Supplemental data

Essential role of interferon-gamma in T cell-associated intestinal inflammation

Yoshihiro Eriguchi^{1*}, Kiminori Nakamura², Yuki Yokoi², Rina Sugimoto², Shuichiro Takahashi³, Daigo Hashimoto³, Takanori Teshima³, Tokiyoshi Ayabe², Michael E. Selsted¹, and André J. Ouellette¹

¹ Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

² Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.

³ Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan.

Supplemental Figure 1. Cytokines in media of enteroid and T cell co-cultures. Conditioned media were collected daily from enteroids in co-culture with CD4⁺ (A, C, E, G, I) or CD8⁺ (B, D, F, H, J) T cells on days 1-4. Media levels of (A, B) TNF- α , (C, D) IFN- γ , (E, F) IL-2, (G, H) IL-6, (I, J) IL-17A were measured by ELISA. Data are representative of 2 independent experiments and are shown as means ± SD (enteroids alone, n = 3 independent wells, open bars; enteroids + non-activated T cells, n = 4, blue bars; enteroids + activated T cells, n = 4, red bars).

Supplemental Figure 2. IFN- γ induces Paneth cell loss and disrupts intestinal epithelial cell homeostasis. Enteroids were exposed to several concentrations of IFN-gamma for 3 days. (A-G) qRT-PCR analyses to quantify lineage-specific marker mRNAs as shown in enteroids exposed to IFN- γ for 1, 2, and 3 days as shown. PCR products amplified by universal mouse Defa primer pairs are shown as *Pancryp*. Data are from two independent experiments and shown as means ± SEM (n = 4 independent wells). Dunnett's multiple comparisons test was used to compare each IFN- γ -treated group with the control group at each time point. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Supplemental Figure 3. IFN-γ receptor 1 expression on both Paneth cells and Lgr5+ ISCs. (**A**, **C**) FACS plots of dissociated single cells from *Lgr5-EGFP-ires-CreERT2* small intestine. (**A**) CD24^{hi}Lgr5-EGFP^{lo} fraction was defined as Paneth cell subpopulation. (**B**) Sorted Paneth cell subpopulation was stained with Zinpyr-1 (green) and identified as Paneth cells confirmed as Zinpyr-1⁺ granular cells by confocal microscopy. Scale bar: 10 μm. (**C**) Lgr5-EGFP^{hi} fraction was defined as the Lgr5⁺ ISC subpopulation. (**D**) Confocal microscopic image of the sorted Lgr5⁺ ISC subpopulation. Scale bar: 10 μm. (**E**) Paneth cell and Lgr5⁺ ISC subpopulations were analyzed via flow cytometry for IFN-γ receptor 1 (Ifngr1) expression. (**F**) Ifngr1 geometric Mean Fluorescence Intensity (MFI) of Paneth cell and Lgr5⁺ ISCs subpopulations. Three independent experiments were combined and presented as means ± SEM. *P* = 0.6837 in two-tailed unpaired *t* test.

Supplemental Figure 4. Ruxolitinib prevents IFN-y induced enteroid damage. (A)

Enteroids exposed to 0 or 2 ng/ml IFN- γ were treated with ruxolitinib as shown. (**B**) Damage scores of enteroids from panel **A**. Data are representative of two independent experiments shown as means ± SEM, n = 100 enteroids per group. (**C**, **D**, **E**, **F**, **G**, and **H**) qRT-PCR analyses to quantify lineage-specific, apoptosis, and IFN- γ target gene (*Socs1*) mRNAs in enteroids exposed to ruxolitinib and IFN- γ for 3 days. Data are representative of two independent experiments shown as means ± SEM, n = 3 independent wells. Dunnett's multiple comparisons test was used to compare each group with the untreated group at each same time point. **P* < 0.05, ***P* < 0.01, ****P* < 0.001. Scale bar: 200 µm.

Supplemental Video 1

IFN-y induces Paneth cell death through a caspase-3/7-dependent pathway. To test whether IFNy exposure induces caspase-3-dependent Paneth cell death in enteroids, we observed caspase-3/7 activity in enteroid crypt domains exposed to 2 ng/ml IFN-y for 10-16 hours. Paneth cells are granulecontaining cells that appear white in the differential interference contrast time-lapse video. Cells containing activated caspase-3/7 have bright green nuclei, which were detected in Paneth cells and extruded into the crypt lumen. Scale bar: 20 μ m.

