40%
inhibition of ALP activity against DMSO control cells, less
than 40% inhibition of viability and more than 20% of
margin (inhibition of ALP activity [%] minus inhibition
of viability [%]). A second screening was performed against
the above 160 compounds (n = 2; test compounds = 0.1,
0.3, 1, 3 uM), and we identified 79 hit compounds that
showed 40% inhibition of ALP activity against DMSO con-
trol cells and more than 50% of margin at any dose (Figures
2F and S2). A summary of HTS is shown in Figure 2G.
Among them, RARY agonists suppressed ALP activity, indi-
cating the accuracy of our HTS system. To explore com-
pounds that have potential to identify new mechanisms
or contribute to future drug repositioning, we selected
14 compounds and performed a detailed concentration-
dependent assay (Figure 3A). As aresult, we identified seven
compounds that showed stronger ICsy (<500 nM) and
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less toxicity (viability at 10 uM >50%) through our HTS
campaign focused on the constitutive activity of FOP-
ACVR1 (Figure 3B, red).

Further Validation of Seven Hit Compounds in FOP
Patient-Derived iPSCs

To predict these seven compounds’ therapeutic effects on
FOP patients, we performed a FOP-iPSC-based chondro-
genic assay. In this assay system, FOP-iMSCs (Fukuta
et al., 2014; Hino et al., 2015, 2017; Matsumoto et al.,
2015), a putative cell of origin of ectopic chondrogenesis,
were treated with activin A, and the inhibitory effect of
seven hit compounds was assessed at 1 uM (Figure 4A).
Among them, AZD0530, PD 161570, and TAK 165 showed
potent inhibition on glycosaminoglycan (GAG) produc-
tion, which represents the amount of extracellular matrix
secreted by chondrocytes. A detailed analysis against these
three compounds revealed a concentration-dependent
inhibitory effect on GAG in the chondrogenic assay of
FOP-iMSCs (Figure 4B). Alcian blue staining, which stains
acidic polysaccharides such as GAG in chondrocytes, also
confirmed drug activity (Figure 4C). These results indicate
that AZD0530, PD 161570, and TAK 165 have the potential
to suppress the ectopic chondrogenesis of FOP patients.
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Figure 2. Schematic and Detailed Results of High-Throughput Screening

(A) Schematic of the first screening.

-E) Scatterplot distribution o activity (B), viability (C), actor (D), an ratio rom the first screening against 4,892
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compounds.

(F) Classification of 79 hit compounds through the second screening.

(G) Results of the HTS campaign and follow-up screens.
Biological duplicates (B-F).

In Vivo Therapeutic Effects of AZD0530 and TAK 165

Next, the therapeutic effects of these drug candidates on
FOP model mice were evaluated. We focused on AZD0530
and TAK 165 because they are applicable to in vivo experi-
ments (Hennequin et al., 2006; Nagasawa et al., 2006). Pre-
viously, we generated FOP model mice that conditionally
express hFOP-ACVR1 (R206H) by Dox administration
and develop HO by muscle injury using cardiotoxin
(CTX) (Hino et al., 2017). The intraperitoneal administra-
tion of AZD0530 or TAK 165 significantly suppressed the
HO in these mice (Figures SA-5C). In the CTX-injected
site, we observed positive staining for safranin O (acidic
proteoglycan, an extracellular matrix protein of chondro-
cytes), von Kossa (calcium deposition), and COL1 (bone
marker) (Figure 5D, vehicle). On the other hand, mice
administered AZD0530 or TAK 165 seemed to show less
positive staining for von Kossa or COL1 (Figure 5D,
AZDO0530 and TAK 165). No apparent differences in body
weight change was observed in mice administered
AZDO0530 or TAK 165 compared with vehicle (Figure SE).
These observations demonstrated that AZD0530 and TAK
165 are effective at suppressing HO in FOP model mice.
These compounds’ therapeutic effects were also confirmed
in a BMP-7-induced HO model using WT mice (Figure S3).
Furthermore, we validated whether AZD0530 and TAK 165
have the potential to suppress the HO of FOP patient-
derived cells in vivo. We previously reported a human

FOP-iPSC-based in vivo model (Hino et al., 2015, 2017). In
this humanized FOP model, the transplantation of FOP-
iMSCs and activin A-expressing cells into mice induces
FOP patient-derived heterotopic bone in vivo. Notably,
the administration of AZD0530 or TAK 165 significantly
suppressed HO in these mice (Figures 6A-6C). Hypertro-
phic chondrocytes (based on safranin O and von Kossa
staining) and von Kossa- and COL1-positive bone regions
seemed to be fewer in mice administered AZD0530 or
TAK 165 (Figure 6D). Because a large number of anti-
human-specific vimentin-positive cells were observed in
the AZDO0S530 and TAK 165-treated groups (Figure 6D), we
could conclude that the therapeutic effect of these com-
pounds was not due to the death of the human trans-
planted cells but rather the suppression of HO. In these ex-
periments, neither AZD0530 nor TAK 165 administration
decreased body weight (Figures SE, 6E, and S3D), and the
dosing used was comparable with that in previous studies
(Hennequin et al., 2006; Nagasawa et al., 2006). TAK 165
in particular did not impair the chondrogenesis of normal
chondrocytes (Figures S4A-S4C), normal skeletal develop-
ment in vivo (Figures S4D and S4E), or wound healing
in vitro (Figures S4F and S4G). Thus, we concluded the
HO suppression was not primarily caused by toxicity,
although further in vivo assessment might be preferable.
Taken together, AZDO530 and TAK 165 are promising
drug candidates since they suppressed the HO of FOP
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patient-derived cells in vivo in addition to the HO of FOP
model mice.

Mechanisms of Action of AZD0530, PD 161570, and
TAK 165

Finally, we analyzed the mechanisms of action of
AZDO0530, PD 161570, and TAK 165 on the chondrogenesis
of FOP-iMSCs. Because it is known that BMP and TGF-
signaling are crucial in the chondrogenesis of FOP (Hino
et al., 2015, 2017) and because our HTS system can detect
BMP inhibitors, we assessed the direct effects of the three
drugs on BMP and TGF-B signaling. AZD0530 and PD
161570 inhibited both BRE-Luc (BMP-specific luciferase re-
porter construct) and CAGA-Luc (TGF-B-responsive lucif-
erase reporter construct) (Figures 7A and 7B). Therefore,
we concluded AZD0530 and PD 161570 were BMP and
TGEF-B signaling dual inhibitors, and their mechanisms of
action could contribute to the suppression of the chondro-
genesis of FOP-iMSCs because they inhibited both path-
ways at similar drug concentration ranges during the chon-
drogenesis of FOP-iMSCs (Figure 4B). This result is in
accordance with a previous study showing that AZD0530
inhibited BMP type I receptors (Lewis and Prywes, 2013).
On the contrary, TAK 165 did not affect these signaling
pathways. TAK 165 is an ERBB2 (also known as HER2)-
selective kinase inhibitor (Anastassiadis et al., 2011; Naga-
sawa et al., 2006). To check the importance of ERBB2 inhi-
bition in chondrogenesis, we performed a loss-of-function
study using small interfering RNA (siRNA). Knockdown of
ERBBZ2 did not decrease GAG in the chondrogenesis of
FOP-iMSCs (Figure 7C). Furthermore, another ERBB2-se-
lective inhibitor (CP-724714), an ERBB1/2-selective inhib-
itor (lapatinib), or ERBB2-selective neutralizing antibodies
(trastuzumab and pertuzumab) showed no effect on
GAG in the chondrogenesis of FOP-iMSCs (Figures SS5A
and S5B). Given these results, the mechanism of action
of TAK 165 was not through ERBB2 inhibition. We further
investigated the effect of TAK 165 on TGF-B3-induced
chondrogenesis in FOP-iMSCs and activin A-induced
chondrogenesis in resFOP-iMSCs, in which the mutant
ACVR1 was corrected to WT (Matsumoto et al., 2015) (Fig-
ures SSC and S5D). These results indicate that TAK 165
showed stronger effects on FOP cells than on normal cells.
Recently, ourselves and Agarwal et al. have separately un-
covered the impact of inhibiting mTOR signaling on the
HO of FOP model mice and FOP-iMSCs (Agarwal et al.,
2016; Hino et al., 2017). Therefore, we checked TAK

165’s effect on mTOR signaling. First, to test whether
TAK 165 is a direct inhibitor, we monitored the phosphor-
ylation of S6 (p-S6), a well-known mTOR signaling surro-
gate marker, for 2 hr after treatment with TAK 165 in
FOP-iMSCs cultured in 10% fetal bovine serum (FBS) (Fig-
ure 7D). In this condition, a strong p-S6 signal was de-
tected. The mTOR inhibitor rapamycin decreased p-S6
levels, but TAK 165 did not. Next, we checked for indirect
effects of TAK 165 on mTOR signaling in the chondrogen-
esis assay of FOP-IMSCs stimulated by activin A. After
24-hr stimulation with TAK 165 or CP-724714, no effects
were observed on p-S6 (Figure 7E). Interestingly however,
after 7 days of stimulation with TAK 165 but not
CP-724714, p-S6 was dramatically decreased (Figure 7F).
As expected, AZD0530 and PD 161570 significantly in-
hibited p-S6 levels from 2 hr after treatment (Figure S6),
indicating that TAK 165 acts through a distinct mecha-
nism. In addition, we performed an unbiased transcrip-
tome analysis of FOP-iMSCs 7 days after inducing chon-
drogenesis by activin A (Figure S7). TAK 165, but not
other ERBB2 inhibitors, affected genes that are involved
in chondrogenesis or osteogenesis (“Role of Osteoblasts,
Osteoclasts, and Chondrocytes in Rheumatoid Arthritis”
in Figure S7B). These results indicate that TAK 165 indi-
rectly modulated mTOR signaling and suppressed the
chondrogenesis and HO of FOP.

