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Introduction	to	Supplementary	Material	
	
The	supplementary	material	is	divided	into	five	different	documents:	the	Main	Supplementary	
Information	(this	document),	the	Supplementary	Task	Components	(TC),	the	Supplementary	Task	
Components	from	the	residuals	after	fitting	the	task	GLM	(TCr),	the	Supplementary	Resting	State	
Components	(RC),	and	the	Supplementary	Component	Data	Table	(a	spreadsheet	named	
tICA_Component_Data_Table.xlsx)	containing	information	that	is	available	as	text	associated	with	each	
component	in	the	TC,	TCr,	and	RC,	documents,	but	which	is	provided	additionally	as	a	separate	
spreadsheet	for	convenient	reference	and	sorting.			
	
This	document	contains	(i)	a	Supplementary	Introduction	on	Independent	Components	Analysis	(ICA;	
Topic	#1);	(ii)	Supplementary	Methods	on	modifications	of	the	sICA+FIX	pipeline	to	clean	multiple	fMRI	
runs	at	the	same	time	(Topic	#2),	a	model	for	variance	partitioning	of	fMRI	data	(Topic	#3),	and	a	
discussion	of	motion	metrics	(Topic	#4);	(iii)	Supplementary	Results	and	Figures,	which	includes	a	
discussion	of	negative	CSF	in	both	neural	and	non-neural	semi-global	and	global	components	(Topic	#5)	
and	numerous	supplementary	figures	mentioned	in	the	Main	Text;	and	(iv)	a	Supplementary	Discussion	
on	data	cleanup	validation	metrics	(Topic	#6)	that	includes	a	historical	perspective	on	the	denoising	
literature	and	some	metrics	historically	used	in	the	literature,	but	that	we	believe	are	challenging	to	
interpret	due	to	lack	of	positive	controls.			
	
The	Supplementary	TC	document	contains	70	pages	(data	at	https://balsa.wustl.edu/m9k0),	one	for	each	
tICA	component,	presented	in	a	standardized	way	similar	to	Main	Text	Figures	2	and	8.		The	
Supplementary	TCr	document	has	58	pages	(data	at	https://balsa.wustl.edu/2qP9),	and	the	
Supplementary	RC	document	has	84	pages	(data	at	https://balsa.wustl.edu/kLpN)	presented	in	the	same	
standardized	format.		For	each	component	a	description	of	the	classification	rationale	is	provided	and	all	
this	information	is	also	available	in	the	Supplementary	Component	Data	Table.			
	
Supplementary	Introduction	
	
1.	Understanding	ICA:	The	Difference	Between	Spatial	and	Temporal	ICA	
	
To	explain	why	temporal	ICA	can	help	with	separating	and	removing	global	noise,	whereas	spatial	ICA	
cannot,	we	briefly	summarize	key	aspects	of	how	ICA	works.		We	first	note	that	unlike	ICA,	Principal	
Components	Analysis	(PCA)	decomposes	the	data	so	that	each	component	is	both	spatially	and	
temporally	orthogonal	to	all	others	(and	gives	the	same	decomposition	regardless	of	the	orientation	of	
the	space-by-time	matrix	when	it	is	presented	to	the	PCA	algorithm—see	the	relationship	between	PCA	
and	Singular	Value	Decomposition,	SVD).		PCA	is	also	generally	a	deterministic	algorithm,	and	one	can	
compute	as	many	non-zero	principal	components	as	the	rank	of	the	dataset.		ICA	relaxes	the	



	 	

orthogonality	constraint	along	one	of	the	axes,	depending	on	how	the	space-by-time	matrix	is	oriented	
when	it	is	presented	to	the	ICA	algorithm.		ICA	algorithms	are	generally	non-deterministic	machine	
learning	algorithms	that	attempt	to	find	a	rotation	(the	mixing	matrix)	that	will	separate	the	data	into	
components	that	are	statistically	independent	(and	hence	also	orthogonal)	along	either	the	space	or	the	
time	axis.	PCA	is	typically	applied	before	ICA	to	segregate	the	data	into	structured	and	unstructured	
subspaces	(see	Section	#3).		ICA	is	then	run	on	the	structured	subspace	so	that	algorithm	convergence	is	
more	likely.	
	
ICA	works	best	if	the	axis	for	which	component	independence	is	being	optimized	i)	has	many	samples	
(voxels	or	timepoints),	and	ii)	has	strongly	structured	(i.e.,	non-Gaussian)	components.		For	both	of	these	
reasons,	spatial	ICA	has	typically	been	used	to	separate	fMRI	data	into	independent	components	
(Beckmann	et	al.,	2005;	Beckmann	and	Smith,	2004).		In	spatial	ICA,	the	algorithm	generates	a	set	of	
spatial	component	maps	that	are	independent	(and	hence	also	orthogonal,	i.e.,	their	pairwise	spatial	
correlation	matrix	is	the	identity	matrix).		The	mixing	matrix	of	spatial	ICA	is	composed	of	a	timeseries	
for	each	component,	and,	importantly,	these	timeseries	are	not	orthogonal	to	each	other,	though	they	are	
non-collinear.		In	fact,	their	correlation	will	increase	with	increasing	global	fluctuations	in	the	original	
fMRI	data.			
	
The	constraint	(in	most	ICA	algorithms)	that	components	must	be	spatially	orthogonal	and	sparse	
effectively	prohibits	spatial	ICA	from	identifying	global	or	semi-global	timeseries	fluctuations	as	one	or	
more	separable	components.		This	is	because	global	components	are	difficult	to	make	spatially	
uncorrelated	with	other	components	or	with	one	another.		Spatial	ICA	does	do	an	excellent	job	of	
separating	structured	noise	that	has	a	specific	temporal	pattern	localized	to	a	specific	location	or	
locations	(e.g.,	from	movement,	from	vascular	pulsation,	or	from	localized	MRI	equipment-related	
artifacts).		Global	structured	noise	cannot	easily	be	separated	from	other	signals	by	spatial	ICA,	and	the	
non-aggressive	cleanup	approach	typically	used	by	ICA-based	denoising	algorithms	ensures	that	shared	
variance	between	signal	and	noise	components	also	will	not	be	removed	(Griffanti	et	al.,	2014;	Salimi-
Khorshidi	et	al.,	2014).		As	a	result,	while	spatial	ICA	has	been	very	successful	at	removing	spatially	
specific	artifacts,	it	does	not	succeed	at	removing	global	artifacts.			
	
As	fMRI	acquisition	methods	have	become	more	advanced,	allowing	greater	temporal	resolution	and	
larger	numbers	of	timepoints	per	subject,	temporal	ICA	has	become	a	feasible	analysis	strategy	(Smith	et	
al.,	2012).		Temporal	ICA	is	performed	by	transposing	the	fMRI	data	matrix	relative	to	the	orientation	
used	in	Spatial	ICA	before	presenting	it	to	the	ICA	algorithm.		This	matrix	flip	results	in	temporally	
independent	timeseries	components	(meaning	that	their	temporal	correlation	matrix,	i.e.,	their	
“Functional	Connectome,”	is	the	identity	matrix).		Spatial	maps	constitute	the	mixing	matrix,	and,	
importantly,	these	spatial	maps	are	not	orthogonal	to	each	other,	though	they	are	non-collinear.		Unlike	
with	spatial	ICA,	one	or	more	global	or	semi-global	spatial	maps	can	be	found	if	they	are	present	in	the	
data.	(However,	note	that	temporal	ICA	would	have	difficulty	separating	signals	that	are	either	constant	
or	nearly	constant	across	time,	even	if	they	were	spatially	localized).		Additionally,	when	cleanup	is	done	
using	temporal	ICA	components,	there	will	be	minimal	shared	temporal	variance	between	the	
components	(in	our	implementation	there	is	zero	shared	variance	across	the	whole	concatenated	group	
dataset,	but	this	is	not	strictly	true	for	each	individual	resting	state	run	or	concatenated	task	session).		
Thus,	temporal	ICA	is	inherently	better	suited	for	cleaning	fMRI	data	of	global	artifacts	than	is	spatial	ICA.			
	