Supplemental Video 2

Enteroid Paneth cell response to IFN-γ exposure. Supplemental Video 1 shown in the absence of activated caspase-3/7 detection.

Supplemental Table 1. Gene-specific primers for qRT-PCR

	Gene	forward primer (5'-3')	reverse primer (5'-3')			
internal control	Gapdh	AACAGCAACTCCCACTCTTC	CCTGTTGCTGTAGCCGTATT			
	Defa22	CAGCATCAGTGGCCTCAGAG	GGCTGTGCTTGTCTCCTTTGGAG			
Banath call markara	Defa5	AGCAGACCCTTCTTGGCCTC	GCTCAACAATTCTCCAGGTGACCC			
	Pancryp	GGTGATCATCAGACCCCAGCATCAGT	AAGAGACTAAAACTGAGGAGCAGC			
	Lyz1	GTGCCTGTCCTGATCTTTCT	GATTTGCTCCTGTGGTTATTGG			
rapid evoling ISC markers	Lgr5	CGTAGGCAACCCTTCTCTTATC	GCACCATTCAAAGTCAGTGTTC			
	Olfm4	AGTACACAGCTCACATCCTTTC	TCAGGAGCCTCTTCTCATACA			
quiescent ISC marker	Bmi1	GGAACCCTGTAGTGGATTGTAAG	CATTGGGCTTTCGAGCAATATAC			
goblet cell marker	Muc2	CTACCACCATTACCACCACTAC	GTCTCTCGATCACCACCATTT			
tuft cell marker	Dclk1	CTGGTAACGGAACTTCTCTGG	GTACACTCTGGATGGGAAGCA			
enteroendocrine cell marker	Chga	CAGGGACACTATGGAGAAGAGA	CTCTTGGTTAGGCTCTGGAAAG			
enterocyte marker	Alpi	GGTCAAGGCCAACTACAAGA	CACGGTACATCACTGAGAAGAC			
Wnt ligand of Paneth cell origin	Wnt3	GTCCCACTTCCTTTGTGTTAGA	TGGGAAGAAGGGCTTGTTAAG			
Notch ligand of Paneth cell origin	DII4	GGGAACAGAGTTGAGGAGTTAG	CACTCTCTGGAGAACAGTCAAG			
Notch ligand of secretory progenitor origin	DII1	GGAGGACGATGTTCAGATAACC	CGCAGAGATCCATCTTCTTCTC			
Notch receptore	Notch1	GCAACTGTCCTCTGCCATATAC	GTCTTCAGACTCCTTGCATACC			
Noter receptors	Nothc2	AGACTGGCGACTTCACTTTC	TCCACACAAACTCCTCCATTC			
required for intestinal secretory lineages	Atoh1	GGTCTGTGGTGATCGTTGTTA	TACAGAGGAAGGAGAAGGTAGG			
required for Paneth and goblet cell progenitor	Gfi1	GTAAGGAACTGTGCTAGGTATGG	CACAGGCTCTAGCTATGTTGAA			
required for Paneth cells and ISCs	Sox9	CCTGGACTGTATGTGGATGTG	TAAGGTCTGTCCGATGTCTCT			
negative regulator secretory lineages	Hes1	CTATCATGGAGAAGAGGCGAAG	CCGGGAGCTATCTTTCTTAAGTG			
apoptosis marker	Casp3	AGTGGGACTGATGAGGAGAT	GTAACCAGGTGCTGTAGAGTAAG			
IFN-γ target gene	Socs1	TGTAGCAGCTTGTGTCTGG	CCTGGTTTGTGCAAAGATACTG			

Supplemental Table 2. Mean values of Figure 9C-G data

Cohorts	Control	IFN-γ alone	IFN-γ + ruxolitinib	TBI alone	TBI + IFN-γ	TBI + IFN-γ + ruxolitinib
Small intestinal length (cm)	25.9	19.1	23.9	24.9	17.4	22.2
No. of whole crypts / circumference	100.0	83.0	102.0	98.5	64.5	88.0
No. of cryptdin-1 (+) crypts / circumference	95.0	56.2	88.3	94.5	14.0	59.0
No. of Lgr5-GFP (+) crypts / circumference	80.0	39.4	75.4	46.1	1.4	24.3
No. of Olfm4 (+) crypts / circumference	95.5	38.0	91.0	85.0	6.5	66.2