DISCUSSION

In this report, we identified TAK 165 as a drug candidate for
FOP. It is reported that TAK 165 is a selective inhibitor of
ERBB2, a receptor tyrosine kinase often amplified or
mutated in several cancers (Moasser, 2007). It is common
that kinase inhibitors targeting catalytic domains show
less selectivity, but interestingly TAK 165 is highly selective
for ERBB2 against a panel of 300 recombinant protein ki-
nases, presumably due to the fact that TAK 165 is an allo-
steric inhibitor of ERBB2 (Anastassiadis et al., 2011).
Regardless of TAK 165’s high selectivity to ERBB2, the sup-
pression of chondrogenesis and HO by TAK 165 was not
caused by ERBB2 inhibition but by indirect mTOR
signaling inhibition (Figure 7). TAK 165 inhibited the
ALP activity of constitutively activated FOP-ACVR1 in
ATDCS (Figure 3) and the enhanced chondrogenesis of
FOP-iMSC:s triggered by activin A (Figure 4). TAK 165 also
modulated chondrogenesis-related pathways (Figure S7).

Figure 3. Detailed Dose-Response Assay Results of 14 Hit Compounds

(A) Dose-response curves of 14 hit compounds. ALP assay and AlamarBlue assay were performed using the same protocol as the HTS.
(B) ICso values and viability (%) at 10 uM in the dose-response assay, highest stage, and putative mechanism of 14 hit compounds are
shown. Seven compounds (red) satisfied the criteria (IC5o of ALP assay <500 nM and viability at 10 uM >50%).

Results are the mean + SE, biological triplicates.
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(C) Alcian blue staining of DMH-1, AZD0530,
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These results suggested that TAK 165 affected chondrogen-
esis through indirect mTOR signaling modulation. Because
TAK 165 showed obviously different effects on Alcian blue
staining (Figure 4C), BMP and TGF-p signaling (Figures 7A
and 7B), and mTOR signaling compared with other HTS
hits (Figures 6D-6F and S6), TAK 165 might be useful for
future concurrent treatment with other direct inhibitors.
A detailed mechanism of action and the identification of
direct targets of TAK 165 remain important issues awaiting
future clarification.

To identify potential mechanisms that suppress the
enhanced chondrogenesis of FOP, we developed an HTS
system that focuses on the constitutive activity of FOP-
ACVRL1. Although we previously focused on activin A-trig-
gered enhanced chondrogenesis, inspired by the recent
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report showing that a substantial number of FOP patients
experience the progression of HO without apparent flares
(Pignolo et al., 2016), we adopted the constitutive activity
of FOP-ACVR1 for phenotypic screening system. We
screened a library of about 5,000 small-molecule com-
pounds and finally identified hit compounds that were
effective in multiple HO model mice (Figures 5, 6, and
S3). However, although effective, the effect of the hit com-
pounds had high variability. Improving in vivo models will
reduce variation caused by the incomplete purity of the
mouse strain (Figure 5) or by the technical challenges of
the transplantation assay (Figure 6). Another important
issue is how to enhance the efficacy of our compounds
in vivo. Since the hit compounds are prototypes or lead
compounds, the solubility and pharmacokinetics might
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be not well studied, hampering assessment of the maximal
dose that suppresses HO.

There are two types of approaches in FOP drug discovery.
The first approach is target-based and focuses on FOP-
ACVRI itself, e.g., kinase inhibition of FOP-ACVR1 or
downregulation of Acvrl expression (Cappato et al., 2016;
Engers et al.,, 2013; Hamasaki et al., 2012; Hao et al.,,
2010; Mohedas et al., 2013; Sanvitale et al., 2013; Yu
et al., 2008). The second approach is phenotypic screening
and focuses on HO-related phenotypes, for example,
enhanced chondrogenesis, osteogenesis, and so forth
(Shore and Kaplan, 2010). The former approach is quite

logical and promising because it suppresses causal genes
in FOP, but in general highly selective kinase inhibition is
extremely challenging (Anastassiadis et al., 2011). On the
other hand, phenotypic screening could highlight the
most effective and/or novel mechanism that underlies
FOP pathology, although the challenge here is to develop
a robust system that screens compounds or gives further
validation of candidates (Hino et al., 2017; Moffat et al.,
2017). In this study, we performed HTS of inhibitors for
ALP activity triggered by the constitutive activity of FOP-
ACVRI in the chondrogenic cell line ATDCS. Since ALP is
a well-validated prehypertrophic chondrogenic marker,
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our HTS platform is a successful example of phenotypic
screening for FOP. Consequently, we identified TAK 165,
an mTOR signaling modulator that indirectly inhibits
mTOR signaling, in addition to two direct ACVRI1 kinase
inhibitors (AZDO530 and PD 161570). Thus, pheno-
typic screening could contribute to understanding FOP
pathophysiology.

In FOP patients, two phases, inflammation and the
destruction of connective tissues (phase 1) and bone forma-
tion (phase 2), were proposed in the progression of HO
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(Shore and Kaplan, 2010), and each phenotype is a poten-
tial target for intervention. The suppression of phase 1 by
anti-inflammatory drugs such as oral corticosteroids shows
limited effects on FOP patients, but other approaches such
as mast cell inhibitors might become new drug candidates
(Brennan et al., 2017; Convente et al., 2017), although a
future clinical trial is needed to prove the efficacy and
side effects in FOP patients. Phase 2 can be further subdi-
vided into three stages: fibroproliferation and angiogenesis
(2A), chondrogenesis (2B), and osteogenesis (2C). We have
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focused on stage 2B, chondrogenesis, in both this and a
previous study (Hino et al., 2017), because we assumed
that the inhibition of chondrogenesis might not cause
serious side effects since little or no chondrogenesis occurs
in adults (Falah et al., 2010). On the other hand, as bone re-
modeling is a lifelong process (Maggioli and Stagi, 2017),
the inhibition of stage 2C (osteogenesis) might evoke
adverse effects, such as fracture or osteoporosis, regardless
of any HO suppression. Although stage 2A (enhanced fibro-
proliferation) is often observed in the HO of FOP patients,
no defined molecules have been reported for this process.
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a surrogate marker of mTORC1 activity. FOP-
iMSCs cultured with 10% FBS were treated
with 100 nM rapamycin (Rapa) or TAK 165
(TAK) for 2 hr, and the cells were harvested.

TAK 165

n.s. (E and F) TAK 165 indirectly inhibited

p-S6 during chondrogenic induction with
activin A. After 24 hr or 7 days of chondro-
genic induction of FOP-iMSCs with activin A
and test compounds, the cells were har-
vested. 1 puM TAK, 1 uM CP (CP-724714,
another selective ERBB2 inhibitor), or 10 nM
Rapa were applied in the experiments.

Results are the mean = SE of biological qua-
druplicates (A and B) or triplicates (C-F)
using FOP-iPSCs (vFOP4-1). n.s., no signifi-
cant difference; **p < 0.01, ***p < 0.001

n.s. by Dunnett's multiple comparisons t test

compared with the siRNA-transfected nega-
- tive control and activin A (C) or with the
DMSO0 treatment control and activin A (A, B,
D-F).

Thus, a phenotypic screening focused on fibroproliferation
could shed light on novel mechanisms of FOP. Three
studies have identified the cell of origin of HO in FOP
model mice (Agarwal et al., 2017; Dey et al., 2016; Lees-She-
pard et al., 2018), and iMSCs or paraxial mesoderm-derived
MSC-like cells can be induced from FOP-iPSCs (Hino et al.,
2015, 2017; Matsumoto et al., 2015; Nakajima et al., 2018);
therefore, these cells could be applicable to future pheno-
typic screenings for the inhibition of stage 2A. Combina-
tion therapy targeting multiple phases could be the best
strategy for controlling the HO of FOP.
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EXPERIMENTAL PROCEDURES

Full experimental procedures and associated references are avail-
able in Supplemental Experimental Procedures.

Study Approval

All experimental protocols dealing with human subjects were
approved by the Ethics Committee of the Department of Medicine
and Graduate School of Medicine, Kyoto University. Written
informed consent was provided by each donor. All animal experi-
ments were approved by the institutional animal committee of
Kyoto University.

Chemicals Libraries

All chemical libraries were purchased from the suppliers listed in
Supplemental Experimental Procedures. Almost all compounds
were bioactive and/or annotated.