Additionally,	whereas	high	dimensionality	spatial	ICA	behaves	like	a	weighted	parcellation	of	the	brain	
into	functional	regions	or	network	nodes,	temporal	ICA	behaves	more	like	a	weighted	parcellation	of	the	
brain	into	uncorrelated	functional	networks	(Smith	et	al.,	2012).		These	networks	will	tend	to	be	more	
spatially	widespread	than	the	component	maps	of	high	dimensional	spatial	ICA	and	will	contain	all	of	a	
functional	network’s	nodes	in	a	single	component	spatial	map.		Such	nodes	may	of	course	be	shared	by	
more	than	one	network,	but	the	temporal	ICA	component	spatial	maps	of	neural	signal	components	



	 	

represent	temporally	independent	functional	networks.		All	in	all,	temporal	ICA	is	an	as	yet	underutilized	
tool	for	cleaning	and	investigating	functional	MRI	data,	and	thus	this	study	explores	its	properties	in	
detail.			
	
Supplementary	Methods	
	
2.	sICA+FIX	and	a	Modified	Pipeline	for	Task	fMRI	
	
The	original	sICA+FIX	pipeline	begins	by	removing	linear	trends	and	means	from	the	fMRI	timeseries	
(mean	across	time,	not	space	as	in	GSR)	and	from	the	24	movement	regressors	(Friston	et	al.,	1996).		
Then	Melodic’s	implementation	of	FastICA	is	run	(Beckmann	et	al.,	2005;	Beckmann	and	Smith,	2004),	
and	the	FIX	algorithm	automatically	classifies	the	resulting	sICA	components	as	“signal”	or	“noise”	using	
training	weights	previously	established	with	the	FIX	machine	learning	classifier	(Griffanti	et	al.,	2014;	
Salimi-Khorshidi	et	al.,	2014).		Then	the	24	movement	regressors	are	“aggressively”	regressed	out	of	the	
data	and	sICA	component	timeseries	(i.e.,	removing	all	variance	spanning	the	space	of	the	movement	
regressors1)	(Smith	et	al.,	2013).		Finally	the	sICA	components	classified	as	noise	are	“non-aggressively”	
regressed	out	of	the	data	(i.e.,	removing	the	unique	variance	associated	with	the	noise	sICA	components	
while	leaving	in	any	shared	variance	that	is	also	associated	with	the	signal	components	(Smith	et	al.,	
2013).		Importantly,	while	spatial	ICA	can	reasonably	converge	using	short	(e.g.,	5	min)	fMRI	runs	(due	to	
the	large	number	of	voxels	in	the	spatial	dimension),	sICA	nonetheless	still	benefits	from	having	large	
numbers	of	time	points	per	subject	to	enable	finer	and	more	accurate	splitting	of	components,	leading	to	
better	separation	of	signal	and	noise	and	easier	component	classification.		Unpublished	HCP	pilot	
analyses	of	running	sICA+FIX	on	single	task	fMRI	runs	showed	that,	while	it	reduced	some	false	positives,	
it	did	not	produce	a	marked	statistical	sensitivity	benefit	(improvement	in	Z	scores).		Importantly,	the	
shorter	the	task	fMRI	run,	the	more	there	appeared	to	be	a	statistical	sensitivity	penalty	(i.e.,	lower	Z	
scores).		As	a	result,	sICA+FIX	had	not	been	previously	performed	for	the	released	HCP	task	fMRI	data.		In	
the	current	study,	the	objective	was	to	explore	task	fMRI	data	in	parallel	with	resting-state	fMRI	data	
using	temporal	ICA.		Therefore,	despite	the	above	noted	caveats,	it	was	essential	to	process	the	task	fMRI	
runs	similarly	to	the	resting-state	fMRI	data.		Thus,	as	a	part	of	this	study	we	modified	the	sICA+FIX	
pipeline	to	combine	across	task	fMRI	runs	to	enable	robust	sICA+FIX	cleaning	despite	the	individual	runs	
having	substantially	shorter	length	than	the	resting	state	fMRI	runs.			
	
As	before,	linear	trends	and	means	were	removed	from	each	run’s	timeseries	and	24	movement	
regressors.		Then	the	data	and	movement	regressors	were	concatenated	across	runs	within	a	single	task	
fMRI	session	(of	which	there	were	two	in	the	HCP:	Working	Memory	+	Gambling	+	Motor	with	1884	
timepoints	and	Language	+	Social	+	Relational	+	Emotion	with	1996	timepoints).		Melodic	sICA	was	run	
on	the	concatenated	timeseries,	and	the	FIX	classification	and	cleanup	pipelines	were	then	run	on	the	
concatenated	data.		Finally,	the	timeseries	were	split	back	apart,	and	the	corresponding	single	run	mean	
images	were	added	back.		Using	the	same	classifier	weights	as	were	used	for	the	resting	state	fMRI	data,	
we	found	that	the	performance	of	the	FIX	classifier	on	the	concatenated	task	fMRI	data	was	similar	
(99.5%	classification	accuracy	vs	manual	classification,	assessed	on	the	2	concatenated	runs	in	each	of	28	
subjects)	to	what	we	previously	had	found	with	single	resting	state	fMRI	runs	of	1200	timepoints	
(greater	than	99%	classification	accuracy	(Griffanti	et	al.,	2014;	Salimi-Khorshidi	et	al.,	2014)).		Given	

																																																								
1Note	that	this	step	was	implemented	before	temporal	ICA	cleanup	was	developed	and	may	not	be	necessary	or	
desirable	in	the	context	of	combined	sICA	and	tICA	cleanup,	as	aggressively	regressing	out	the	movement	
regressors	from	both	the	data	and	the	sICA	component	timeseries	could	remove	some	neural	signal.		The	main	
advantage	of	including	this	aggressive	movement	parameter	regression	step	in	addition	to	the	non-aggressive	sICA	
noise	component	timeseries	regression	is	to	clean	the	global	timecourse	of	artifactual	movement	related	
fluctuations.		We	will	leave	exploration	the	optimal	use	of	external	movement	regressors	for	future	work.					



	 	

that	both	resting	state	and	task	fMRI	perform	well	with	the	same	classifier	and	training	data,	it	would	be	
reasonable	to	combine	across	resting	state	and	task	fMRI	data	for	future	studies	that	acquire	less	fMRI	
data,	such	as	the	HCP	Lifespan	Development	and	Aging	projects2.			
	
3.	A	Model	of	fMRI	Data	Subspaces	and	Variance	Partitions	
	
The	signal	of	interest	in	an	fMRI	BOLD	timeseries	is	comprised	of	its	temporal	fluctuations	and	the	
relationship	of	these	fluctuations	to	either	a	task	stimulus	or	between	different	brain	regions.		Thus,	we	
can	think	of	the	fMRI	timeseries	in	terms	of	different	kinds	of	additive	fluctuations	(i.e.,	data	subspaces	or	
variances)	some	of	which	are	desirable	(neurally-related	BOLD	signals)	and	some	of	which	are	
undesirable	(i.e.,	fluctuations	induced	by	subject	motion,	subject	physiology,	the	MRI	equipment	and	
environment,	or	random	thermal	noise).		When	we	clean	an	fMRI	timeseries,	the	goal	is	to	remove	
artifactual	fluctuations	selectively	without	modifying	the	BOLD	fluctuations	from	neural	signals.		Thus,	
we	can	characterize	all	forms	of	data	cleanup	in	terms	of	the	variance	that	they	remove,	and	we	do	this	as	
implemented	in	a	development	version	of	the	‘Resting	State	Stats’	Pipeline	in	the	HCP	Pipelines.		The	
temporal	variance	averaged	across	the	grayordinates	and	then	the	449	subjects	of	the	‘spatially	
minimally-preprocessed’	data	prior	to	any	temporal	preprocessing	is	115984	in	resting	state	fMRI	data	
and	92909	in	task	fMRI	data	(the	data	are	grand	mean	scaled	to	10,000	in	the	volume).			
	