Supplemental Table 3. Adjusted *P* values and comparisons test summary of Figure 9C-G

Tukey's multiple comparisons test (Adjusted P value)	small intestinal length	whole crypts counts	cryptdin-1 (+) crypt counts	Lgr5-GFP (+) crypt counts	Olfm4 (+) crypt counts
Control vs. IFN-y alone	<0.0001	0.1334	0.0006	<0.0001	<0.0001
Control vs. IFN-y + ruxolitinib	0.1837	0.9996	0.9614	0.9969	0.9893
Control vs. TBI alone	0.7937	0.9998	>0.9999	0.0001	0.8631
Control vs. TBI + IFN-γ	<0.0001	0.0001	<0.0001	<0.0001	<0.0001
Control vs. TBI + IFN-y + ruxolitinib	0.0011	0.4677	0.0015	<0.0001	0.0048
IFN-γ alone vs. IFN-γ + ruxolitinib	<0.0001	0.0709	0.0052	<0.0001	<0.0001
IFN-γ alone vs. TBI alone	<0.0001	0.2146	0.0006	0.9183	<0.0001
IFN-γ alone vs. TBI + IFN-γ	0.298	0.0835	0.0002	0.0001	0.0022
IFN-γ alone vs. TBI + IFN-γ + ruxolitinib	0.0049	0.9723	0.9992	0.1436	0.0072
IFN-γ + ruxolitinib vs. TBI alone	0.8381	0.9931	0.969	0.0004	0.9949
IFN-γ + ruxolitinib vs. TBI + IFN-γ	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
IFN-γ + ruxolitinib vs. TBI + IFN-γ + ruxolitinib	0.2901	0.3019	0.0128	<0.0001	0.0225
TBI alone vs. TBI + IFN-γ	<0.0001	0.0002	<0.0001	<0.0001	<0.0001
TBI alone vs. TBI + IFN-γ + ruxolitinib	0.0223	0.6244	0.0017	0.0156	0.075
TBI + IFN-γ vs. TBI + IFN-γ + ruxolitinib	<0.0001	0.0142	<0.0001	0.0915	<0.0001
Tukey's multiple comparisons test (summary)	small intestinal length	whole crypts counts	cryptdin-1 (+) crypt counts	Lgr5-GFP (+) crypt counts	Olfm4 (+) crypt counts
Control vs. IFN-γ alone	****	ns	***	****	****
Control vs. IFN-y + ruxolitinib	ns	ns	ns	ns	ns
Control vs. TBI alone	ns	ns	ns	***	ns
Control vs. TBI + IFN-γ	****	***	****	****	****
Control vs. TBI + IFN-y + ruxolitinib	**	ns	**	****	**
IFN-γ alone vs. IFN-γ + ruxolitinib	****	ns	**	****	****
IFN-γ alone vs. TBI alone	****	ns	***	ns	****
IFN-γ alone vs. TBI + IFN-γ	ns	ns	***	***	**
IFN-γ alone vs. TBI + IFN-γ + ruxolitinib	**	ns	ns	ns	**
IFN-γ + ruxolitinib vs. TBI alone	ns	ns	ns	***	ns
IFN-γ + ruxolitinib vs. TBI + IFN-γ	****	****	****	****	****
IFN-γ + ruxolitinib vs. TBI + IFN-γ + ruxolitinib	ns	ns	*	****	*
TBI alone vs. TBI + IFN-γ	****	***	****	****	****
TBI alone vs. TBI + IFN-γ + ruxolitinib	*	ns	**	*	ns
TBI + IFN-γ vs. TBI + IFN-γ + ruxolitinib	****	*	****	ns	****

Tukey's multiple comparisons test was used to compare the each group of **Figure 9C-G** data. Upper table shows adjusted *P* values. Lower table shows the summary of comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Supplemental Table 4. Adjusted P values and comparisons test summary of Figure 9H,I