Cell Culture

ATDCS cells were maintained in DMEM/F-12 (Thermo Fisher Sci-
entific) supplemented with 5% (v/v) FBS (Nichirei). The FOP-iPSCs
used in this study (previously described as vFOP4-1 [Matsumoto
et al., 2013]) harbor the R206H heterozygous mutation in
ACVR1, and gene-corrected resFOP-iPSCs were generated by
BAC-based homologous recombination. These cells fulfilled
several criteria for iPSCs including the expression of pluripotent
markers, teratoma formation, normal karyotype, and morphology.
Growth and gene expression profiles of the resFOP-iPSC clones
were indistinguishable from the original FOP-iPSCs (Matsumoto
et al., 2015); however, remarkably distinct responsiveness to acti-
vin A was observed (Hino et al., 2015).

ALP Assay

ATDCS5/FOP-ACVRI1 cells were plated in 96-well white plates
(2,000 cells/well/40 pL, Corning) in DMEM/F-12 supplemented
with 5% (v/v) EBS. Two hours after incubation at 37°C under 5%
CO,, 10 pL of test compounds (final 1 uM) was added, and the
assay plates were incubated at 37°C under 5% CO,. After 3 days
of incubation, ALP activity was measured using an Amplite Color-
imetric Alkaline Phosphatase Assay Kit (AAT Bioquest) according
to the manufacturer’s protocol.

2D Chondrogenic Induction

Chondrogenic induction was performed, and differentiation prop-
erties were assayed as previously described (Hino et al., 2015; Nasu
et al., 2013; Umeda et al., 2012).

In Vivo Experiments

hFOP-ACVRI1 conditional transgenic mice (Beard et al., 2006; Hino
et al., 2017; Ohnishi et al., 2014; Yamada et al., 2013), BMP-7-
induced HO model mice (Hino et al., 2017), and activin A-induced
HO model mice transplanted with FOP-iMSCs (Hino et al., 2017)
were intraperitoneally administered 5 mg/kg AZD0530, TAK 165,
or rapamycin (once daily, five times a week) and analyzed as previ-
ously described (Hino et al., 2017).
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Statistics

The statistical significance of all experiments was calculated by
Prism 6 (GraphPad Software). p values less than 0.05 were consid-
ered statistically significant.

ACCESSION NUMBERS

Microarray data were deposited in the GEO of NCBI under the
accession number GEO: GSE108771.
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Supplemental Information includes Supplemental Experimental
Procedures and seven figures and can be found with this article
online at https://doi.org/10.1016/j.stemcr.2018.10.007.

AUTHOR CONTRIBUTIONS

Conceptualization and Project Administration, K. Hino and M.L;
Investigation, K. Hino, C.Z., K. Horigome, M.N., Y.O,, S.N., S.K,,
and A.O.; Formal Analysis, K. Hino, C.Z., K. Horigome, M.N., and
A.O.; Resources, K. Horigome and Y.Y.; Writing — Original Draft,
K. Hino, J.T., and M.I. All authors read and approved the final
manuscript.

DECLARATION OF INTERESTS

K. Hino and K. Horigome are employees of Sumitomo Dainippon
Pharma Co. Ltd. M.I. and ].T. are supported by a research fund
from Sumitomo Dainippon Pharma Co. Ltd. The other authors
declare no competing interests.

ACKNOWLEDGMENTS

We thank Dr. K. Woltjen for providing the KW111 vector,
Dr. A. Hotta for providing the PBasell vector, S. Kihara for analysis
of the wound healing assay, the Center for Anatomical, Patholog-
ical and Forensic Medical Researches, Kyoto University Graduate
School of Medicine, for preparing the microscope slides,
Dr. A. Ikeda for invaluable comments and discussion, Dr. P. Kara-
giannis for reading the manuscript, Dr. S. Yamanaka for support-
ing/initiating our FOP research, and members of the J.T. and M.I.
laboratories for their support during this study. This work was sup-
ported by grants-in-aid for scientific research from the Japan Soci-
ety for the Promotion of Science (JSPS) (#25293320, #16K15662),
the Program for Intractable Diseases Research utilizing Disease-
Specific iPS cells from the Japan Science and Technology Agency
(JST) and the Japan Agency for Medical Research and Development
(AMED), the Core Center for iPS Cell Research of the Research Cen-
ter Network for Realization of Regenerative Medicine (JST/AMED),
a grant from Research on Development of New Drugs (AMED), and
a grant from the iPS Cell Research Fund, awarded in part to M.I.
and J.T. M.I. was also supported by the Practical Research Project
for Rare/Intractable Diseases and the Acceleration Program for
Intractable Diseases Research utilizing Disease-Specific iPS cells
from AMED. C.Z. was also supported by Grant-in-Aid for Young
Scientists B from JSPS (17K15617) and the Future Development
Funding Program of Kyoto University Research Coordination Alli-
ance. A.O. was also supported by Research Project for Practical Ap-
plications of Regenerative Medicine from AMED. These funders


https://doi.org/10.1016/j.stemcr.2018.10.007

had no role in the study design, data collection and analysis, deci-
sion to publish, or preparation of the manuscript. We would like to
thank Mr. M. Todani for drawing an illustration of graphical
abstract.

Received: April 9, 2018
Revised: October 5, 2018
Accepted: October 5, 2018
Published: November 1, 2018

REFERENCES

Agarwal, S., Loder, S., Brownley, C., Cholok, D., Mangiavini, L., Li,
J., Breuler, C., Sung, H.H., Li, S., Ranganathan, K., et al. (2016).
Inhibition of Hif1alpha prevents both trauma-induced and genetic
heterotopic ossification. Proc. Natl. Acad. Sci. U S A 113, E338-
E347.

Agarwal, S., Loder, S.J., Cholok, D., Peterson, J., Li, J., Breuler, C.,
Cameron Brownley, R., Hsin Sung, H., Chung, M.T., Kamiya, N.,
et al. (2017). Scleraxis-lineage cells contribute to ectopic bone for-
mation in muscle and tendon. Stem Cells 35, 705-710.

Akiyama, H., Shukunami, C., Nakamura, T., and Hiraki, Y. (2000).
Differential expressions of BMP family genes during chondrogenic
differentiation of mouse ATDCS cells. Cell Struct. Funct. 25,
195-204.

Anastassiadis, T., Deacon, S.W., Devarajan, K., Ma, H., and Peter-
son, J.R. (2011). Comprehensive assay of kinase catalytic activity
reveals features of kinase inhibitor selectivity. Nat. Biotechnol.
29, 1039-1045.

Beard, C., Hochedlinger, K., Plath, K., Wutz, A., and Jaenisch, R.
(2006). Efficient method to generate single-copy transgenic mice
by site-specific integration in embryonic stem cells. Genesis 44,
23-28.

Billings, P.C., Fiori, J.L., Bentwood, J.L., O’Connell, M.P,, Jiao, X.,
Nussbaum, B., Caron, R.J., Shore, E.M., and Kaplan, ES. (2008).
Dysregulated BMP signaling and enhanced osteogenic differentia-
tion of connective tissue progenitor cells from patients with fibro-
dysplasia ossificans progressiva (FOP). ]J. Bone Miner. Res. 23,
305-313.

Brennan, T.A., Lindborg, C.M., Bergbauer, C.R., Wang, H., Kaplan,
ES., and Pignolo, R.J. (2017). Mast cell inhibition as a therapeutic
approach in fibrodysplasia ossificans progressiva (FOP). Bone
109, 259-266.

Canalis, E., Economides, A.N., and Gazzerro, E. (2003). Bone
morphogenetic proteins, their antagonists, and the skeleton. En-
docr. Rev. 24, 218-235.

Cappato, S., Tonachini, L., Giacopelli, E, Tirone, M., Galietta, L.J.,
Sormani, M., Giovenzana, A., Spinelli, A.E., Canciani, B., Brunelli,
S., et al. (2016). High-throughput screening for modulators of
ACVR1 transcription: discovery of potential therapeutics for fibro-
dysplasia ossificans progressiva. Dis. Model. Mech. 9, 685-696.

Chaikuad, A., Alfano, I., Kerr, G., Sanvitale, C.E., Boergermann,
J.H., Triffitt, ].T., von Delft, F.,, Knapp, S., Knaus, P., and Bullock,
A.N. (2012). Structure of the bone morphogenetic protein receptor
ALK2 and implications for fibrodysplasia ossificans progressiva.
J. Biol. Chem. 287, 36990-36998.

Chakkalakal, S.A., Uchibe, K., Convente, M.R., Zhang, D., Econo-
mides, A.N., Kaplan, ES., Pacifici, M., Iwamoto, M., and Shore,
E.M. (2016). Palovarotene inhibits heterotopic ossification and
maintains limb mobility and growth in mice with the human
acvrl(r206h) fibrodysplasia ossificans progressiva (fop) mutation.
J. Bone Miner. Res. 31, 1666-1675.

