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I. FREE ENERGY METHODS

A. Basic statistical physics

This section is devoted to the theoretical basis of the different free energy methods studied
in this work. All methods find their basis in classical statistical physics. More in particular,
the computation of the free energy can be related to the classical partition function and
hence an integration over the entire phase space, i.e. the space spanned by the N atomic
positions rN and the N atomic momenta pN . Hence, the total partition function Z and
free energy F of the global state of a molecular system at a temperature T are defined as:

Z =
1

h3N

∫
e−βH(rN ,pN )drNdpN (1)

F = −kBT lnZ (2)

In this expression, h is the Planck constant, kB is the Boltzmann constant and β = 1/kBT .
Herein, we assume the N atoms to be distinguishable, otherwise an additional 1/N ! needs to
be included in our normalization. The Hamiltonian H(rN ,pN ) contains the kinetic energy
of all particles and the potential energy U(rN ) of all particles.
Suppose we introduce a coordinate Q(rN ,pN ) which is a function of all the degrees of
freedom of the system. Furthermore, we are interested in the probability that the system is
in a state for which Q(rN ,pN ) = q. In other words, this coordinate Q(rN ,pN ) is a way of
partitioning all the available microstates of the system (characterized by rN ,pN ) into a set
of macrostates (characterized by q). This results in a partitioning of the partition function
and free energy into contributions for every macrostate q:

Z(q) =
q0

h3N

∫
e−βH(rN ,pN )δ

(
Q(rN ,pN )− q

)
drNdpN (3)

F (q) = −kBT lnZ(q) (4)

In the previous expression, a constant q0 value is introduced to make Z(q) dimensionless.
The latter allows to determine the free energy as a function of q. In essence, the introduction
of the constant q0 results in a constant shift of F (q). Since, we are interested in relative
free energy differences, the specific value of q0 is of no interest. Furthermore, we can also
partition the total probability for the system to be in the global state, which is 1, into a
probability density p(q)dq for the system to be in a macrostate [q, q + dq] with :

p(q) =
1

h3N

∫
p(rN ,pN )δ

(
Q(rN ,pN )− q

)
drNdpN (5)

=
1

h3NZ

∫
e−βH(rN ,pN )δ

(
Q(rN ,pN )− q

)
drNdpN =

Z(q)

q0Z
(6)

=
1

q0Z
e−βF (q)

From the probability for each macrostate, the corresponding free energy can be determined:

F (q) = −kBT ln p(q)− kBT lnZ = −kBT ln p(q) + F (7)

In practice, an integration over the entire phase space is unfeasible due to the large num-
ber of degrees of freedom. Hence, the partition function Z and corresponding free en-
ergy F cannot be computed. Nevertheless, the relative free energy difference between two
macrostates can be computed by determination of the probability distribution: F (q2) −
F (q1) = −kBT ln [p(q2)/p(q1)]. By means of molecular simulations, the relevant parts of
the phase space are scanned allowing to determine the probability distribution in terms of
the different macrostates. However, these molecular simulations are limited to short time
scales, restricting the scan of the phase space to local minima. This results in a non-ergodic
sampling if major free energy barriers are present. To overcome the limited sampling,
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several enhanced sampling techniques have been proposed: replica exchange, umbrella sam-
pling, variationally enhanced sampling, and thermodynamic integration. Replica exchange
enhances the sampling of all degrees of freedom. The other sampling techniques enhance
the sampling of the phase space in the direction of the partitioning coordinate, which in
literature is often described as the collective variable or the reaction coordinate. Hence,
those techniques will help to overcome free energy barriers in the direction of the collective
variable, which are sampled poorly in classical molecular dynamics (MD) simulations.

B. Umbrella sampling

As stated before, sampling by regular molecular simulations does not sufficiently sample
the regions with low Boltzmann probability, exp(−βH). In order to overcome this issue an
external potential is introduced in the umbrella sampling method to enhance the sampling
in these regions of low probability.1 The external potential depends on the partitioning
coordinate Q. Introducing this external potential in the simulation results in a biased
partition function Zb, free energy Fb, partitioned partition function Zb(q) and free energy
profile Fb(q):

Zb =
1

h3N

∫
e−β(H(rN ,pN )+Ub(Q))drNdpN (8)

Fb = −kBT lnZb (9)