We	can	partition	the	variance	of	an	fMRI	timeseries	into	additive	variance	bins	in	a	variety	of	ways,	but	
perhaps	the	most	fundamental	partition	is	between	structured	variance	and	unstructured	variance	
(Equation	#1).		By	structured	variance,	we	mean	variance	of	the	subspace	of	the	data	that	is	structured	in	
space	and/or	time	(i.e.,	non-random	variance).		We	can	define	structured	variance	as	the	PCA	
components	that	have	eigenvalues	above	those	expected	in	the	eigenvalue	distribution	of	a	random	noise	
matrix	with	the	same	spatial	and	temporal	degrees	of	freedom	as	the	data	(i.e.	a	Wishart	distribution)	
(Glasser	et	al.,	2016a;	Glasser	et	al.,	2016b).		Using	this	measure	as	estimated	by	FSL’s	Melodic	(see	
below),	the	structured	variance	averages	51.0%	of	the	total	variance	in	resting	state	fMRI	and	38.0%	of	
the	total	variance	in	task	fMRI	data,	with	the	remaining	49.0%	and	62.0%	of	the	variance	being	
unstructured	(the	variance	ratios	are	computed	from	the	variances	after	averaging	across	space	and	
subjects).		These	values	will	be	sensitive	to	a	variety	of	protocol	factors,	including	field	strength,	head	coil,	
voxel	size,	and	repetition	time,	with	high-resolution	HCP	data	having	a	higher	proportion	of	unstructured	
noise	relative	to	traditional	acquisition	protocols	with	larger	voxels	and	slower	temporal	sampling.		
Operationally,	the	variance	attributable	to	a	specific	data	subspace	can	be	computed	by	taking	the	
variance	of	the	difference	between	the	timeseries	before	and	after	regressing	that	subspace	out	of	the	
data	(e.g.,	the	sICA	component	timeseries	that	make	up	the	structured	signal	in	Equation	1).		In	this	way,	
it	is	possible	to	determine	the	proportion	of	the	total	variance	(or	the	proportion	of	a	subdivision	of	the	
total	variance)	that	any	given	data	subspace	comprises.			
	

Varorig	=	Varstruct	+	Varunstruct	(1)	
	

A	spatial	independent	components	analysis	(sICA,	as	implemented	in	FSL’s	Melodic	software	(Beckmann	
et	al.,	2005;	Beckmann	and	Smith,	2004),	achieves	the	separation	shown	in	Equation	1	by	first	performing	
a	PCA,	ordering	the	resulting	principal	components	by	eigenvalue,	and	finding	the	threshold	at	which	the	
eigenvalues	are	higher	than	what	would	be	expected	in	a	null	eigenvalue	(i.e.	Wishart)	distribution	of	
completely	unstructured	data	with	similar	spatial	and	temporal	autocorrelation.		The	subsequent	ICA	is	
then	performed	on	the	Varstruct	subspace	of	the	fMRI	timeseries	data,	and	the	Varunstruct	subspace	is	
ignored.		The	Varunstruct	subspace	is	largely	Gaussian	or	other	random	noise,	and	there	are	a	variety	of	
ways	to	reduce	the	impact	of	the	Varunstruct	subspace	on	other	analyses	of	grayordinate-wise	resting	state	
																																																								
2Further	work	has	also	shown	benefits	to	variance	normalization	of	unstructured	noise	before	concatenating	
across	runs,	even	within	fMRI	sessions,	so	this	approach	will	be	used	in	the	future.			



and	task	fMRI	data.		For	example,	spatial	or	temporal	smoothing,	Wishart	Filtering,	or	parcellation	will	all	
reduce	unstructured	noise	(Glasser	et	al.,	2016a;	Glasser	et	al.,	2016b).		Here,	we	will	focus	on	further	
partitioning	the	Varstruct	subspace	and	leave	a	detailed	comparison	of	the	methods	for	reducing	or	
removing	the	Varunstruct	subspace	for	future	work.			

The	Varstruct	subspace	contains	both	the	structured	BOLD	signal,	which	we	term	VarBOLD,	and	the	
structured	noise	Varstructnoise.	Many	denoising	approaches	aim	to	separate	the	signal	and	noise	
fluctuations	as	cleanly	as	possible	(Equation	#2).		Indeed,	the	structured	variance	averages	93.0%	noise	
and	7.0%	signal	in	HCP’s	resting	state	fMRI	data	and	89.0%	noise	and	11.1%	signal	in	HCP’s	task	fMRI	
data.		We	note	that	variance	has	a	nonlinear	relationship	to	amplitude	(a	signal	with	twice	the	amplitude	
has	four	times	the	variance),	and	we	use	variance	here	because	of	the	convenient	property	that	the	total	
variance	is	the	sum	of	the	signal	variances	when	adding	orthogonal	signals	(we	note	below	when	this	
orthogonality	assumption	does	not	completely	hold).	

Varstruct	=	VarBOLD	+	Varstructnoise	(2)	

The	sICA+FIX	approach	(Griffanti	et	al.,	2014;	Salimi-Khorshidi	et	al.,	2014)	classifies	sICA	components	
into	VarBOLDICA	and	VarnoiseICA	(as	do	similar	approaches	like	ICA-AROMA,	(Pruim	et	al.,	2015a;	Pruim	et	al.,	
2015b)	and	Multi-Echo	ICA	(Kundu	et	al.,	2012)).		Prior	to	removing	the	noise	components,	sICA+FIX	
runs	two	additional	cleanup	stages:	A	high-pass	filter	that	is	for	all	practical	purposes	a	linear	detrending	
operation	and	an	aggressive	24-movement	parameter	regression	(see	above).		Thus,	the	full	variance	
partition	model	of	sICA+FIX	cleanup	is	shown	in	Equation	#3.		Of	the	original	variance	in	HCP	rest/task	
fMRI	data,	the	detrend	averages	18.9%/9.2%,	the	24	movement	parameters	are	16.4%/5.7%,	the	sICA	
noise	components	are	13.1%/20.6%,	the	sICA	signal	components	are	3.7%/2.8%,	and	the	unstructured	
noise	49.0%/62.0%.	

Varorig	=	Vardetrend	+	Varmvm24	+	VarnoiseICA	+	VarBOLDICA	+	Varunstruct	(3)	

The	cleaned	fMRI	timeseries	produced	by	sICA+FIX	is	shown	by	Equation	#4.		In	the	cleaned	timeseries	
the	BOLD	variance	is	7.0%/4.3%	of	the	remaining	variance.		Because	sICA	does	not	create	temporally	
orthogonal	components,	there	is	the	possibility	for	some	shared	variance	between	VarnoiseICA	and	
VarBOLDICA.		But,	the	sum	of	the	variances	on	the	right	side	of	Equation	#3	is	only	1.0%/0.4%	larger	than	
the	variance	of	the	original	data,	indicating	that	the	magnitude	of	the	shared	variance	is	small	(i.e.,	this	
particular	variance	partitioning	is	a	reasonable	model).	

Varclean	=	VarBOLDICA	+	Varunstruct	(4)	

Although	it	would	be	possible	during	sICA+FIX	cleanup	to	simply	reconstruct	the	data	from	the	estimated	
VarBOLDICA	subspace	and	thereby	eliminate	the	unstructured	variance	(Varunstruct)	entirely,	this	is	not	done	
because	some	weakly	structured	signals	may	not	be	detected	at	the	individual	subject	level,	and	thus	will	
exist	in	the	unstructured	noise	subspace.		These	weakly	structured	signals	may	still	be	detectable	at	the	
group	level,	making	it	important	to	postpone	discarding	this	subspace	until	as	late	in	the	analysis	as	
possible	(see	footnote	#6	in	(Smith	et	al.,	2013)).		Similarly,	the	point	at	which	the	data	eigenspectrum	
intersects	with	the	null	eigenspectrum	is	often	much	higher	than	the	dimensionality	estimated	by	
melodic	using	the	Laplacian	approximation	(Beckmann	et	al.,	2005;	Beckmann	and	Smith,	2004).				

As	mentioned	in	the	Main	Text	and	above,	spatial	ICA	is	mathematically	blind	to	variance	that	is	spatially	
global	or	semi-global	in	nature,	and	indeed	one	does	not	find	global	or	semi-global	components	with	the	
spatial	ICA	algorithm	used	here.		That	means	that	the	spatially	global	structured	variance	must	be	shared	
across	all	of	the	spatial	ICA	components	to	some	extent	(importantly,	all	of	the	timeseries	variance	must	
be	represented	in	at	least	one	of	the	variance	partitions,	as	the	sum	of	the	partitions	approximately	
equals	the	original	timeseries	variance,	subject	to	the	shared	variance	caveat	above).		Global	structured	
variance	that	is	present	in	Vardetrend	and	Varmvm24	is	of	no	concern,	as	that	variance	is	removed	entirely	by	
the	“aggressive”	cleanup	(see	above)	of	those	regressors	during	sICA+FIX	(though	see	note	#1	above	



	 	

about	movement	regressors).		Similarly,	global	structured	variance	that	is	uniquely	present	in	VarnoiseICA	
is	of	no	concern,	as	it	is	removed	by	the	“non-aggressive”	cleanup	of	the	identified	noise	sICA	
components.		Thus,	if	global	structured	artifactual	variance	remains	in	the	data,	it	must	largely	be	
represented	in	the	VarBOLDICA	portion	of	the	data.		Thus,	we	can	rewrite	Equation	#4	as	Equation	#5	
where	VarBOLDICA	contains	both	global,	VarBOLDGlobalNeuralSignal,	and	spatially	specific,	VarBOLDSpatiallySpecificNeuralSignal,	
neurally	related	BOLD	signal	along	with	the	residual	global	noise	VarBOLDGlobalNoise	(assuming	perfect	sICA+FIX	
performance	in	cleaning	spatially	specific	noise).			
	