Convente, M.R., Chakkalakal, S.A., Yang, E., Caron, R.J., Zhang, D.,
Kambayashi, T., Kaplan, ES., and Shore, E.M. (2017). Depletion of
mast cells and macrophages impairs heterotopic ossification in an
acvr1??°°" mouse model of fibrodysplasia ossificans progressiva.
J. Bone Miner. Res. 33, 269-282.

Dey, D., Bagarova, J., Hatsell, S.J., Armstrong, K.A., Huang, L., Er-
mann, J., Vonner, AJ., Shen, Y., Mohedas, A.H., Lee, A., et al.
(2016). Two tissue-resident progenitor lineages drive distinct phe-
notypes of heterotopic ossification. Sci. Transl. Med. 8, 366ral63.

Engers, D.W,, Frist, A.Y., Lindsley, C.W., Hong, C.C., and Hopkins,
C.R. (2013). Synthesis and structure-activity relationships of a
novel and selective bone morphogenetic protein receptor (BMP)
inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of
dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 se-
lective MLPCN probe. Bioorg. Med. Chem. Lett. 23, 3248-3252.

Falah, M., Nierenberg, G., Soudry, M., Hayden, M., and Volpin, G.
(2010). Treatment of articular cartilage lesions of the knee. Int.
Orthop. 34, 621-630.

Fukuda, T., Kanomata, K., Nojima, J., Kokabu, S., Akita, M., Ikebu-
chi, K., Jimi, E., Komori, T., Maruki, Y., Matsuoka, M., et al. (2008).
A unique mutation of ALK2, G356D, found in a patient with fibro-
dysplasia ossificans progressiva is a moderately activated BMP type
I receptor. Biochem. Biophys. Res. Commun. 377, 905-909.

Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Na-
gata, S., Matsumoto, Y., Yamamoto, T., Umeda, K., Heike, T., et al.
(2014). Derivation of mesenchymal stromal cells from pluripotent
stem cells through a neural crest lineage using small molecule com-
pounds with defined media. PLoS One 9, e112291.

Gu, Z., Reynolds, E.M., Song, J., Lei, H., Feijen, A., Yu, L., He, W.,
MacLaughlin, D.T., van den Eijnden-van Raaij, J., Donahoe, P.K.,
et al. (1999). The type I serine/threonine kinase receptor ActRIA
(ALK2) is required for gastrulation of the mouse embryo. Develop-
ment 126, 2551-2561.

Hamasaki, M., Hashizume, Y., Yamada, Y., Katayama, T., Hohjoh,
H., Fusaki, N., Nakashima, Y., Furuya, H., Haga, N., Takami, Y.,
et al. (2012). Pathogenic mutation of ALK2 inhibits induced
pluripotent stem cell reprogramming and maintenance: mecha-
nisms of reprogramming and strategy for drug identification.
Stem Cells 30, 2437-2449.

Hao,]., Ho, ]J.N., Lewis, J.A., Karim, K.A., Daniels, R.N., Gentry, P.R.,
Hopkins, C.R., Lindsley, C.W., and Hong, C.C. (2010). In vivo
structure-activity relationship study of dorsomorphin analogues
identifies selective VEGF and BMP inhibitors. ACS Chem. Biol. 5,
245-253.

Hatsell, S.J., Idone, V., Wolken, D.M., Huang, L., Kim, H.J., Wang,
L., Wen, X., Nannuru, K.C., Jimenez, J., Xie, L., et al. (2015).
ACVR1R206H receptor mutation causes fibrodysplasia ossificans
progressiva by imparting responsiveness to activin A. Sci. Transl.
Med. 7, 303ral37.

Stem Cell Reports | Vol. I'1 | 1106—1119 | November 13,2018 1117



http://refhub.elsevier.com/S2213-6711(18)30430-2/sref1
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref1
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref1
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref1
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref1
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref2
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref2
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref2
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref2
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref3
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref3
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref3
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref3
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref4
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref4
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref4
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref4
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref5
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref5
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref5
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref5
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref6
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref7
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref7
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref7
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref7
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref8
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref8
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref8
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref9
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref9
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref9
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref9
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref9
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref10
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref10
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref10
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref10
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref10
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref11
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref12
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref13
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref13
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref13
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref13
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref14
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref15
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref15
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref15
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref16
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref16
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref16
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref16
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref16
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref17
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref17
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref17
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref17
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref17
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref18
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref18
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref18
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref18
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref18
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref19
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref20
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref20
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref20
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref20
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref20
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref21
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref21
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref21
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref21
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref21

Hayakawa, K., Ikeya, M., Fukuta, M., Woltjen, K., Tamaki, S., Taka-
hara, N., Kato, T., Jr., Sato, S., Otsuka, T., and Toguchida, J. (2013).
Identification of target genes of synovial sarcoma-associated fusion
oncoprotein using human pluripotent stem cells. Biochem. Bio-
phys. Res. Commun. 432, 713-719.

Hennequin, L.E, Allen, J., Breed, J., Curwen, ]., Fennell, M., Green,
T.P., Lambert-van der Brempt, C., Morgentin, R., Norman, R.A., Oliv-
ier, A., etal. (2006). N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-meth-
ylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazo-
lin-4-amine, a novel, highly selective, orally available, dual-specific
c-Src/Abl Kinase inhibitor. J. Med. Chem. 49, 6465-6488.

Hino, K., Horigome, K., Nishio, M., Komura, S., Nagata, S., Zhao,
C., Jin, Y., Kawakami, K., Yamada, Y., Ohta, A., et al. (2017). Acti-
vin-A enhances mTOR signaling to promote aberrant chondrogen-
esis in fibrodysplasia ossificans progressiva. J. Clin. Invest. 127,
3339-3352.

Hino, K., Ikeya, M., Horigome, K., Matsumoto, Y., Ebise, H., Nishio,
M., Sekiguchi, K., Shibata, M., Nagata, S., Matsuda, S., et al. (2015).
Neofunction of ACVR1 in fibrodysplasia ossificans progressiva.
Proc. Natl. Acad. Sci. US A 112, 15438-15443.

Hogan, B.L. (1996). Bone morphogenetic proteins: multifunc-
tional regulators of vertebrate development. Genes Dev. 10, 1580-
1594.

Kaplan, F, Glaser, D., Shore, E., Deirmengian, G., Gupta, R., Delai,
P.,, Morhart, R., Smith, R., Le Merrer, M., Rogers, J., etal. (2005). The
phenotype of fibrodysplasia ossificans progressiva. Clin. Rev. Bone
Miner. Metab. 3, 183-188.

Kaplan, ES., Groppe, J., Pignolo, RJ., and Shore, EM. (2007).
Morphogen receptor genes and metamorphogenes: skeleton keys
to metamorphosis. Ann. N. Y. Acad. Sci. 1116, 113-133.

Kaplan, ES., Le Merrer, M., Glaser, D.L., Pignolo, R.]J., Goldsby, R.E.,
Kitterman, J.A., Groppe, J., and Shore, E.M. (2008). Fibrodysplasia
ossificans progressiva. Best Pract. Res. Clin. Rheumatol. 22,
191-205.

Kaplan, ES., Chakkalakal, S.A., and Shore, E.M. (2012a). Fibrodys-
plasia ossificans progressiva: mechanisms and models of skeletal
metamorphosis. Dis. Model. Mech. 5, 756-762.

Kaplan, J., Kaplan, ES., and Shore, E.M. (2012b). Restoration of
normal BMP signaling levels and osteogenic differentiation in
FOP mesenchymal progenitor cells by mutant allele-specific target-
ing. Gene Ther. 19, 786-790.

Kitoh, H., Achiwa, M., Kaneko, H., Mishima, K., Matsushita, M.,
Kadono, I., Horowitz, J.D., Sallustio, B.C., Ohno, K., and Ishiguro,
N. (2013). Perhexiline maleate in the treatment of fibrodysplasia
ossificans progressiva: an open-labeled clinical trial. Orphanet J.
Rare Dis. 8, 163.

Lees-Shepard, J.B., Yamamoto, M., Biswas, A.A., Stoessel, S.J., Nich-
olas, S.E., Cogswell, C.A., Devarakonda, P.M., Schneider, M.]., Jr.,
Cummins, S.M., Legendre, N.P, et al. (2018). Activin-dependent
signaling in fibro/adipogenic progenitors causes fibrodysplasia
ossificans progressiva. Nat. Commun. 9, 471.

Lewis, T.C., and Prywes, R. (2013). Serum regulation of Id1 expres-
sion by a BMP pathway and BMP responsive element. Biochim.
Biophys. Acta 1829, 1147-1159.

1118 Stem Cell Reports | Vol. 'l | 1106—1119 | November 13,2018

Maggioli, C., and Stagi, S. (2017). Bone modeling, remodeling, and
skeletal health in children and adolescents: mineral accrual, assess-
ment and treatment. Ann. Pediatr. Endocrinol. Metab. 22, 1-5.

Massague, J., Blain, S.W., and Lo, R.S. (2000). TGFbeta signaling in
growth control, cancer, and heritable disorders. Cell 103, 295-309.