Zb(q) =
1

h3N

∫
e−β(H(rN ,pN )+Ub(Q))δ

(
Q(rN ,pN )− q

)
drNdpN (10)

Fb(q) = −kBT ln [Zb(q)] (11)

= −kBT ln pb(q) + Fb (12)

The free energy of the unbiased system F (q) can be obtained from the free energy of the
biased system Fb(q):

Fb(q) = −kBT ln [Zb(q)] (13)

= −kBT ln[Z(q)e−βUb(q)] (14)

= F (q) + Ub(q) (15)

In practice, a set of external potentials {U ib} is introduced. Here, each external potential
focuses on a different region of the partitioning coordinate, such that the total set spans the
entire region of interest. A popular choice for the external potential is a set of harmonic
functions at uniformly distributed positions qi over the sampling region: U ib(q) = k

2 (q−qi)2.

For every external potential U ib , a different simulation is performed yielding a set of his-
tograms Hi(q). One finds the biased free energy profiles from the histogram by introducing
pib(q)dq = Hi(q)/Mi (with Hi(q) the number of counts in the range [q, q + dq] and Mi the
total simulation points in simulation i) in Equation 12. In order to obtain a histogram for
the unbiased system from the various biased histograms, different schemes can be consid-
ered, e.g. the weighted histogram analysis method (WHAM)2,3 and the dynamic histogram
analysis method (DHAM)4.

1. Weighted histogram analysis method (WHAM)

In principle, the unbiased probability can be written as a function of each of the biased
probabilities:

p(q) = pib(q)e
βUi

b(q)Z
i
b

Z
(16)

In practice, this will not work because, we can not compute Zib directly. In the weighted
histogram analysis method, a weight wi is assigned to each count Hi in the following way.2.
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First off, the unbiased probability is written as a function of the weighted biased probabil-
ities:

p(q) =
∑
i

wip
i
b(q)e

βUi
b(q)Z

i
b

Z
(17)

where the weights add up to 1,
∑
i wi = 1. The expression for the unbiased probability

contains no information about the weights wi nor of the values of the ratios
Zi

b

Z .
Subsequently, an estimate of the weights is found by choosing them such that the variation
of the unbiased probability is minimized. To that end, we assume the biased counts Hi(q)
to be distributed according to a Poisson distribution, such that var(pib) = var(Hi)/M

2
i =

E(Hi)/M
2
i ≈ pib/Mi.

σ2
p = var(p) = 〈p(q)2〉 − 〈p(q)〉2 (18)

=
∑
i

w2
i e

2βUi
b(q)

(
Zib
Z

)2 [
〈pib(q)2〉 − 〈pib(q)〉2

]
(19)

=
∑
i

w2
i e

2βUi
b(q)

(
Zib
Z

)2
pib(q)

Mi
(20)

= p(q)
∑
i

w2
i e
βUbi(q)

(
Zib
Z

)
1

Mi
(21)

with Mi the number of sampling points obtained in simulation i with external potential U ib .
Minimizing this expression for the weight functions yields:

wi =
e−βU

i
b(q)MiZ/Z

i
b∑

i e
−βUi

b(q)MiZ/Zib
(22)

Substituting these values yields a new expression for the unknown probability density p(q),

with only the ratios
Zi

b

Z as unknown values:

p(q) =

∑
iHi(q)∑

i e
−βUi

b(q)MiZ/Zib
(23)

with Hi(q) the counts in bin [q, q + dq] in the simulation with external potential U ib(q).

Subsequently, an estimate for the ratios
Zi

b

Z is found by introducing a self-consistent cycle
based up the definition of the partition function and the previous expression of the unbiased
probability:

Zib =

∫
drNdpNe−β(H+Ui

b(q)) (24)

=

∫
dq Z p(q)e−βU

i
b(q) (25)

=

∫
dqe−βU

i
b(q)

∑
iHi(q)∑

i e
−βUi

b(q)Mi/Zib
(26)

Solving this self-consistent cycle for the unknown partition functions removes the last un-
known values in the expression for the unbiased probability, allowing for the determination
of the free energy profile (within a constant value). More details on the derivation of the
WHAM method can be found in reference 5. In our manuscript, we employ the WHAM
script provided in reference 6.