Varclean	=	VarBOLDGlobalNoise	+	VarBOLDGlobalNeuralSignal	+	VarBOLDSpatiallySpecificNeuralSignal	+	Varunstruct	(5)	
	

The	goal	of	our	temporal	ICA	method	is	to	separate	and	remove	VarBOLDGlobalNoise	selectively,	leaving	us	
with	Equation	#6.			
	

Vartclean	=	VarBOLDGlobalNeuralSignal	+	VarBOLDSpatiallySpecificNeuralSignal	+	Varunstruct	(6)	
	

Of	the	variance	remaining	after	sICA+FIX	cleanup,	tICA	cleanup	removes	6.6%/2.9%	(rest/task)	of	the	
variance,	which	is	VarBOLDGlobalNoise	(which	here	technically	also	includes	any	residual	spatially	specific	noise	
left	behind	by	sICA+FIX).		tICA	cleanup	leaves	0.9%/0.4%	of	the	variance	remaining	after	sICA+FIX	that	is	
attributable	to	global	BOLD	neural	signal,	5.1%/3.3%	to	spatially	specific	BOLD	neural	signal,	and	the	
remaining	87.3%/93.5%	of	the	variance	to	unstructured	noise.			
	
In	addition	to	partitioning	the	timeseries	variance	into	signal	and	noise,	one	can	similarly	regress	out	the	
task	design	to	determine	what	proportion	of	the	total	BOLD	neural	signal	or	the	global	BOLD	neural	
signal	is	task	related	to	the	task	design.		However,	this	will	underestimate	the	task	driven	signal	insofar	as	
the	task	design	does	not	fully	model	the	task	driven	signal	(see	Main	Text	Figure	4	bottom	panel),	so	the	
results	in	the	Main	Text	should	be	considered	a	lower	bound	on	the	amount	of	task	related	signal.			
	
4.	Is	All	that	Moves	Head	Motion?	
	
It	might	seem	relatively	straightforward	to	model	motion	in	the	fMRI	timeseries:	Simply	realign	the	data	
(as	a	standard	preprocessing	step)	and	then	use	the	realignment	parameters	to	calculate	a	measure	of	
motion.		Indeed,	several	QC	measures	of	movement	computed	from	realignment	parameters	have	been	
proposed	(e.g.,	FD	(Power	et	al.,	2012),	absolute	or	relative	RMS	(Jenkinson,	1999))	and	have	proven	very	
useful	with	traditional	fMRI	data	(with	larger	voxels	and	slower	TR).		However,	displacements	in	putative	
head	position	can	arise	from	more	than	just	true	physical	head	motion,	and	the	realignment	algorithm	
will	still	correct	for	this	‘apparent’	motion.		In	particular,	respiration	(i.e.,	air	entering	the	lungs)	causes	
changes	in	the	magnetic	field	inside	the	scanner	bore	that	can	lead	to	shifts	in	the	reconstructed	image	
position	(as	gradients	in	the	magnetic	field	are	used	to	encode	image	position	(Raj	et	al.,	2001)).		When	
the	TR	becomes	half	or	less	than	the	respiration	interval,	the	effect	of	these	field	changes	is	no	longer	
aliased	into	the	data,	and	becomes	visible	as	periodic	oscillations	in	the	realignment	parameters.		This	
effect	was	variably	present	within	the	main	HCP	cohort	as	described	below,	but	importantly	it	means	that	
realignment-parameter-based	measures	such	as	frame	displacement	(FD)	do	not	represent	veridical	
measures	of	movement	across	all	HCP	subjects	because	the	realignment	parameters	include	both	real	
movements	and	a	notable	degree	of	‘phantom’	(i.e.,	false)	movements	related	to	respiration	induced	
magnetic	field	fluctuations.		Notably,	both	(Burgess	et	al.,	2016)	and	(Power,	2017)	have	similarly	
commented	that	FD	estimates	in	HCP	data	do	not	exhibit	the	same	utility	for	flagging	‘motion	corrupted’	
time	points	as	has	been	observed	in	traditional	(slower	TR,	larger	voxel)	data.	
	
Another	approach	to	identifying	movement	is	the	use	of	“DVARS”	(Burgess	et	al.,	2016;	Power	et	al.,	
2012;	Smyser	et	al.,	2010),	which	equals	the	root-mean-square	(RMS)	of	the	frame-to-frame	image	
intensity	derivatives.		DVARS	is	attractive	because	what	we	care	most	about	from	an	image	denoising	
perspective	are	image	intensity	changes,	not	whether	variations	in	the	magnetic	field	are	causing	spatial	
shifts	in	the	image.		Such	image	intensity	changes	often	show	up	as	“spikes”	in	the	original	timeseries	



DVARS	trace.		Conversely,	however,	motion	is	not	the	only	potential	source	of	DVARS	spikes.		These	might	
also	be	caused	by	a	variety	of	MR	physics	etiologies,	including	radio-frequency	interference	and	coil	or	
other	scanner	instabilities.		Additionally,	DVARS	may	be	biased	by	global	or	semi-global	fluctuations	from	
either	physiological	or	neural	sources	as	these	cause	coordinated	intensity	changes	across	the	brain.			

We	are	particularly	interested	in	those	artifacts	that	potentially	influence	the	data	even	after	sICA+FIX	
cleanup.		After	sICA+FIX	cleanup,	some	DVARS	spikes	disappear	entirely,	returning	the	DVARS	to	its	
baseline	level,	whereas	others	become	“dips”	instead	of	spikes	(a	few	spikes	remain	and	we	include	them	
in	our	measure	to	be	more	conservative).		These	dips	occur	because	sICA+FIX	is	removing	substantial	
variance	from	these	timepoints,	above	and	beyond	that	which	would	be	needed	to	return	the	spike	to	the	
baseline	DVARS	value.		Indeed,	this	is	an	inevitable	and	expected	outcome	when	modeling	frame-specific	
artifacts,	as	not	just	the	artifacts,	but	some	or	even	all	of	the	residuals	are	also	removed.		As	an	illustration	
in	the	limit,	a	simplified	regressor	in	a	10-timepoint	timeseries	of	0000100000	(i.e.,	a	“spike	regressor”)	
is	functionally	equivalent	to	scrubbing	timepoint	5	from	the	data	and	replacing	it	with	the	mean	image	of	
the	other	frames,	thus	completely	removing	any	temporal	variance	that	was	previously	specific	to	
timepoint	5.		Indeed,	if	all	of	the	structured	signal	is	removed	from	the	data	(see	Section	#3),	it	becomes	
clear	that	these	DVARS	dips	occur	as	the	result	of	removing	some	of	the	unstructured	(Gaussian)	noise	
from	these	timepoints.		Panels	2	and	3	of	Supplementary	Figure	2	illustrate	the	similarity	between	DVARS	
computed	from	the	unstructured	noise	timeseries	versus	the	sICA+FIX	cleaned	timeseries	(see	Section	#3	
above);	however,	using	the	unstructured	noise	timeseries	has	the	benefit	that	global	structured	
fluctuations	will	have	minimal	influence	on	the	DVARS	measure,	as	the	global	signal	variance	of	the	
unstructured	noise	timeseries	is	only	6%	of	that	of	the	sICA+FIX	cleaned	timeseries	of	the	resting	state	
data.		These	DVARS	dips	reflect	time	segments	in	which	the	sICA+FIX	cleanup	solution	begins	to	approach	
the	scrubbing	solution.		However,	an	important	benefit	of	sICA+FIX	is	that,	unlike	scrubbing,	it	is	not	
constrained	to	make	an	all-or-nothing	binary	decision	based	on	a	chosen	threshold	(of	FD	or	DVARS).		
Rather,	it	behaves	like	a	weighted	(“softer”)	form	of	scrubbing,	while	at	the	same	time	handling	subtler	
artifacts	that	would	be	below	the	scrubbing	threshold.			