Matsumoto, Y., Hayashi, Y., Schlieve, C.R., Ikeya, M., Kim, H.,
Nguyen, T.D., Sami, S., Baba, S., Barruet, E., Nasu, A., et al.
(2013). Induced pluripotent stem cells from patients with human
fibrodysplasia ossificans progressiva show increased mineraliza-
tion and cartilage formation. Orphanet J. Rare Dis. 8, 190.

Matsumoto, Y., Ikeya, M., Hino, K., Horigome, K., Fukuta, M., Wa-
tanabe, M., Nagata, S., Yamamoto, T., Otsuka, T., and Toguchida, J.
(2015). New protocol to optimize iPS cells for genome analysis of
fibrodysplasia ossificans progressiva. Stem Cells 33, 1730-1742.

Mishina, Y., Crombie, R., Bradley, A., and Behringer, R.R. (1999).
Multiple roles for activin-like kinase-2 signaling during mouse
embryogenesis. Dev. Biol. 213, 314-326.

Miyazono, K., Kamiya, Y., and Morikawa, M. (2010). Bone morpho-
genetic protein receptors and signal transduction. J. Biochem. 147,
35-51.

Moasser, M.M. (2007). Targeting the function of the HER2 onco-
gene in human cancer therapeutics. Oncogene 26, 6577-6592.

Moffat, J.G., Vincent, F,, Lee, ].A., Eder, J., and Prunotto, M. (2017).
Opportunities and challenges in phenotypic drug discovery: an
industry perspective. Nat. Rev. Drug Discov. 16, 531-543.

Mohedas, A.H., Xing, X., Armstrong, K.A., Bullock, A.N., Cuny,
G.D., and Yu, P.B. (2013). Development of an ALK2-biased BMP
type I receptor kinase inhibitor. ACS Chem. Biol. 8, 1291-1302.

Mueller, T.D., and Nickel, J. (2012). Promiscuity and specificity in
BMP receptor activation. FEBS Lett. 586, 1846-1859.

Nagasawa, J., Mizokami, A., Koshida, K., Yoshida, S., Naito, K., and
Namiki, M. (2006). Novel HER2 selective tyrosine kinase inhibitor,
TAK-16S5, inhibits bladder, kidney and androgen-independent
prostate cancer in vitro and in vivo. Int. J. Urol. 13, 587-592.
Nakajima, T., Shibata, M., Nishio, M., Nagata, S., Alev, C., Sakurai,
H., Toguchida, J., and Ikeya, M. (2018). Modeling human somite
development and fibrodysplasia ossificans progressiva with
induced pluripotent stem cells. Development 145. https://doi.
org/10.1242/dev.165431.

Nasu, A., Ikeya, M., Yamamoto, T., Watanabe, A., Jin, Y., Matsu-
moto, Y., Hayakawa, K., Amano, N., Sato, S., Osafune, K., et al.
(2013). Genetically matched human iPS cells reveal that propen-
sity for cartilage and bone differentiation differs with clones, not
cell type of origin. PLoS One 8, e53771.

Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A.,
Mitsunaga, K., Okita, K., Osafune, K., Arioka, Y., Maeda, T., et al.
(2014). Premature termination of reprogramming in vivo leads to
cancer development through altered epigenetic regulation. Cell
156, 663-677.

Pavey, G.J., Qureshi, A.T., Tomasino, A.M., Honnold, C.L., Bishop,
D.K., Agarwal, S., Loder, S., Levi, B., Pacifici, M., Iwamoto, M., et al.
(2016). Targeted stimulation of retinoic acid receptor-gamma mit-
igates the formation of heterotopic ossification in an established
blast-related traumatic injury model. Bone 90, 159-167.


http://refhub.elsevier.com/S2213-6711(18)30430-2/sref22
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref22
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref22
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref22
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref22
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref23
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref24
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref24
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref24
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref24
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref24
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref25
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref25
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref25
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref25
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref26
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref26
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref26
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref27
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref27
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref27
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref27
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref28
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref28
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref28
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref29
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref29
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref29
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref29
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref30
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref30
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref30
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref31
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref31
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref31
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref31
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref32
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref32
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref32
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref32
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref32
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref33
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref33
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref33
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref33
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref33
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref34
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref34
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref34
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref35
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref35
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref35
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref36
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref36
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref37
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref37
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref37
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref37
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref37
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref38
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref38
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref38
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref38
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref39
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref39
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref39
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref40
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref40
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref40
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref41
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref41
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref42
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref42
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref42
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref43
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref43
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref43
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref44
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref44
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref45
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref45
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref45
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref45
https://doi.org/10.1242/dev.165431
https://doi.org/10.1242/dev.165431
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref47
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref47
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref47
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref47
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref47
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref48
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref48
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref48
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref48
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref48
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref49
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref49
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref49
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref49
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref49

Piek, E., Heldin, C.H., and Ten Dijke, P. (1999). Specificity, diver-
sity, and regulation in TGF-beta superfamily signaling. FASEB ]J.
13,2105-2124.

Pignolo, R.J., Bedford-Gay, C., Liljesthrom, M., Durbin-Johnson,
B.P, Shore, E.M., Rocke, D.M., and Kaplan, ES. (2016). The natural
history of flare-ups in fibrodysplasia ossificans progressiva (FOP): a
comprehensive global assessment. . Bone Miner. Res. 31, 650-656.
Sanvitale, C.E., Kerr, G., Chaikuad, A., Ramel, M.C., Mohedas,
A.H., Reichert, S., Wang, Y., Triffitt, J.T., Cuny, G.D., Yu, P.B.,
et al. (2013). A new class of small molecule inhibitor of BMP
signaling. PLoS One 8, e62721.

Shimono, K., Tung, W.E., Macolino, C., Chi, A.H., Didizian, J.H.,
Mundy, C., Chandraratna, R.A., Mishina, Y., Enomoto-Iwamoto,
M., Pacifici, M., et al. (2011). Potent inhibition of heterotopic ossi-
fication by nuclear retinoic acid receptor-gamma agonists. Nat.
Med. 17, 454-460.

Shore, E., Feldman, G., Xu, M., and Kaplan, F. (2005). The genetics
of fibrodysplasia ossificans progressiva. Clin. Rev. Bone Miner.
Metab. 3, 201-204.

Shore, E.M., and Kaplan, ES. (2010). Inherited human diseases of
heterotopic bone formation. Nat. Rev. Rheumatol. 6, 518-527.
Shore, E.M., Xu, M., Feldman, G.J., Fenstermacher, D.A., Cho, T]J.,
Choi, I.H., Connor, J.M., Delai, P., Glaser, D.L., LeMerrer, M., et al.
(2006). A recurrent mutation in the BMP type I receptor ACVR1
causes inherited and sporadic fibrodysplasia ossificans progressiva.
Nat. Genet. 38, 525-527.

Shukunami, C., Ishizeki, K., Atsumi, T., Ohta, Y., Suzuki, F., and Hir-
aki, Y. (1997). Cellular hypertrophy and calcification of embryonal
carcinoma-derived chondrogenic cell line ATDCS in vitro. ]. Bone
Miner. Res. 12, 1174-1188.

Sinha, S., Uchibe, K., Usami, Y., Pacifici, M., and Iwamoto, M.
(2016). Effectiveness and mode of action of a combination therapy
for heterotopic ossification with a retinoid agonist and an anti-in-
flammatory agent. Bone 90, 59-68.

Takahashi, M., Katagiri, T., Furuya, H., and Hohjoh, H. (2012). Dis-
ease-causing allele-specific silencing against the ALK2 mutants,
R206H and G356D, in fibrodysplasia ossificans progressiva. Gene
Ther. 19, 781-785.

Umeda, K., Zhao, J., Simmons, P., Stanley, E., Elefanty, A., and Na-
kayama, N. (2012). Human chondrogenic paraxial mesoderm,
directed specification and prospective isolation from pluripotent
stem cells. Sci. Rep. 2, 455.

Urist, M.R. (1965). Bone: formation by autoinduction. Science 150,
893-899.

Wang, H., Lindborg, C., Louney, V., Kim, J.H., McCarrick-Walms-
ley, R., Xu, M., Mangiavini, L., Groppe, J.C., Shore, E.M., Schipani,
E., etal. (2016). Cellular hypoxia promotes heterotopic ossification
by amplifying BMP signaling. J. Bone Miner. Res. 31, 1652-1665.

Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M.,
Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M.,
et al. (2009). piggyBac transposition reprograms fibroblasts to
induced pluripotent stem cells. Nature 458, 766-770.

Wozney, .M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.].,
Kriz, R.W., Hewick, R.M., and Wang, E.A. (1988). Novel regulators
of bone formation: molecular clones and activities. Science 242,
1528-1534.