C. Variationally enhanced sampling

In the previous section about umbrella sampling we derived a relation between the free
energy of a macrostate F (q), a bias potential Ut(q), and the biased free energy Ft(q) (Eq.
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13):

Ft(q) = F (q) + Ut(q) (27)

Furthermore in Equation (7), we derived the relationship between the probability and free
energy of a macrostate. Applying this relation to the biased free energy Ft(q) gives:

Ft(q)− Ft = −kBT ln pt(q) (28)

Ft(q) = −kBT ln pt(q) + cte (29)

Combining the Equations (27) and (29) results in :

Ut(q) = −F (q)− kBT ln pt(q) + cte (30)

This equation describes the relation (up to an irrelevant constant) between the unbiased free
energy F (q) of the system – the information we usually want to derive from a simulation
– the biased probability pt(q), and the bias potential Ut(q). In principle, this equation
would allow us to determine the bias potential Ut(q) associated with an a priori chosen
target probability pt(q). However, that would require F (q), which is the quantity we aim
to calculate. In this enhanced metadynamics method, a functional of a bias potential Ub is
introduced7:

Ω [Ub] =
1

β
ln

∫
e−β[F (q)+Ub(q)]dq∫

e−βF (q)dq
+

∫
pt(q)Ub(q)dq (31)

This functional has three important properties:

• it has a stationary point at Ub(q) = −F (q)− kBT ln pt(q) = Ut(q)

• it is a convex functional of Ub

• the functional value and its derivatives can be calculated from ensemble averages
without the explicit value of the free energy:

Ω [Ub] =
1

β
ln

∫
e−β[F (q)+Ub(q)]dq∫

e−β[F (q)+Ub(q)]eβUb(q)dq
+

∫
pt(q)Ub(q)dq (32)

=
1

β
ln

1〈
eβUb(q)

〉
Ub

+ 〈Ub(q)〉pt (33)

= − 1

β
ln
〈
eβUb(q)

〉
Ub

+ 〈Ub(q)〉pt (34)

〈·〉Ub
represents the ensemble average of the system biased with the potential Ub and can

be calculated from a molecular simulation, while 〈·〉pt represents the average according to

the target probability distribution pt(q) and can be calculated by means of numerical or
analytical integration. The functional has a global minimum at the bias potential Ut that
corresponds to the a priori chosen target probability pt. After finding the minimum of this
functional, one also finds through Equation (30) the free energy F (q) of the unbiased sys-
tem. The strength of this method is the fact that it also provides a well-defined procedure
to construct an efficient bias potential through a variational principle.
A derivation of the functional is discussed in the work of Bilionis et al.8, where the biasing
of the dynamics and the estimation of the free energy profile are unified under the same ob-
jective of minimizing the Kullback-Leibler divergence between appropriately selected distri-
butions on the collective variable space. More in particular, the Kullback-Leibler divergence
between the target and bias probability,

KL(pt|pb) =

∫
dq pt(q) ln

(
pt(q)

pb(q)

)
, (35)
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is minimized, where KL = 0 represent matching distributions.
To optimize the functional, the bias potential is expanded into a finite basis set Gk and the
variational principle is applied by varying the expansion coefficients αk until the stationary
point Ω is found. Due to the convex nature of Ω, we know that this stationary point is also
the global minimum.

Ub(q|α) =
∑
k

αkGk(q) (36)

Ω(α) =
1

β
ln

∫
e−β[F (q)+

∑
k αkGk(q)]dq∫

e−βF (q)dq
+

∫
pt(q)

∑
k

αkGk(q)dq (37)

∂Ω

∂αk
=

1

β

(
−β
∫
Gk(q)e−β[F (q)+

∑
k αkGk(q)]dq∫

e−β[F (q)+
∑

k αkGk(q)]dq

)
+

∫
pt(q)Gk(q)dq (38)

= −〈Gk〉Ub
+ 〈Gk〉pt (39)

The stationary point is found when the gradient is zero, hence when the average of each basis
function with respect to the bias potential Ub on the one hand and the target probability pt
on the other hand is equal. For efficient implementation of the minimizer, the second order
derivatives are also required:

∂2Ω

∂αk∂αl
= β

(
〈GkGl〉Ub

− 〈Gk〉Ub
〈Gl〉Ub

)
(40)

= β Cov [Gk, Gl]Ub
(41)

The expansion coefficients can then be updated according to a stochastic gradient descent-
based algorithm (due to the noise present in the MD simulation, one prefers to use a
more robust update scheme than straightforward conjugate gradient method) with update
parameter µ:

α(n+1) = α(n) − µ
[
∂Ω

∂α

(
ᾱ(n)

)
+
∂2Ω

∂α2

(
ᾱ(n)

)(
α(n) − ᾱ(n)

)]
(42)

Hence, a first order Taylor expansion of the gradient is constructed around the cumulative
moving average ᾱ(n) = 1

n

∑n
i=1 α

(i) instead of evaluating the gradient directly at the in-

stantaneous α(i) to minimize the influence of the statistical fluctuations.
In the original work by Valsson and Parrinello exponential basis functions were proposed7.
In this work, we opt to use Gaussian basis functions instead of the exponential functions.

D. Thermodynamic integration

Suppose the Hamiltonian depends on a partitioning parameter λ: H
(
rN ,pN ;λ

)
9,10. The

free energy of the system and its derivative with respect to this parameter are given by

F (λ) = −kBT ln

[
C

∫
e−βH(rN ,pN ;λ)drNdpN

]
(43)

∂F

∂λ
= −kBT

C
∫
−β ∂H∂λ e

−βHdrNdpN

C
∫
e−βHdrNdpN

(44)

= 〈∂H
∂λ
〉λ (45)

This results in the following expression for the free energy difference of the system between
states λ2 and λ1:

F (λ2)− F (λ1) =

∫ λ2

λ1

∂F

∂λ
dλ (46)

=

∫ λ2

λ1

〈∂H
∂λ
〉λdλ (47)
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The subscript λ indicates that the average has to be computed in the ensemble where
the Hamiltonian has a parameter value of λ. Hence, the ensemble changes during the
integration, so that multiple ensembles have to be sampled for values of λ in between λ1

and λ2.

E. Replica Exchange

During a molecular dynamics simulation, the sampled phase space is limited to local
minima. More in particular, only free energy barriers of the order of kBT can be surmounted.
A valid strategy to extend the sampled phase space to perform a simulation at a higher
temperature. This idea is at the basis of replica exchange11. Rather than performing one
simulation under certain thermodynamic conditions, multiple simulation are run in parallel
at various thermodynamic conditions. Subsequently the sampled phase space is extended
by swapping the configuration sampled under those different thermodynamic conditions.
To circumvent a non-canonical sampling of the phase space this swapping move is governed
by following acceptation rule:

Pacc = min
[
1, exp

(
(βn − βm)(U(ri

N )− U(rj
N ) + (βnPn − βmPm)(Vi − Vj))

)]
(48)

where {riN , Vi} and {rjN , Vj} represent two different configurations stemming from an MD
simulation at two distinct thermodynamic conditions n and m, respectively. In this particu-
lar case, the thermodynamic condition depends on a temperature and pressure. In practice,
a Monte Carlo simulation is performed to govern the swaps of replicas between the different
simulations. Moreover, to suppress the instability due to the swap, velocities are rescaled
according to the temperature ratio. In essence, replica exchange is a hybrid scheme of a
MD/MC simulation in order to extend the sampled region of the phase space under certain
thermodynamic conditions.
Subsequently, a free energy profile can be estimated employing Eq. 7. However, statistical
more optimal methods, e.g. temperature weighted histogram analysis method (TWHAM)12,
the multistate Bennett acceptance ratio (MBAR) method13 or the transition based reweight-
ing analysis method (TRAM)14, employ all available data to construct a free energy profile.
Hence, also data points corresponding to thermodynamic conditions different from the one
of interest are employed for the construction of a free energy profile.

1. Temperature Weighted Histogram Analysis Method (TWHAM)

In this work, we implement and employ the TWHAM method to analyse the data.12 The
proof of WHAM is outlined in section I B for the case of umbrella sampling. TWHAM is
based on the same principle, where a global free energy profile is constructed by reweighting
local histograms of ’biased’ simulations. Rather than various bias potentials, RE simulations
are performed at different temperatures {Ti}i=1,...,N . Those various thermodynamic condi-

tions yield a biasing factor,e−(βi−β0)U , which depends on the energy U of the system and
the reference temperature, characterized by the boltzmann β0. Hence, the unnormalized
probability distribution in terms of both the collective variable and energy can be obtained
by solving following equations self-consistently:

p(q, E) =

∑
iHi(q, E)∑

i e
−(βi−β0)UMi/Zib

(49)