Supplementary	Figure	1	illustrates	the	run-wise	relationship	between	the	number	of	DVARS	Dips	and	
mean	FD,	while	the	color	of	each	point	on	the	scatter	plot	reflects	the	within-run	(Pearson)	correlation	
between	FD	and	DVARS	of	the	unstructured	noise	timeseries.	(This	is	an	inverse	correlation	because	FD	
spikes	are	positive	and	DVARS	Dips	are	largely	negative).		Most	runs	have	both	few	DVARS	dips	(e.g.,	
fewer	than	20,	out	of	a	complete	run	length	of	1200	frames)	and	low	mean	FD	(e.g.,	less	than	0.2)	and	
thus	have	little	physical	head	motion	and	are	unaffected	by	phantom	head	motion.		Some	runs	with	more	
significant	physical	head	motion	but	little	phantom	head	motion	show	high	within-run	correlation	
between	DVARS	and	FD	(e.g.,	absolute	value	of	r=0.5	or	greater).		Other	runs	have	minimal	physical	head	
motion	and	substantial	phantom	head	motion	and	low	correlation	between	DVARS	and	FD	at	the	run	
level.		Still	other	runs	fall	in	between,	having	both	real	physical	head	motion	and	phantom	head	motion	
(i.e.,	mean	FD	increased	above	what	would	be	expected	by	the	DVARS	dips).		Conspicuously	absent	are	
runs	with	high	DVARS	Dips	but	very	low	mean	FD	(i.e.,	upper	left	of	figure),	suggesting	that	DVARS	Dips	
are	a	more	specific	measure	of	physical	head	motion	than	is	FD,	but	are	not	any	less	sensitive.			

Supplementary	figures	2	and	3	show	exemplar	runs	from	various	locations	on	the	scatter	plot	that	span	
the	parameter	space.		Visual	inspection	of	the	original	unprocessed	volume	timeseries	of	these	exemplar	
runs	(which	are	available	at	http://db.humanconnectome.org)	indicate	that	DVARS	dips	represent	
locations	where	there	are	obvious	disruptions	of	the	raw	image	signal	intensity	due	to	head	motion,	
whereas	runs	with	high	mean	FD	unaccompanied	by	DVARS	Dips	show	rapidly	fluctuating	small	shifts	in	
image	position	(with	a	periodicity	consistent	with	respiratory	frequency)	without	obvious	disruptions	of	
image	intensity.		Further	investigation	suggests	that	body	weight	or	BMI	may	substantially	influence	the	
amount	of	phantom	head	motion	much	more	than	real	physical	head	motion.		Table	1	shows	that	mean	
FD	is	substantially	more	correlated	with	body	weight	and	BMI	than	are	DVARS	Dips.		For	these	reasons,	



we	use	DVARS	Dips	as	our	primary	index	of	physical	head	motion	in	this	study.		The	time	periods	of	the	
DVARS	Dips	(or	if	there	are	any	residual	positive	DVARS	spikes)	warrant	special	attention	to	ensure	that	
no	residual	structured	noise	remains	in	them.		As	shown	in	the	main	results,	noise	tICA	components	are	
often	stronger	during	DVARS	Dips.		Also	this	analysis	suggests	that	the	correlation	between	phantom	
head	motion	and	weight	or	BMI	may	have	led	to	inflated	estimates	of	the	relationship	between	motion	(as	
measured	by	FD)	and	weight	or	BMI	in	HCP	data	(Hodgson	et	al.,	2016).			

Supplementary Table	1	shows	the	run-wise	Pearson	correlations	of	mean	FD,	DVARS	Dips,	subject	weight	and	
subject	BMI	for	the	resting	state	fMRI	data	of	the	449	subjects	in	this	study.			

	mean	FD	 	DVARS	Dips	 Weight	 	BMI	
mean	FD	 	1.0000	 	0.3480	 	0.4730	 	0.5809	
DVARS	Dips	 	0.3480	 	1.0000	 	0.1204	 	0.0823	
Weight	 	0.4730	 	0.1204	 	1.0000	 	0.8496	
BMI	 	0.5809	 	0.0823	 	0.8496	 	1.0000	



Supplementary Figure	1	shows	the	relationship	between	mean	FD	and	the	number	of	DVARS	Dips	(+/-25	from	
median	DVARS)	across	all	resting	state	runs.		The	color	of	each	dot	indicates	the	within	run	correlation	of	FD	and	
DVARS	of	the	unstructured	noise	timeseries.		Because	FD	is	positive	and	DVARS	Dips	are	generally	negative,	these	
measures	are	inversely	correlated.		The	circled	dots	indicate	runs	whose	FD	and	unstructured	noise	DVARS	are	
shown	below	in	Supplementary Figures	2	and	3.			



Supplementary	Figure	2	shows	FD	and	DVARS	traces	(with	+/-25	DVARS	thresholds)	from	three	resting	state	
fMRI	runs	that	were	circled	with	letters	in	the	above	scatter	plot.		The	first	run	(A)	shows	the	discrepancy	between	
high	mean	FD	(Row	1)	but	only	a	few	DVARS	spikes	(Rows	2	and	3)	in	a	subject	with	“phantom”	motion	(likely	
induced	by	respiration-related	magnetic	field	changes	in	a	subject	with	high	body	mass	index	(BMI=35)—see	
Section	#4	above).		Rows	2	and	3	also	illustrate	that	the	DVARS	of	the	sICA+FIX	cleaned	data	and	the	unstructured	
noise	are	very	similar.		Rows	4	and	5	show	FD	and	DVARS	traces	from	a	subject	(BMI=26)	who	moved	a	lot,	but	in	
which	FD	and	DVARS	agree	relatively	well	(B).		Rows	6	and	7	show	FD	and	DVARS	traces	from	a	subject	(BMI=20)	
who	only	moved	a	little,	and	in	which	FD	and	DVARS	again	have	good	correspondence	(C).			



	 	

Supplementary	Figure	3	shows	FD	and	DVARS	traces	(with	+/-25	DVARS	thresholds)	from	three	more	resting	
state	fMRI	runs	that	were	circled	in	the	above	scatter	plot.		The	first	run	(D)	shows	the	discrepancy	between	high	
mean	FD	(Row	1)	but	only	a	few	DVARS	spikes	(Row	2)	in	a	subject	with	phantom	motion	and	BMI=34.		Rows	3	
and	4	(E)	show	FD	and	DVARS	traces	from	a	subject	(BMI=27)	who	moved	a	lot,	but	also	had	substantial	phantom	
motion.		Rows	5	and	6	(F)	show	FD	and	DVARS	traces	from	a	subject	(BMI=21)	who	moved	a	moderate	amount,	
and	in	which	FD	and	DVARS	again	have	good	correspondence.			