Yamada, K., Ohno, T., Aoki, H., Semi, K., Watanabe, A., Moritake,
H., Shiozawa, S., Kunisada, T., Kobayashi, Y., Toguchida, J., et al.
(2013). EWS/ATF1 expression induces sarcomas from neural
crest-derived cells in mice. J. Clin. Invest. 123, 600-610.

Yu, P.B., Deng, D.Y., Lai, C.S., Hong, C.C., Cuny, G.D., Bouxsein,
M.L., Hong, D.W., McManus, P.M., Katagiri, T., Sachidanandan,
C., etal. (2008). BMP type I receptor inhibition reduces heterotopic
[corrected] ossification. Nat. Med. 14, 1363-1369.

Zuscik, M.J., Hilton, M.]., Zhang, X., Chen, D., and O’Keefe, RJ.
(2008). Regulation of chondrogenesis and chondrocyte differenti-
ation by stress. J. Clin. Invest. 118, 429-438.

Stem Cell Reports | Vol. I'1 | 1106—1119 | November 13,2018 1119



http://refhub.elsevier.com/S2213-6711(18)30430-2/sref50
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref50
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref50
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref51
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref51
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref51
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref51
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref52
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref52
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref52
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref52
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref53
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref53
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref53
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref53
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref53
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref54
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref54
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref54
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref55
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref55
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref56
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref56
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref56
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref56
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref56
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref57
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref57
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref57
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref57
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref58
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref58
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref58
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref58
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref59
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref59
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref59
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref59
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref60
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref60
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref60
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref60
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref61
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref61
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref62
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref62
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref62
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref62
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref63
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref63
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref63
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref63
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref64
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref64
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref64
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref64
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref65
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref65
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref65
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref65
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref66
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref66
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref66
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref66
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref67
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref67
http://refhub.elsevier.com/S2213-6711(18)30430-2/sref67

Stem Cell Reports, Volume 711

Supplemental Information

An mTOR Signaling Modulator Suppressed Heterotopic Ossification

of Fibrodysplasia Ossificans Progressiva

Kyosuke Hino, Chengzhu Zhao, Kazuhiko Horigome, Megumi Nishio, Yasue
Okanishi, Sanae Nagata, Shingo Komura, Yasuhiro Yamada, Junya Toguchida, Akira
Ohta, and Makoto Ikeya



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Study approval. All experimental protocols dealing with human subjects were approved by the Ethics
Committee of the Department of Medicine and Graduate School of Medicine, Kyoto University. Written
informed consent was provided by each donor. All animal experiments were approved by the institutional
animal committee of Kyoto University.

Cell culture. ATDCS cells were maintained in DMEM/F-12 (Thermo Fisher Scientific) supplemented with 5%
(v/v) FBS (Nichirei). iPSCs were maintained in primate ES cell medium (ReproCELL) supplemented with 4
ng/mL recombinant human FGF2 (Wako Pure Chemical). To induce induced neural crest cells (iNCCs),
mTeSR1 medium (STEMCELL Technology) was used for the feeder-free culture of iPSCs. The induction and
maintenance of iINCCs and iMSCs derived from iPSCs were previously described (Fukuta et al., 2014;
Matsumoto et al., 2015). Briefly, iNCCs were induced in chemically defined medium (CDM) supplemented
with 10 uM SB-431542 and 1 uM CHIR99021 for 7 days. iNCCs were maintained in CDM supplemented with
10 uM SB-431542, 20 ng/mL FGF2 and 20 ng/mL recombinant human EGF (R&D Systems) for up to 20
passages. iMSCs were induced and maintained in tMEM (Thermo Fisher Scientific) supplemented with 10%
(v/v) FBS (Nichirei), 5 ng/mL FGF2 and 0.5% penicillin and streptomycin (Thermo Fisher Scientific). The
FOP-iPSCs used in this study (previously described as vFOP4-1 (Matsumoto et al., 2013)) harbor the R206H
heterozygous mutation in ACVR1, and gene-corrected resFOP-iPSCs were generated by BAC-based
homologous recombination. These cells fulfilled several criteria for iPSCs including the expression of
pluripotent markers, teratoma formation, normal karyotype and morphology. Growth and gene expression
profiles of the resFOP-iPSC clones were indistinguishable from the original FOP-iPSCs (Matsumoto et al.,
2015), however, remarkably distinct responsiveness to Activin-A was observed (Hino et al., 2015). C3H10T1/2
(murine multipotent mesenchymal cells)-expressing Dox-inducible hINHBA (C3H-DoxOn-hINHBA) was
maintained in DMEM (Nacalai Tesque) supplemented with 10% FBS and 1 mM Na-pyruvate (Thermo Fisher
Scientific) and used for an Activin-A-induced HO model transplanted with FOP-iMSCs as previously reported
(Hino et al., 2015). In the wound healing assay, healthy control iPSC (414C2)-derived iMSCs were used (Okita
etal., 2011).

Reagents. Activin-A, BMP-4, BMP-7 and TGF-B3 were purchased from R&D Systems. Rapamycin was
purchased from MedChemexpress. SB-431542 was purchased from Sigma-Aldrich. TAK 165, PD 161570, CP-
724714 and Lapatinib were purchased from Selleck Chemicals. DMH-1 was purchased from Tocris Bioscience.
AZD0530 was purchased from ANgene. Trastuzumab and Pertuzumab were purchased from BioVision or
Creative-Biolabs, respectively. Activin-A, BMP-7 and TGF-f3 were dissolved according to the manufacturer’s
protocols and used at 100 ng/mL (Activin-A and BMP-7) or 10 ng/mL (BMP-4 and TGF-B3) unless otherwise
noted.

Chemicals Libraries. All chemical libraries were purchased from the suppliers listed. Almost all compounds
were bioactive and/or annotated.
Library Name Supplier Number

Microsource International Drugs MicroSource Discovery Systems 238

Microsource US Drugs 1020
Enzo FDA 636
Enzo ICCB Enzo Life Sciences 474
Enzo kinase inhibitors 76
LOPAC1280 . . 1280
Sigma Pfizer Sigma-Aldrich 74
Myriascreen TimTec 72
EMD Kinase Inhibitors Merck Millipore 244
Selleck kinase inhibitors Selleck Chemicals 141
Tocrs Mini Selected for CiRA Tocris Bioscience 637
Total 4892




Generation of ATDCS5 stably expressing ACVR1. WT- or FOP-ACVR1 was inserted into doxycycline (Dox)-
inducible vector KW111 (Woltjen et al., 2009), which enables us to easily produce stably expressing cell lines
utilizing the piggyBac (PB) transposon system from the cabbage looper moth Trichoplusia ni (Ding et al., 2005)
(KW111/WT-ACVR1 or KW111/FOP-ACVR1). KW111/WT-ACVR1 or KW111/FOP-ACVR1 and PBasell
plasmid (PB transposase expression vector) (Matsui et al., 2014) were co-transfected into ATDC5 cells by
FuGeneHD® (Promega) according to the manufacturer’s protocol, and the neomycin-resistant population (500
pg/mL) was selected. Further selection was performed by selecting a mCherry high positive population (< 5%)
after six hours of Dox treatment, sorting it with fluorescent-activated cell sorting (FACS) using Ariall (BD)
according to the manufacturer’s protocol, and designating it as ATDC5/WT-ACVR1 or ATDC5/FOP-ACVRI1.
KW111 included PB, active transposable PB elements; TRE-mCMVP, Tetracycline Response Element and a
minimal CMV promoter; rtTA, reverse tetracycline-controlled transactivator. PBasell was an expression
plasmid vector containing the PB transposase cDNA with optimized codon usage to human under the control
of the CAG promoter (Matsui et al., 2014).

HTS campaign and follow-up screens. ATDC5/FOP-ACVRL1 cells were plated in 96-well white plates
(2,000 cells/well/40 pL, Corning) in DMEM/F-12 supplemented with 5% (v/v) FBS. Two hours after incubation
at 37 °C under 5% CO, 10 pL of test compounds (final 1 pM) was added, and assay plates were incubated at
37 °C under 5% CO,. After 3 days incubation, Alkaline Phosphatase activity (ALP) or AlamarBlue activity was
measured using Amplite™ Colorimetric Alkaline Phosphatase Assay Kit (AAT Bioquest) or alamarBlue® Cell
Viability Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol, respectively. The
absorbance at 400 nm (Abs for ALP) or Relative Fluorescent Unit of Ex560/Em590 nm (RFU for AlamarBlue)
was measured on POWERSCAN4 (DS Pharma Biomedical) or EnVision® Multilabel Reader (PerkinElmer).
Inhibitory effects of the screened compounds are given as percent inhibition, which was calculated using the
following equation: (1-(JAbs of compound] - [Abs of Min])/([Abs of Max] - [Abs of Min]))x 100, where [Abs
of Max] and [Abs of Min] are the mean Abs of DMSO control and 1 pM DMH-1, respectively. The Z’ factor,
which is widely used as a measure of the assay quality of each plate, was calculated using the following
equation: Z’ factor = 1 - 3 x ([SD of Max] + [SD of Min])/([Abs of Max] - [Abs of Min]) (SI Appendix, Fig.
S3A). The average Z’ factor in the HTS assay was 0.74, indicating accuracy and reliability of the HTS campaign
(general criteria of HTS > 0.50) (Zhang et al., 1999). The S/B (signal-to-background) ratio was calculated using
the following equation: ([Abs of Max]/[Abs of Min]) (SI Appendix, Fig. S3B). The average S/B ratio in the
HTS assay was 6.9, also indicating accuracy and reliability of the HTS campaign (general criteria of HTS >
3.0).