Zib =

∫ ∫
dqdEe−(βi−β0)Up(q, E) (50)

Iterating those equations until self-consistency is reached yields the bivariate distribution in
terms of energy and collective variable. By integrating out the former, a free energy profile
in terms of the collective variable q is achieved.
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II. TIME-LAGGED INDEPENDENT COMPONENT ANALYSIS (TICA)

The time-lagged independent component analysis (tICA) method is employed for the
identification of slow modes in replica exchange data. For the ease of the reader, we sum-
marize the theory of this method in this section. For more details on the theory of tICA,
we refer to references 15,16.

Before going into detail on the method, we introduce some notations. The order param-
eter space has d components q = {qi(x)}i=1,...,d which are a function of the configuration
space x. The independent component space has the same dimensions z = {zi}i=1,...,d. The
linear transformation from the order parameter space towards the independent component
space is denoted with in matrix notation: z = Uq. The time correlation function of two
order parameters is defined as Cq

ij(τ) = 〈qi(t)qj(t+ τ)〉t. Furthermore, a time correlation
function can be constructed in terms of two independent components, which is defined as
Cz

ij = 〈zi(t)zj(t+ τ)〉t.
In tICA, one searches for the linear transformation U which maximizes the time corre-

lation function Cz(τ) at a fixed lag time τ . Furthermore, it is imposed that the covariance
matrix Cz(0) equals the unity matrix. Introducing the Lagrange mulitpliers λ, the La-
grangian (or objective function) can be constructed:

F = Cz(τ)− (Cz(0)− 1)λ (51)

= UCq(τ)UT − (UCq(0)UT − 1)λ (52)

Subsequently, by imposing that the derivative of the Lagrangian F in terms of the linear
transformation U equals zero, one finds a generalized eigenvalue equation of the matrix
time correlation matrix:

CqUT = Cq(0)UTλ (53)

Therein, the Lagrange multipliers equal the eigenvalues of the generalized eigenvalue equa-
tion.

III. COLLECTIVE VARIABLE TRANSFORMATION

A. Explicit relation

1. Theory

In this section, we discuss the transformation of collective variables for free energy profiles.
In essence, changing the collective variable is the transformation of random variable of a
probability distribution. General probability theory learns us that in this case one should
take into account the Jacobian to deal with the changing metrics. An easy-to-understand
example of such a transformation, is where one is interested in the free energy profile as
function of the coordination number Fs(s), given the free energy profile as function of the
distance Fr(r). Transforming a coordination number s to a distance distance r is governed
by a (reversible) switching function r → s = f(r). Using the relation between probability
and free energy, we apply the transformation of random variable:

Fr(r) = −kBT ln

[
exp(−βFs(f(r)))

∣∣∣∣df(r)

dr

∣∣∣∣] (54)

We can extend this transformation to free energy surfaces in multiple dimensions. Suppose
we want to transform a free energy surface Fr as function of one set of collective vari-
ables (s1, s2) to a free energy surface Fs as function of another set of collective variables
(r1, r2). Moreover, a transformation exists, which can be inverted, (r1, r2) → (s1, s2) =
(f1(r1, r2), f2(r1, r2)).

Fr(r1, r2) = −kBT ln [exp(−βFs(f1(r1, r2), f2(r1, r2)))|J |] (55)
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with J the Jacobian:

J =

[
∂f1
∂r1

∂f1
∂r2

∂f2
∂r1

∂f2
∂r2

]
(56)

2. Example

The latter transformation is only applicable for those cases where a well defined function
between the sets of collective variables exists. In the case of a breathing MIL-53(Al), a
well defined transition of variables is from the unit cell parameters (ax, cz) to the unit cell
diagonal D and unit bend cell angle θ:

D = g1(ax, cz) =
√
a2
x + c2z (57)

θ = g2(ax, cz) = arctan

(
cz
ax

)
(58)

So suppose, we have a free energy profile in terms of the cell parameters ax and cz and we
are interested in a free energy profile in terms of the diagonal and angle, we compute the
inverse functions and the Jacobian:

ax = f1(D, θ) = D cos(θ) (59)

cz = f2(D, θ) = D sin(θ) (60)

|J | = D (61)

Hence, we determine the free energy surface in terms of the diagonal and angle using the
transformation in eq. 55. The result of such a transformation is provided in Figure SI1.
Moreover, Figure SI1 emphasizes the construction of one dimensional free energy profiles
by integrating out one of the variables.