	
	
	



	 	

Supplementary	Results	and	Figures	
	
5.	Anti-correlated	CSF	in	Global	or	Semi-global	Components:	One	initially	puzzling	feature	of	the	global	and	
semi-global	components	like	TC1	is	the	anti-correlation	between	the	ventricles	and	the	grey	matter.		This	
kind	of	anti-correlation	is	also	seen	in	other	global	or	semi-global	components	that	are	categorized	as	
noise	(TC1,	TC8,	TC30,	TC38),	signal	(TC6,	TC15,	TC20),	or	even	are	specifically	task	modulated	(TC2-3,	
TC9,	TC28,	TC33).		We	suspect	this	anti-correlation	is	related	to	changes	in	global	or	semi-global	blood	
flow	in	the	brain	due	either	to	physiological	or	neural	effects.		When	there	is	more	blood	flow	(i.e.,	
increase	in	T2*	image	intensity	in	grey	matter),	the	brain	tissue	expands	(Bright	et	al.,	2014;	Thomas	et	
al.,	2013),	and	this	pushes	CSF	with	bright	signal	on	T2*	images	out	of	the	ventricles	and	into	the	space	
around	the	spinal	cord.		This	would	lead	to	a	decrease	in	ventricular	signal	intensity,	particularly	around	
the	ventricular	margins.		Conversely,	when	blood	flow	drops,	the	CSF	volume	is	restored	and	the	
ventricular	signal	intensity	around	the	margins	would	increase	(Bright	et	al.,	2014;	Thomas	et	al.,	2013)	
at	the	same	time	the	T2*	single	intensity	in	the	grey	matter	was	decreasing.		Additionally,	flowing	CSF	will	
have	a	lower	T2*	image	intensity	because	of	dephasing	in	the	centers	of	CSF	spaces	(Chen	et	al.,	2015;	
Yildiz	et	al.,	2017).		Analogous	correlations	among	T2*	BOLD	intensity,	blood	flow,	and	CSF	volume	have	
previously	been	reported	in	cat	visual	cortex	in	response	to	visual	stimuli	(Jin	and	Kim,	2010).		Thus,	we	
do	not	consider	anti-correlation	in	the	CSF	by	itself	to	be	an	indicator	of	a	component	being	either	noise	
(i.e.,	of	physiological	origin)	or	signal	(i.e.,	of	neural	origin);	rather	it	may	be	a	function	of	the	spatial	
extent	of	the	blood	flow	changes	in	a	given	component.		
	
Various	Supplementary	Figures	mentioned	in	the	Main	Text	follow:	
	
Supplementary	Figure	4	shows	the	order	in	which	the	task	fMRI	design	matrices	were	concatenated	(for	ease	of	
visualization,	the	linear	trends	and	means	were	not	removed).		The	rows	alternate	regressors	and	their	temporal	
derivatives.		For	each	task,	there	are	two	phase	encoding	directions	ordered	RL	first	and	then	LR	(each	black	x-axis	
tick	is	a	task	run	boundary).			

	
	
	
	 	



Supplementary	Figure	5	compares	task	fMRI	tICA	Component	7	and	the	Working	Memory	Face	contrast	(spatial	
correlation=0.97;	other	spatial	correlations	greater	than	0.95	include	the	Working	Memory	Body	contrast	and	the	
Working	Memory	2BK	contrast).		In	all	the	figures	of	this	form,	each	map	is	scaled	with	a	min/max	corresponding	
to	the	2nd/98th	percentiles.		Data	at	https://balsa.wustl.edu/GgpP.	

Supplementary	Figure	6	compares	task	fMRI	tICA	Component	18	and	the	Working	Memory	Place	-	Average	
contrast	(spatial	correlation=0.93).		Data	at	https://balsa.wustl.edu/Lj3p.	

Supplementary	Figure	7	compares	task	fMRI	tICA	Component	16	and	the	Motor	Face	-	Average	contrast	(spatial	
correlation=0.92).		Data	at	https://balsa.wustl.edu/p2Xk.	



	 	

Supplementary	Figure	8	compares	task	fMRI	tICA	Component	19	and	the	average	of	the	Motor	Left	Foot	and	
Right	Foot	contrasts	(spatial	correlation=0.91).		Data	at	https://balsa.wustl.edu/9L6X.			

	
	
Supplementary	Figure	9	compares	task	fMRI	tICA	Component	31	and	the	Motor	Left	Hand	contrast	(spatial	
correlation=0.85).			Data	at	https://balsa.wustl.edu/kL6n.	

	
	
Supplementary	Figure	10	compares	task	fMRI	tICA	Component	6	and	the	Motor	Right	Hand	contrast	(spatial	
correlation=0.53).		Data	at	https://balsa.wustl.edu/0BrX.	

	
	



	 	

Supplementary	Figure	11	compares	task	fMRI	tICA	Component	11	and	the	Language	Story	contrast	(spatial	
correlation=0.89).		Data	at	https://balsa.wustl.edu/2qmm.	

	
	
Supplementary	Figure	12	compares	task	fMRI	tICA	Component	4	and	the	Language	Math-Story	contrast	(spatial	
correlation=0.88).		Data	at	https://balsa.wustl.edu/rxgP.	

	
	
Supplementary	Figure	13	compares	task	fMRI	tICA	Component	2	and	the	average	of	the	Social	task	Random	and	
TOM	contrasts	(spatial	correlation=0.97).			https://balsa.wustl.edu/xnvL.		

	
	



Supplementary	Figure	14	compares	task	fMRI	tICA	Component	3	and	the	average	of	the	Relational	task	
Relational	and	Match	contrasts	(spatial	correlation=0.95).		Data	at	https://balsa.wustl.edu/PNZD.		

Supplementary	Figure	15	compares	task	fMRI	tICA	Component	37	and	the	Emotion	Faces	-	Shapes	contrast	
(spatial	correlation=0.89).		Data	at	https://balsa.wustl.edu/7NX9.		



Supplementary Figure	16	shows	the	same	four	useful	plots	that	were	shown	in	Main	Text	Figure	3	for	the	tICA	
components	generated	from	the	residuals	after	fitting	the	task	design.		In	RVT	correlation	(Panel	A)	the	line	is	at	
0.1.		In	DVARS	dips	normalized	amplitude	difference	(Panel	B)	the	line	is	at	0.25.		In	cross-subject	component	
amplitude	variability	(Panel	C)	the	line	is	at	0.15.		In	single	subject	component	identification	(Panel	D)	the	line	is	
at	0.4.		The	results	are	consistent	with	Main	Text	Figure	3	for	the	components	that	have	similar	spatial	maps	to	
those	found	before	regressing	out	the	task	GLM	and	rerunning	the	weighted	regression	and	temporal	ICA.			



Supplementary	Figure	17	shows	the	correlation	matrix	of	component	amplitudes	reordered	using	hierarchical	
clustering	for	the	task	fMRI	data	(using	FSLNets	with	default	settings).		For	each	component,	there	were	898	(2	
sessions	*	449	subjects)	amplitudes,	and	those	amplitudes	were	correlated	across	tICA	components	to	generate	the	
correlation	matrix	of	component	amplitudes.	The	components	are	numbered	according	to	the	TC	Supplementary	
Figures	and	whether	they	were	classified	as	signal	or	noise	is	indicated.		Components	generally	cluster	according	to	
signal	(purple,	neon	green,	blue)	vs	noise	(red)	classification,	though	there	are	some	exceptions	(i.e.,	the	green	
cluster).		Not	surprisingly,	components	that	are	strongly	task	modulated	and	whose	tasks	occurred	in	a	particular	
task	fMRI	session	cluster	together	and	are	anti-correlated	with	the	components	whose	tasks	occurred	in	the	other	
task	fMRI	session	(purple	vs	blue).		Between	these	are	spontaneous	components	that	are	generally	not	modulated	
by	a	specific	task	(neon	green).		



Supplementary	Figure	18	shows	the	correlation	matrix	of	component	amplitudes	of	the	tfMRI	residual	data	after	
fitting	the	task	design	reordered	using	hierarchical	clustering.		The	components	are	numbered	according	to	the	TCr	
Supplementary	Figures.		Again,	components	generally	cluster	together	according	to	their	signal	(purple	and	neon	
green)	vs	noise	(cyan)	classification	(the	red	cluster	is	an	exception).	The	components	that	remain	task	modulated	
after	regressing	out	the	GLM	cluster	together	(purple),	as	do	the	spontaneous	components	(neon	green).		



	 	

Supplementary	Figure	19	shows	the	betas	of	the	tICA	components	from	a	regression	onto	the	mean	grey	
timecourse	of	the	sICA+FIX	cleaned	task	fMRI	data	(red)	and	the	sICA+FIX	+	tICA	cleaned	task	fMRI	data	(green).		
Global	noise	components	1,	8,	30,	38,	52,	and	62	in	particular	are	reduced	nearly	to	zero	by	the	tICA	cleanup	
(though	not	exactly	zero	because	the	temporal	ICA	is	only	orthogonal	at	the	group	level,	not	for	each	individual	
concatenated	session),	but	a	number	of	non-global	components	that	contribute	to	the	mean	grey	timecourse	are	
also	removed	by	the	tICA	cleanup	(e.g.,	see	several	of	the	components	between	40-50	for	examples).		In	contrast,	
signal	components	that	contribute	strongly	to	the	mean	grey	signal	have	betas	that	are	minimally	affected	(as	
intended)	by	the	tICA	cleanup	of	the	task	data	(see	components	20,	28,	and	33).		One	the	right	side,	the	scatter	plot	
shows	mean	grey	timecourse	variances	before	vs	after	tICA	cleanup	(i.e.,	sICA+FIX	data	vs.	sICA+FIX	+	tICA	data)	of	
each	of	the	concatenated	task	sessions	of	the	449	subjects	(with	hotter	colors	representing	higher	data	point	
density).		Note	that	these	values	are	the	variance	of	the	mean	grey	timecourse	(MGT)	itself;	not	the	variance	
removed	by	mean	grey	timecourse	regression	(MGTR)	as	is	reported	in	the	main	text	(as	“MGTRVar”).		The	mean	
grey	timecourse	variance	is	always	reduced	by	tICA	cleanup,	but	there	is	still	modest	variability	across	subjects.			
Across	almost	all	subjects,	the	mean	grey	timecourse	variance	is	less	than	100	after	tICA	cleanup.		The	plot	is	scaled	
comparably	to	Supplementary	Figure	26.	
	