Using ATDC5/FOP-ACVRL1 cells, we performed a first screening (n=2; test compounds = 1 uM, Fig.
2A and B) against 4,892 small molecule compounds. In the first screening, 160 hit compounds satisfied the
criteria more than 40% inhibition of ALP activity against DMSO control cells, less than 40% inhibition of
viability, and margin (Inhibition of ALP activity (%) - Inhibition of viability (%)) more than 20%. A second
screening was performed against the above 160 compounds (n=2; test compounds = 0.1, 0.3, 1, 3 uM), and 79
hit compounds satisfied the criteria 40% inhibition of ALP activity against DMSO control cells and margin
more than 50% at any dose (S| Appendix, Fig. S4 and S5). To explore compounds which have the potential to
identify new mechanisms or contribute to future drug repositioning, we selected 14 compounds, and detailed
concentration-dependent assays were performed (Fig. 2E and SI Appendix, Fig. S6). As a result, we identified
7 compounds which showed stronger IC50 (< 500 nM) and less toxicity (Viability @ 10 uM > 50%) through
the HTS campaign that focused on the constitutive activity of FOP-ACVR1 (Fig. 2E, red).

2D chondrogenic induction. Chondrogenic induction was performed, and differentiation properties were
assayed as previously described (Hino et al., 2015; Nasu et al., 2013; Umeda et al., 2012). Briefly, iMSCs (1.5
x 10%) were cultured in fibronectin-coated 24-well plates (BD Biosciences) using the chondrogenic medium
with 100 ng/mL Activin-A and inhibitors until day 7 unless otherwise noted. Gene-specific SiRNAs were
purchased from Thermo Fisher Scientific (Silencer® Select Pre-designed siRNA). For the transient expression
of siRNA, Lipofectamine® RNAIMAX Reagent (Thermo Fisher Scientific) was used according to the
manufacturer's instructions. Knockdown efficiencies (n=1) of MTOR and ERBB2 16 h after transfection in
FOP-iMSCs were 23.8% and 21.1%, respectively.

SiRNA sequences.



Gene ID Sense Antisense
MTOR s604 GGAGCCUUGUUGAUCCUUALt UAAGGAUCAACAAGGCUCCat
ERBB2 s611 GCUCAUCGCUCACAACCAATtt UUGGUUGUGAGCGAUGAGCac

Cardiotoxin-induced HO model in human FOP-ACVR1 conditional transgenic mice. Female hFOP-
ACVR1 conditional transgenic mice (Beard et al., 2006; Hino et al., 2017; Ohnishi et al., 2014; Yamada et al.,
2013) (f5-6 offspring of chimeric mice, age- and body weight-matched between groups) were used between 16
and 20 weeks of age. Mice were administered 2 mg/mL Dox in their drinking water supplemented with 10
mg/mL sucrose to induce FOP-ACVR1. Cardiotoxin (9.1 pg/mouse, Latoxan) was injected into the right
gastrocnemius muscle to initiate skeletal muscle injury and subsequent heterotopic bone formation
(Chakkalakal et al., 2012). Test compounds (16% DMSO in 0.5 w/v% Methyl Cellulose 400) were
intraperitoneally administered once a day, five times a week. Mice were analyzed three weeks after injection.
For X-ray images, mice were anesthetized with isoflurane (5% for induction, 2-3% for maintenance, Abbvie),
immobilized and X-rayed using pFX-1000 (Fujifilm) or DX-50 (Faxitron Bioptics). LCT images were scanned
using X-ray CT systems (inspeXio SMX-100CT, Shimadzu) and analyzed with TRI/3D-BON software (Ratoc
System Engineering) according to the manufacturer's instructions. Four weeks after injection, the injected sites
were harvested, fixed with 4% paraformaldehyde for 24 h, embedded in paraffin, and sectioned and stained
with HE, von Kossa, Safranin O and anti-Collagen | antibody as previously described (Hino et al., 2015; Umeda
etal., 2012).

BMP-7-induced HO model mice. BMP-7 (2 pg/mouse) was injected into the right gastrocnemius muscle of
C57BL/6NJcl mice (6-8 weeks, male, CLEA Japan), and compounds were administered once a day, five times
a week (intraperitoneal administration). Mice were analyzed 2 weeks after injection.

Activin-A-induced HO model transplanted with FOP-iMSCs. FOP- (right leg) and resFOP-iMSCs (left leg)
(4 x 10° cells, respectively) were transplanted into the gastrocnemius muscle of NOD/ShiJic-scid Jcl
(NOD/SCID) mice (8 weeks, male, CLEA Japan) with C3H-DoxOn-hINHBA (5 x 10° cells), which can
continuously expose Activin-A to the transplanted iMSCs in vivo (Hino et al., 2015). In the Dox-induced group,
1 mg/mL Dox (Sigma-Aldrich) was administered via drinking water with 10 mg/mL sucrose (Nacalai Tesque)
for two weeks after transplantation. Compounds were intraperitoneally administered once a day, five times a
week. Eight weeks after transplantation, the transplanted cells were harvested, fixed with 4% paraformaldehyde
for 24 h, embedded in paraffin, and sectioned and stained with HE, von Kossa, Safranin O, human specific anti-
Vimentin antibody and Collagen | antibody as previously described (Hino et al., 2015; Umeda et al., 2012;
Yamashita et al., 2015).

Histological analysis of growth plates chondrocytes. Knee joints were obtained from BMP-7-injected and
test compounds-administrated C57BL/6NJcl mice after 2 weeks treatment and fixed, paraffin-embedded, and
sectioned and stained with Safranin O. The thickness of the proliferative and hypertrophic zones of the growth
plate were measured using ImageJ software on images obtained using a Keyence microscope (Keyence
America). The proliferative zone was defined as the region with flat chondrocytes stacked in longitudinal
columns, and the hypertrophic zone as the region where chondrocytes are enlarged in size and form clusters.

Normal bone puCT. The left legs of mice were obtained from BMP-7-injected and test-compounds
administrated C57BL/6NJcl mice after 2 weeks treatment. The region of interest (ROI) included the femur-tibia
(entire femur in addition to the part of tibia above tibia/fibular junction).

Wound healing assay. Healthy control iPSC (414C2)-derived iMSCs (5x10%) were cultured in 24-well plates
using aMEM supplemented with 10% (v/v) FBS, 5 ng/mL FGF2 and 0.5% penicillin and streptomycin at 37 °C
for 72 h to form a confluent monolayer. Gaps were created by scratching the plates with a sterile pipette tip
(1000 uL). The cells were then washed with PBS to remove the detached cells and replaced with medium
containing 1% (v/v) FBS in the presence of DMSO (control) or test compounds (10 nM Rapamycin or 1 uM
TAK165). The cell culture plates were transferred to a Biostation CT (Nikon Corp., Tokyo, Japan) programmed
to take photographs at t = 0 h and t = 24 h. The migrated area was determined by subtracting the wound area at



time point t = 24 h from t = 0 h, and relative cell migration was expressed as the ratio of the absolute cell
migrations between the experimental and control groups by using CL-Quant software (Nikon Corp.).

Quantitative PCR analysis. Total RNA was purified with RNeasy Kit (Qiagen) and treated with DNase-one
Kit (Qiagen) to remove genomic DNA. Total RNA (0.3 pg) was reverse transcribed for single-stranded cDNA
using random primers and Superscript Il reverse transcriptase (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Quantitative PCR was performed with Thunderbird SYBR gPCR Mix (TOYOBO)
and analyzed with the StepOne real-time PCR system (Applied Biosystems). All data (relative expression) were
corrected by B-actin.

Primers for RT-gPCR.

Gene Forward Reverse

ACTB  CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT
MTOR GACGAGAGATCATCCGCCAG ACAAGGGACCGCACCATAAG
ERBB2 GCTCCTCCTCGCCCTCTT TGAGTTCCAGGTTTCCCTGC

Microarray experiments. 2D chondrogenic induction was performed in FOP-iMSCs stimulated with or
without 100 ng/mL Activin-A, TAK 165, CP-724714 and Lapatinib. Seven days after incubation, mMRNA was
extracted. RNA was reverse transcribed, biotin-labeled and hybridized to GeneChip Human Gene 1.0 ST
Expression Array, which was subsequently washed and scanned according to the manufacturer’s instructions
(Affymetrix). Raw CEL files were imported into GeneSpring GX 12.6.1 software (Agilent Technologies), and
expression values were calculated with the RMA16 algorithm. Pathway analysis was performed by Ingenuity
pathway analysis (Qiagen).