B. Implicit relation

1. Theory

More often one is interested in the transformation of a free energy profile for which no
exact function exists. Suppose, we have knowledge of a free energy profile as a function of a
first collective variable q1, however, we are interested in a free energy profile as a function
of another collective variable q2. In this case, there is no unique relation between these
collective variables, we can employ following transformation:

F (q2) = −kBT ln

[
1

C

∫
q1

p(q2|q1)e−βF (q1)dq1

]
(62)

Herein, the conditional probability p(q2|q1) can stem from an unbiased, constrained, or a
biased simulation. Before proving this statement, we introduce some notations. In Eq. 62,
the constant C represents the necessary normalization, for the ease of notation. Since, this
constant represents a mere vertical shift of the free energy profile, we will drop the constant.

We use following shorthand notations for the phase space: the entire phase space Γ, Γqi

the phase space associated with constant qi points and Γq1,q2 for the phase space associated
with constant collective variables q1 and q2 pair. In essence, the free energy in terms of
the second collective variable equals:

F (q2) = −kBT ln

[∫
Γq2

e−βHdΓq2

]
(63)

The integration over all degrees of freedom other than the second collective variable q2,
can be split into two contributions, integrating over the phase space Γq1,q2 and integrating
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0

5

10

15

20

25

30

35

40

F
re

e
E

ne
rg

y
[k

J/
m

ol
]

17 18 19 20 21 22 23 24 25

Diagonal [Å3]
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FIG. SI1: Using a simple transformation, we change collective variable of a free energy
surface (green arrow). Moreover, we construct one dimensional free energy profiles by

integrating out one of the variables (red arrows).

over the first collective variable q1. The former can be associated with the multivariate
probability p(q1,q2), which can be further reduced to p(q2|q1)p(q1). Therefore, we find
the transformation proposed in Eq. 62.

F (q2) = −kBT ln

[∫
q1

dq1

∫
Γq1,q2

e−βHdΓq1,q2

]
(64)

= −kBT ln

[∫
q1

p(q1,q2)dq1

]
(65)

= −kBT ln

[∫
q1

p(q2|q1)p(q1)dq1

]
(66)

= −kBT ln

[∫
q1

p(q2|q1)e−βF (q1)dq1

]
(67)

However, often the construction of a free energy profile is associated with enhanced sampling
simulations. Therefore, both the free energy profile F (q1) and the conditional probability



SI11

p(q2|q1) needs to be determined from those enhanced sampling simulations. We distinguish
between two cases: the enhanced sampling simulation corresponds to constraining in terms
of the first collective variable q1 or it corresponds to biasing in terms of the first collective
variable.
Constrained MD. In the case of a constrained MD simulation, the integration over the

phase space Γq2 in Eq. 63 is again split in two parts, i.e. first integrating over the Γq1,q2

space and subsequently integrating over the q1 coordinate.

F (q2) = −kBT ln

[∫
q1

dq1

∫
Γq1,q2

e−βHdΓq1,q2

]
(68)

= −kBT ln

[∫
q1

dq1

∫
Γq1,q2

e−βHdΓq1,q2∫
Γq1

e−βHdΓq1

∫
Γq1

e−βHdΓq1

]
(69)

Hence, the integration runs over two contributions, the first contribution equals 〈p(q2)〉q1

and the second corresponds to the probability in terms of p(q1). Therefore, we obtain the
relation as proposed in 62:

F (q2) = −kBT ln

[∫
q1

dq1〈p(q2)〉q1e
−βF (q1)

]
(70)

= −kBT ln

[∫
q1

dq1pr(q2|q1)e−βF (q1)

]
(71)

We stress that the conditional probability stems from constrained MD simulation using the
notation pr.
Biased MD. Finally, we show that the proposed relation also holds in the case the

conditional probability stems from a biased MD simulation. If one biases the simulation
along the direction of the first collective variable q1, one finds a biased free energy profile
along this collective variable:

Fb(q1) = −kBT ln

[∫
Γq1

e−β(H+Ub(q1))dΓq1

]
= F (q1) + Ub(q1)) (72)

Herein, the bias potential Ub(q1) is only a function q1 and can thus be extracted from
integration.
For such a biased simulation, we can proof that Eq. 62 holds in the case of such a biased MD
simulation, starting from the definition of the free energy as a function of the the second
collective variable q2 and splitting up the integration.