	
	
	
	 	



Supplementary	Figure	20	shows	the	effect	of	sICA+FIX	cleanup	on	the	Motor	Tongue	contrast.		Top	row	is	the	
standard	analysis	(i.e.,	‘minimal	preprocessing,’	‘MPP’).		Middle	Row	is	after	sICA+FIX.		The	false	positive	“motor”	
deactivation	in	the	orbitofrontal	cortex	is	eliminated	by	sICA+FIX	(red	oval).		This	along	with	several	other	false	
positive	activations	are	also	visible	in	the	volume	slices	and	are	likely	related	to	stimulus-correlated	motion.		The	
difference	between	MPP	and	sICA+FIX	is	shown	in	the	bottom	row.		Data	at	https://balsa.wustl.edu/6m6v.		



Supplementary	Figure	21	shows	the	effect	of	sICA+FIX	cleanup	on	the	Language	Story	contrast.		Top	row	is	the	
standard	analysis	(i.e.,	‘minimal	preprocessing,’	‘MPP’).		Middle	Row	is	after	sICA+FIX.		The	negative	bias	in	the	
contrast	map	is	eliminated	and	consequently	a	positive	activation	in	area	9m	in	the	superior	medial	frontal	cortex	
is	revealed	(red	arrows).		The	volume	slices	also	demonstrate	how	CSF	signal	is	especially	affected	by	the	bias	
(likely	from	incomplete	T1	steady	state	relaxation	in	the	fMRI	data	because	an	insufficient	number	of	volumes	
were	discarded	from	the	beginning	of	the	run,	which	also	is	the	only	baseline	period	in	this	particular	task).		Even	if	
the	grey	matter	were	not	at	all	affected	(it	does	appear	to	be	somewhat	affected),	partial	volume	effects	would	lead	
to	a	bias	within	some	grey	matter	voxels	near	the	surface.		The	bottom	row	shows	the	difference	between	MPP	and	
sICA+FIX.		Data	at	https://balsa.wustl.edu/1lrG.		



	 	

	
Supplementary	Figure	22	top	panel	shows	the	correlation	between	mean	RVT	across	subjects	during	the	task	
fMRI	runs	(blue)	and	the	task	“on”	blocks	from	the	design	matrix	(orange,	note	that	the	blocks	are	convolved	with	
the	hemodynamic	response	function	used	for	the	HCP’s	task	data).		The	correlation	is	r=0.56.		The	bottom	panel	
shows	the	consistency	of	RVT	across	subjects.		Subjects	are	ordered	according	to	the	correlation	of	their	RVT	with	
the	mean	RVT	(highest	at	top).		The	43	subjects	at	the	bottom	were	missing	RVT	data	entirely.		Scale	is	black	=	-1,	
white	=	1.		Thus,	the	tasks	induce	stimulus	correlated	breathing	across	many	subjects,	though	the	magnitude	of	this	
correlation	varies	from	subject	to	subject.			
			

	
	
	 	



	 	

Supplementary	Figure	23	shows	the	effect	of	tICA	cleanup	on	the	Motor	Cue	contrast.		The	Cue	period	is	the	brief	
period	in	which	the	subject	is	instructed	on	which	movement	to	perform	(immediately	prior	to	executing	the	
movement	itself).		Top	row	is	the	sICA+FIX	analysis.		Middle	Row	is	sICA+FIX	+	tICA.		A	positive	bias	caused	by	
stimulus-correlated	respiration	in	the	contrast	map	is	reduced.		The	bottom	row	shows	the	difference	between	
sICA+FIX	and	sICA+FIX	+	tICA.		Data	at	https://balsa.wustl.edu/5461.		
	

	
	
	
	
	 	



	 	

Supplementary	Figure	25	shows	a	comparison	between	tICA	cleanup	and	MGTR	for	the	Motor	Cue	contrast.		The	
top	row	shows	(A)	sICA+FIX,	(B)	sICA+FIX	+	tICA,	and	(C)	the	difference	between	the	two	(also	shown	in	Figure	
23).		A	spatially	global	effect	is	removed	by	the	tICA	cleanup	that	is	very	similar	to	TC1	(spatial	correlation	r=0.93	
with	TC1),	and	has	only	a	modest,	unavoidable	spatial	correlation	with	the	task	activation	map	(r=0.44)	because	it	
is	globally	positive	and	the	task	activation	map	is	semi-global.		The	bottom	row	shows	(D)	sICA+FIX	+	tICA,	(E)	
sICA+FIX	+	MGTR	and	(F)	the	difference	between	the	two.		A	network-specific	effect	is	removed	by	MGTR	that	has	a	
high	spatial	correlation	to	the	task	activation	map	(r=0.85).		The	spatial	correlation	between	A	and	C	is	r=0.57,	
between	B	and	C	is	r=0.44,	between	D	and	F	is	r=0.85,	between	E	and	F	is	r=0.73.		Because	panels	B	and	D	(the	
same)	are	our	best	estimate	of	the	true	neural	activation	in	the	task,	the	most	informative	comparison	of	spatial	
correlations	is	between	r=0.44	for	the	tICA	activation	map	vs.	the	signal	removed	by	tICA	cleanup	(i.e.,	B	vs.	C)	and	
r=0.85	for	the	tICA	activation	map	vs.	the	signal	removed	by	MGTR	(i.e.,	D	vs.	F)	that	is	in	addition	to	what	tICA	
removes.		The	higher	spatial	correlation	of	D	vs	F	indicates	that	the	effect	of	MGTR	above	and	beyond	that	of	tICA	is	
to	remove	task-modulated	neural	signal	from	the	task	fMRI	data.		Data	at	https://balsa.wustl.edu/nk6r.		
	

	
	
	

Supplementary	Figure	24	shows	the	components	that	
have	strongly	different	amplitudes	across	phase	
encoding	directions	in	the	resting	state	fMRI	data.		
Components	6	and	8,	two	of	the	global	components,	
particularly	stand	out	in	this	measure.		Components	7	
and	17	are	two	signal	components	for	the	default	mode	
network	and	component	47	is	a	large	coil	artifact	
present	in	only	one	run	of	one	subject	because	of	an	
sICA+FIX	misclassification	that	has	since	been	resolved	
in	the	released	HCP	data	(as	of	the	‘S1200’	release).	
	
	
	
	
	 	



Supplementary	Figure	26.	Left	panel	shows	the	betas	of	the	tICA	components	from	a	regression	into	the	mean	
grey	timecourse	of	the	sICA+FIX	cleaned	resting	state	fMRI	data	(red)	and	the	sICA+FIX	+	tICA	cleaned	resting	state	
fMRI	data	(green).		Global	noise	components	3,	6,	8,	34,	58,	and	80	in	particular	are	large	contributors	to	the	mean	
grey	timecourse	that	are	reduced	nearly	to	zero	by	tICA	cleanup,	but	a	number	of	the	non-global	components	that	
are	removed	also	contribute	to	the	mean	grey	timecourse.		Components	that	contribute	strongly	to	the	mean	grey	
timecourse,	but	are	neural	signal,	include	1,	5,	and	26,	and,	as	intended,	their	betas	are	not	much	affected	by	the	
tICA	cleanup.		The	right	panel	shows	a	scatter	plot	of	mean	grey	timecourse	variances	before	and	after	tICA	cleanup	
(i.e.,	sICA+FIX	data	vs.	sICA+FIX	+	tICA	data)	across	the	4	resting	state	runs	of	the	449	subjects	(with	hotter	colors	
representing	higher	data	point	densities).		Note	that	these	values	are	the	variance	of	the	mean	grey	timecourse	
(MGT)	itself;	not	the	variance	removed	by	mean	grey	timecourse	regression	(MGTR)	as	is	reported	in	the	main	text	
(as	“MGTRVar”).		The	mean	grey	timecourse	variance	is	always	reduced	by	tICA	cleanup,	but	there	is	still	
substantial	variability	across	subjects	(likely	due	to	drowsiness	and	sleeping).			The	variance	of	the	global	signal	
across	subjects	in	resting	state	fMRI	data	is	much	higher	than	in	task	fMRI	data	(note	that	the	axes	extend	to	2000	
for	rfMRI	but	only	to	1000	for	the	analogous	tfMRI	figure	above).		Still,	for	the	majority	of	subjects	(likely	the	
awake	ones)	the	mean	grey	timecourse	variance	is	less	than	100	after	cleanup,	as	in	task	fMRI.			