Adjusted P Value	Defa22	Lgr5	Olfm4	Bmi1	Muc2	Dclk1	Chga	Alpi	Wnt3	DII4	DII1	Notch1	Notch2	Hes1	Atoh1	Gfi1	Sox9
Control vs. IFN-y alone	0.0005	<0.0001	<0.0001	0.0034	<0.0001	<0.0001	0.8948	<0.0001	0.0156	0.2732	<0.0001	0.7018	0.92	0.0234	<0.0001	0.0002	0.0132
Control vs. IFN-γ + ruxolitinib	0.8632	0.0621	0.8871	0.0083	0.0004	0.0002	0.0808	0.0042	0.7707	0.0234	0.8306	>0.9999	0.7707	0.9973	0.9831	0.9371	0.9707
Control vs. TBI alone	0.0239	0.2837	0.0635	0.9998	0.0664	0.9976	0.9938	0.1035	0.7463	0.8427	0.9754	0.9784	0.2536	0.3335	0.9423	0.9993	0.1229
Control vs. TBI + IFN-γ	0.0005	<0.0001	<0.0001	0.0003	<0.0001	<0.0001	0.0172	<0.0001	0.0714	0.0002	<0.0001	0.0018	<0.0001	0.45	<0.0001	<0.0001	0.0323
Control vs. TBI + IFN-γ + ruxolitinib	0.0038	0.0049	0.0008	0.0103	<0.0001	<0.0001	0.1677	<0.0001	0.804	0.0069	0.0201	0.755	0.9897	0.9772	0.0001	0.1719	0.9923
IFN-γ alone vs. IFN-γ + ruxolitinib	0.0113	0.1555	<0.0001	0.9993	0.0094	0.0437	0.5026	0.0011	0.0004	0.8469	0.0002	0.8271	0.2225	0.0074	<0.0001	<0.0001	0.081
IFN-γ alone vs. TBI alone	<0.0001	0.0284	0.0046	0.0016	<0.0001	<0.0001	0.9954	<0.0001	0.0004	0.0229	<0.0001	0.285	0.0331	<0.0001	<0.0001	<0.0001	<0.0001
IFN-γ alone vs. TBI + IFN-γ	>0.9999	0.7002	0.9998	0.9575	0.7235	0.9299	0.001	>0.9999	0.9867	0.0703	0.9758	<0.0001	<0.0001	0.6631	0.1962	0.7236	0.9991
IFN-γ alone vs. TBI + IFN-γ + ruxolitinib	0.944	0.5578	0.1365	0.9915	0.9742	0.9485	0.7475	0.6734	0.1901	0.6239	0.0452	>0.9999	0.5876	0.0921	0.0665	0.0718	0.002
IFN-γ + ruxolitinib vs. TBI alone	0.0012	0.9694	0.4486	0.0041	0.367	<0.0001	0.2346	0.7684	>0.9999	0.001	0.3957	0.9311	0.9417	0.6007	>0.9999	0.9914	0.0217
IFN-γ + ruxolitinib vs. TBI + IFN-γ	0.0113	0.0052	<0.0001	0.8426	0.0002	0.2926	<0.0001	0.0006	0.0026	0.5346	<0.0001	0.001	<0.0001	0.2227	<0.0001	<0.0001	0.1698
IFN-γ + ruxolitinib vs. TBI + IFN-γ + ruxolitinib	0.07	0.9387	0.0164	>0.9999	0.0418	0.2127	0.997	0.0329	0.1196	0.9992	0.2818	0.8723	0.9714	0.8349	0.0008	0.0207	0.7447
TBI alone vs. TBI + IFN-γ	<0.0001	0.0006	0.0023	0.0002	<0.0001	<0.0001	0.0042	<0.0001	0.0023	<0.0001	<0.0001	0.012	<0.0001	0.0057	<0.0001	<0.0001	<0.0001
TBI alone vs. TBI + IFN-γ + ruxolitinib	<0.0001	0.5265	0.6192	0.005	0.0002	<0.0001	0.4244	0.0009	0.109	0.0002	0.0027	0.3161	0.5381	0.0733	0.0015	0.0843	0.291
TBI + IFN-γ vs. TBI + IFN-γ + ruxolitinib	0.9436	0.0362	0.0782	0.6949	0.2643	>0.9999	<0.0001	0.5548	0.5263	0.7133	0.0068	<0.0001	<0.0001	0.836	0.0001	0.0018	0.0056
				-													
Tukey's multiple comparisons test (summary)	Defa22	Lgr5	Olfm4	Bmi1	Muc2	Dclk1	Chga	Alpi	Wnt3	DII4	DII1	Notch1	Notch2	Hes1	Atoh1	Gfi1	Sox9
Control vs. IFN-y alone	***	****	****	**	****	****	ns	****	*	ns	****	ns	ns	*	****	***	*
Control vs. IFN-y + ruxolitinib	ns	ns	ns	**	***	***	ns	**	ns	*	ns						
Control vs. TBI alone	*	ns															
Control vs. TBI + IFN-γ	***	****	****	***	****	****	*	****	ns	***	****	**	****	ns	****	****	*
Control vs. TBI + IFN-γ + ruxolitinib	**	**	***	*	****	****	ns	****	ns	**	*	ns	ns	ns	***	ns	ns
IFN-γ alone vs. IFN-γ + ruxolitinib	*	ns	****	ns	**	*	ns	**	***	ns	***	ns	ns	**	****	****	ns
IFN-γ alone vs. TBI alone	****	*	**	**	****	****	ns	****	***	*	****	ns	*	****	****	****	****
IFN-γ alone vs. TBI + IFN-γ	ns	ns	ns	ns	ns	ns	**	ns	ns	ns	ns	****	****	ns	ns	ns	ns
IFN-γ alone vs. TBI + IFN-γ + ruxolitinib	ns	*	ns	ns	ns	ns	ns	**									
IFN-γ + ruxolitinib vs. TBI alone	**	ns	ns	**	ns	****	ns	ns	ns	**	ns	ns	ns	ns	ns	ns	*
IFN-γ + ruxolitinib vs. TBI + IFN-γ	*	**	****	ns	***	ns	****	***	**	ns	****	***	****	ns	****	****	ns
IFN-γ + ruxolitinib vs. TBI + IFN-γ + ruxolitinib	ns	ns	*	ns	*	ns	ns	*	ns	ns	ns	ns	ns	ns	***	*	ns
TBI alone vs. TBI + IFN-γ	****	***	**	***	****	****	**	****	**	****	****	*	****	**	****	****	****
TBI alone vs. TBI + IFN-γ + ruxolitinib	****	ns	ns	**	***	****	ns	***	ns	***	**	ns	ns	ns	**	ns	ns
TBI + IFN-γ vs. TBI + IFN-γ + ruxolitinib	ns	*	ns	ns	ns	ns	****	ns	ns	ns	**	****	****	ns	***	**	**