F (q2) = −kBT ln

[∫
q1

dq1

∫
Γq1,q2

e−βHdΓq1,q2

]
(73)

= −kBT ln

[∫
q1

dq1e
βUb(q1)

∫
Γq1,q2

e−β(H+Ub(q1))dΓq1,q2

]
(74)

= −kBT ln

[∫
q1

dq1e
βUb(q1)

∫
Γq1,q2

e−β(H+Ub(q1))dΓq1,q2∫
Γq1

e−β(H+Ub(q1))dΓq1

∫
Γq1

e−β(H+Ub(q1))dΓq1

]

= −kBT ln

[∫
q1

dq1

∫
Γq1,q2

e−β(H+Ub(q1))dΓq1,q2∫
Γq1

e−β(H+Ub(q1))dΓq1

∫
Γq1

e−βHdΓq1

]
(75)

Hence, we find an integration over two contributions. The last contribution equals the factor
e−βF (q1) (see Eq. 72) and the first contribution equals the conditional probability pb(q2|q1).
The notation pb stresses that this probability stems from biased conditions. A special case
of biasing occurs when the bias potential exactly compensates the underlying free energy
profile, i.e. Ub(q1) = −F (q1). In that case, the denominator of the first contribution
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becomes a constant (i.e. the silently assumed normalization constant). In general, we obtain
the proposed transformation in Eq. 62:

F (q2) = −kBT ln

[∫
q1

pb(q2|q1)e−βF (q1)dq1

]
(76)
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IV. FREE ENERGY SURFACE IN TERMS OF THE BENDING ANGLES

For CAU-13, we showcase the free energy profiles as function of the averaged bending
angle of the CDC linkers in the main text. Since these profiles stem from a projection of
the 2D free energy profiles, we include those profiles in this section.
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FIG. SI2: Free energy surface for CAU-13 at 300 as a function of the bending angles γi
obtained with (a) VES and (b) US.

V. FURTHER ANALYSIS INADEQUATE COLLECTIVE VARIABLES

In the main text, the breathing behavior of CAU-13 is studied by means of enhanced
sampling simulations employing three different collective variables, i.e. the unit cell volume,
bending angles, and dihedral angles. Based on the tICA-RE protocol, the latter are pro-
posed as the slowest varying order parameters and thus the most adequate set of collective
variables. In the main text, no qualitative agreement of an enhanced sampling simulation
in the direction of the inadequate collective variables with the replica exchange profile is
observed, while such an qualitative agreement with for the dihedral angle is present. Hence,
a bad choice of biasing coordinate yields an inaccurate free energy profile for techniques such
as TI, US, and VES. To further convince the reader of this statement, a further analysis is
shown in this section.

To this end, the mean value of volume and average bending angle at each two dimensional
dihedral angle space point is shown in Figure SI3. Based on this contour plot, it is clearly
visible that the unit cell volume does not characterizes the various stable states. The unit
cell volume is not able to distinguish between the two pathways neither allows it to pinpoint
whether a stable state or transition state is reached. A fundamental different observation
is valid for the bending angle. The average bending angle clearly follows the proposed
folding pathways from the cp to lp state, with contour lines orthogonal to the expected
transition path. However, in the region of large dihedral angles (φ1−φ2

2 ≈ 60, φ3−φ4

2 ≈ 60),
no uniform increase in the bending angle is observed. Rather than further increasing, the
bending angle starts to decrease in the lp state. This leads to an inadequate description of
the transformation of the lp state towards the intermediate stable states and thus for the
lp-to-cp transformation. In practice, we observe that biased enhanced sampling schemes
get stuck in the lp state. This issue is shown in Figure SI4 for a VES simulation.
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FIG. SI3: Average volume (left in Å
3
) and bending angle (right in degrees) of CAU-13 in

terms of the two dimensional collective variable proposed by the tICA-RE protocol.
Furthermore, the contours of the free energy surface in terms of the two dimensional

collective variable is shown underneath.
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FIG. SI4: One dimensional projection of the free energy surface of CAU-13 constructed in
terms of the two dimensional bending angles, γ1+γ2
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