Western blotting. SDS-PAGE and blotting with whole-cell lysates were performed by standard procedures.
Protein bands were detected with ECL Prime Western Blotting Detection Reagent (GE Healthcare) and
visualized using BIO-RAD Molecular Imager® Chemi-Doc™ XRS+ with Image Lab™ software (Bio-Rad).
All data (relative intensity) were corrected by p-actin.

Antibodies for western blotting and immunostaining.

Name Company Cat. No |Concentration
Human Activin RIA/ALK-2 Antibody R&D Systems)| AF637 1:100
Phospho-S6 Rlbosomgl Protein (Ser235/236) Cell Signaling #2911 1:1000
Antibody Technology
1st antibody| Monoclonal Anti-b-Actin-Peroxidase clone AC-15 SIGMA- A3854 | 1:200000
ALDRICH
Anti-human Vimentin antibody Abcam ab16700 1:40

Novus NB600-

Collagen I Antibody Biologicals 408

1:100

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling | 707, | 110000
Technology
2nd Goat anti-Rabbit IgG (H+L) Secondary Antibody, . i )
antibody Alexa Fluor® 488 conjugate Invitrogen | A-11008 1:100

Goat anti-Rabbit 1gG (H+L) Secondary Antibody,
Alexa Fluor® 555 conjugate

Invitrogen | A-21428 1:500

GAG value. The GAG content was quantified in pellets with the Blyscan Glycosaminoglycan Assay Kit
(Biocolor). The DNA content was quantified using PicoGreen dsDNA Quantitation Kit (Thermo Fisher
Scientific).

Immunohistochemistry. Paraffin-embedded sections were deparaffinized. For human specific anti-Vimentin
antibody, antigen retrieval was performed by autoclave (105 °C, 10 min). Samples were blocked with Blocking
One (Nacalai Tesque) for 60 min and then incubated with human specific anti-Vimentin antibody (Abcam) or



anti-Collagen | antibody (Novus Biologicals) diluted in Can Get Signal® immunostain solution B (TOYOBO)
for 16-18 h at 4 °C. Next, samples were washed several times in 0.2% tween20 (Sigma-Aldrich) in PBS and
incubated with Goat anti-Rabbit 1gG (H+L) secondary antibody, Alexa Fluor® 488 or 555 conjugate (Thermo
Fisher Scientific) diluted in Can Get Signal® immunostain solution B for one hour at room temperature. DAPI
(20 pg/mL) was used to counterstain nuclei. Samples were observed by BZ-9000E (KEYENCE).

Statistics. The statistical significance of all experiments was calculated by Prism 6 (GraphPad Software). P
values less than 0.05 were considered statistically significant.
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Figure S1. Expression of ACVR1 and mCherry in ATDC5/WT-ACVR1 or
ATDCS5/FOP-ACVR1. Related to Figure 1. 24 h after Dox treatment (0-2 pg/mL),
cells were fixed and stained. Panels of DOX 0 and 0.002 pg/mL condition are
same as Figure 1B (B). Scale bars, 100 pm.
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Figure S2. Dose-dependent assay results of 79 hit compounds. Related to Figure
2. ALP assay and AlamarBlue assay were performed using the same protocol as
the HTS. Results are the mean of biological duplicate. 0.1, 0.3, 1, 3 uM of test
compounds were assessed. Listed compounds showed more than 40% inhibition
of ALP activity against DMSO control cells and margin more than 50% (inhibition
of ALP activity (%) - inhibition of viability (%)) at any dose.
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Figure S3. AZD0530 and TAK 165 suppressed BMP-7-induced HO. Related to
Figure 5. BMP-7 was injected into the right gastrocnemius muscle of male
C57BL/6 mice (6-8 weeks), who were administered drugs once daily 5 times a
week intraperitoneally for 2 weeks thereafter. (A) X-rays (upper panels) and
HCT (lower panels) observations. (B) Average heterotopic bone volume. (C)
The number of mice harboring HO (> 20 mm3 bone volume). (D) Body weight
change of BMP-7-injected male C57BL/6 mice. Scale bars, 10 mm (A). Results
are the mean * standard error (SE). N=5.* P <0.05; **, P <0.01 by
Dunnett’s multiple comparisons #test compared to the vehicle treatment group
(B). No significant differences between the AZD- or TAK- administered group
compared to the vehicle group in two-way repeated measures ANOVA followed
by Dunnett's multiple comparisons £test (D).
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Figure S4. Tests of side effects of direct and indirect mTOR inhibitors. Related
to Figure 5 and 6. (A-E) BMP-7 was injected into the right gastrocnemius
muscle of male C57BL/6 mice (6-8 weeks), who were administered 5 mg/kg of
compounds once daily 5 times a week intraperitoneally for 2 weeks thereafter.
(A-C) Histological analysis of growth plate chondrocytes. Representative
histological sections of the growth plate of tibiae from compounds-administered
mice (A). Quantification of the thickness of the proliferative (B) and hypertrophic
(C) zones is shown. Vertical lines indicate proliferative (black) and hypertrophic
(white) zones. (C and D) Normal bone uCT of the femur-tibia of left legs from
compounds-administered mice (F and G) Wound healing assay using iMSCs
from healthy donor-derived iPSCs (414C2). iMSCs migrated to cover the
scratched cell-free area. (E) Representative pictures and (F) relative migration
values of IMSCs cultured in the medium with DMSO or test compounds (10 nM
rapamycin or 1 uM TAK165). Scale bars, 0.5 mm (A and F). Results are the
mean + standard error (SE), n = 5 (Vehicle and TAK 165) or n = 4 (rapamycin)
(A-E), or biological triplicate in 3 independent experiments (F and G). n.s., ho
significant difference by Dunnett’s multiple comparisons #test compared to the
vehicle treatment group (B-E) or DMSO treatment control group (G).
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Figure S5. Analysis of the mechanism of TAK 165 action. Related to Figure 7.
(A and B) ERBB2 inhibition did not suppress the chondrogenic induction of
FOP-iMSCs. (A) Lapatinib (selective EGFR/ERBB2 inhibitor) and CP-724714
(selective ERBB2 inhibitor) or (B) 1 pg/mL Trastuzumab and 1 pg/mL
Pertizumab (neutralizing antibodies against ERBB2 ) did not suppress the
chondrogenesis of FOP-IMSCs. FOP-iMSCs were harvested 7 days after
chondrogenic induction, which was performed with or without Activin-A, ERBB2
inhibitors or antibodies. TAK, 1 uM TAK 165; Rapa, 20 nM rapamycin. (C) TAK
165 suppressed the chondrogenesis of FOP-iMSCs stimulated with TGF-33.
(D) TAK 165 suppressed the chondrogenesis of resFOP-iIMSCs stimulated with
Activin-A. resFOP- or FOP-iIMSCs were harvested 7 days after chondrogenic
induction, which was performed with or without Activin-A or TGF-33. Results
are the mean = standard error (SE) of biological triplicate using FOP-iPSCs
(VFOP4-1) or its isogenic control iPSCs (resFOP-iPSCs). n.s., no significant
difference; *, P < 0.05; ***, P < 0.001 by Dunnett’s multiple comparisons #test
compared to the DMSO treatment control with Activin-A (A-C) or TGF-B3 (D).
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Figure S6. Distinct effects of AZD0530, PD 161570 and TAK 165 on mTOR
signaling in chondrogenesis of FOP-iIMSCs. Related to Figure 7. After 2 h (A),
24 h (B) or 7 days (C) of chondrogenic induction of FOP-iIMSCs with Activin-A
and test compounds, the cells were harvested, and p-S6 was assessed by
western blotting. 10 nM rapamycin (Rapa) or 1 uM TAK 165 (TAK), AZD0530
(AZD) and PD 161570 (PD) were applied in the experiments. Results are the
mean * standard error (SE) of biological triplicate in 3 independent experiments
using FOP-iPSCs (vFOP4-1). n.s., no significant difference; **, P < 0.01; ***, P <
0.001 by Dunnett’s multiple comparisons £test compared to the DMSO
treatment control with Activin-A.
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Figure S7. Pathway analysis of TAK 165 and other ERBB2 inhibitors in Activin-
A-induced chondrogenesis of FOP-iIMSCs. Related to Figure 7. Chondrogenic
induction was performed in FOP-IMSCs with or without 100 ng/mL Activin-A,
100 nM TAK 165, 100 nM Lapatinib (selective EGFR/ERBBZ2 inhibitor) and 100
nM CP-724714 (selective ERBB2 inhibitor). After 7 days, cells were harvested,
and microarray analysis was performed. (A) Experimental group and
stimulation. (B and C) Differentially expressed genes (1.5 fold change) against
the TAK 165-treated group were analyzed by Ingenuity Pathway Analysis. (B)
Canonical Pathways significantly involved in all three groups. -log (p-value) >
1.3 (p = 0.05) was considered significant. (C) Expression ratio to the TAK 165-

treated group of differentially expressed genes in “Role of Osteoblasts,

Osteoclasts and Chondrocytes in Rheumatoid Arthritis” are shown. N = 1.
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