Tukey's multiple comparisons test was used to compare the each group of **Figure 9H,I** data. Upper table shows adjusted *P* values. Lower table shows the summary of comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Supplemental Table 5. Adjusted *P* values and comparisons test summary of Figure 10C

Tukey's multiple comparisons test	Adjusted P Value			
Control vs. IFN-γ alone	<0.0001			
Control vs. IFN-y + ruxolitinib	<0.0001			
Control vs. TBI alone	0.0548			
Control vs. TBI + IFN-γ	<0.0001			
Control vs. TBI + IFN-y + ruxolitinib	<0.0001			
IFN-γ alone vs. IFN-γ + ruxolitinib	<0.0001			
IFN-γ alone vs. TBI alone	<0.0001			
IFN-γ alone vs. TBI + IFN-γ	<0.0001			
IFN-γ alone vs. TBI + IFN-γ + ruxolitinib	<0.0001			
IFN-γ + ruxolitinib vs. TBI alone	<0.0001			
IFN-γ + ruxolitinib vs. TBI + IFN-γ	<0.0001			
IFN-γ + ruxolitinib vs. TBI + IFN-γ + ruxolitinib	<0.0001			
TBI alone vs. TBI + IFN-γ	<0.0001			
TBI alone vs. TBI + IFN-γ + ruxolitinib	<0.0001			
TBI + IFN-γ vs. TBI + IFN-γ + ruxolitinib	<0.0001			

Tukey's multiple comparisons test was used to compare the each group of **Figure 10C** data.