Supplementary	Figure	27	shows	the	correlation	matrix	of	component	amplitudes	reordered	using	hierarchical	
clustering	for	the	resting	state	components	(using	FSLNets	with	default	settings).		For	each	component,	there	were	
1796	(4	runs	*	449	subjects)	amplitudes,	and	those	amplitudes	were	correlated	across	tICA	components	and	
clustered.		As	with	the	task	fMRI	data,	signal	(here,	red,	cyan,	and	purple)	and	noise	(green)	components	tend	to	
cluster	together.		Additionally,	signal	components	that	correlate	with	sleep	component	RC1	form	a	group	(purple),	
while	the	signal	components	that	do	not	correlate	with	RC1	form	a	separate	group	(red	and	cyan).		The	run-wise	
variances	of	components	6	and	8	were	summed	and	the	sum	entered	into	the	matrix	for	both	components	(far	left)	
to	ensure	that	the	splitting	across	RL	and	LR	runs	of	those	two	global	physiological	noise	components	did	not	leave	
them	with	less	correlation	to	the	other	components	than	they	would	have	had	if	they	had	not	split.			



Supplementary	Figure	28	shows	the	absolute	value	of	the	spatial	correlations	between	the	grayordinate	spatial	
maps	of	resting	state	fMRI	(rfMRI),	task	fMRI	(tfMRI),	and	the	task	fMRI	residuals	(tfMRIr)	after	fitting	the	task	
model.		Absolute	value	was	used	because	the	sign	of	components	is	arbitrary.		Correlations	are	scaled	from	0	
(black)	to	1	(yellow).		These	data	were	referenced	when	assigning	component	similarities	in	the	TC,	TCr,	and	RC	
supplementary	materials;	however,	the	original	sign	was	preserved	in	these component	maps.		Additionally,	
components	that,	when	combined,	would	be	similar	to	another	map	were	also	assigned	via	manual	inspection.		



Supplementary	Discussion	

6. Interpretability	of	Metrics	for	the	Evaluation	of	fMRI	Data	Cleanup	Methods.

Defining	metrics	for	evaluating	fMRI	data	cleanup	methods	is	challenging	because	of	the	difficulty	in	
assessing	ground	truth	and	because	of	the	complex	correlations	between	subject	behavior	in	the	scanner	
(particularly	movement	and	sleep),	subject	neural	activity,	subject	physiology,	and	the	resulting	
fluctuations	in	fMRI	signal	intensity.		For	this	reason,	we	made	our	initial	evaluations	of	tICA	cleanup	on	
task	fMRI	data,	where	we	had	an	explicit	hypothesis	about	a	portion	of	the	true	fluctuations	of	the	fMRI	
signal	that	are	a	direct	result	of	known	subject	behavior	in	the	scanner	(performing	the	task).		With	
resting	state	fMRI	data,	we	lack	an	explicit	hypothesis	about	the	true	neural	BOLD	fluctuations	that	were	
ongoing	during	the	scan,	and	thus	we	are	limited	to	characterizing	the	effects	of	cleanup	and	assessing	
whether	these	effects	are	generally	desirable	or	undesirable.		In	keeping	with	tenets	of	HCP-Style	
neuroimaging	analyses	(Glasser	et	al.,	2016b),	we	consider	it	preferable	to	use	data-driven	approaches	
that	selectively	remove	structured	(and	unstructured)	noise	while	minimally	affecting	the	properties	of	
the	neural	signal,	even	if	some	of	that	neural	signal	is	attributable	to	non-compliant	subject	behavior	(see	
Main	Text	Introduction	and	Discussion).		As	a	result,	the	publicly	released	HCP	data	avoids	non-selective	
methods	of	data	cleanup	such	as	temporal	filtering,	frame	censoring	(scrubbing),	and	global	signal	
regression	(or	equivalently	regression	of	WM	or	CSF	timeseries	containing	signal	from	locations	within	2	
voxels	(4mm)	of	grey	matter	(Power	et	al.,	2018;	Power	et	al.,	2017)).		Instead,	we	have	aimed	here	to	
develop	a	data	driven	method	for	removing	global	artifacts	shown	to	be	present	in	the	released	HCP	data	
(Burgess	et	al.,	2016;	Power	et	al.,	2017;	Siegel	et	al.,	2017)	as	well	as	any	residual	spatially-specific	
structured	noise.	

Because	we	choose	to	avoid	unselective	cleanup	methods,	it	is	important	to	carefully	consider	which	data	
cleanup	metrics	to	use	and	their	underlying	assumptions.		In	particular,	we	believe	that	metrics	that	
would	be	improved	by	removing	both	artifactual	fluctuations	and	true	neural	signal	are	problematic	to	
interpret,	because	they	have	as	an	implicit	underlying	null	assumption	that	subjects’	true	neural	signal	
will	be	indistinguishable	across	periods	of	resting	quietly	while	awake	with	eyes	open,	versus	periods	of	
eyes	closed,	movement,	or	drowsiness/sleep.		Further,	methods	that	rely	on	subject-wise	correlations	
with	external	measures	make	this	assumption	across	the	entire	scanning	session,	not	just	during	periods	
of	subject	non-compliance.		Prior	studies	have	shown	that	these	null	assumptions	are	invalid	for	eyes-
open	vs.	eyes-closed,	as	there	are	differences	in	winner-take-all	functional	network	parcellations	in	visual	
cortex	between	the	two	states	(Laumann	et	al.,	2015).		In	the	present	study,	we	show	that	these	null	
assumptions	are	incorrect	for	subject	motion	as	well. 	We	find	somatotopically	organized	sensori-motor	
temporal	ICA	components in both task and resting state fMRI data that	are	highly	similar	to	Motor	task	
GLM	maps and	have	higher	amplitude	both	during	a	motor	task	and	spontaneous	movement	as	assessed	
by	DVARS	Dips.		In	addition,	(Zeng	et	al.,	2014)	asserted	that	subjects	who	tend	to	move	may	have	
differing	functional	connectivity	than	those	who	do	not,	even	when	they	are	not	actively	moving.		This	
finding	is	likely	due	to	many	factors	including	subject-wise	correlations	between	behaviors	in	the	
scanner	(e.g.,	movement	and	sleep)	with	distinct	neural	signatures,	neural	effects	of	movement	extending	
beyond	the	immediate	movement	epoch	because	of	the	hemodynamic	response	function,	subject-wise	
correlations	with	physiology	(e.g.,	respiratory	patterns	or	heart	rate	variations),	and	possibly	other	
causes.		Our	study	also	shows	that	the	null	assumption	of	no	neural	difference	between	states	is	incorrect	
for	the	neural	effects	of	drowsiness	and	sleeping	behavior,	as	there	are	strong	tICA components	present	
only	at	rest	that	are	associated	with	sleeping	behavior	as	recorded	by	the	research	assistants	running	the	
MRI	scanner.		This	finding	is	consistent	with	prior	literature	on	differences	between	functional	
connectivity	for	different	levels	of	arousal	(Laumann	et	al.,	2017;	Liu	et	al.,	2017;	Tagliazucchi	and	Laufs,	
2014;	Wong	et	al.,	2016;	Wong	et	al.,	2013;	Yeo	et	al.,	2015).		Metrics	that	assume	neural	equality	
between	periods	of	movement	vs.	non-movement	or	sleep	vs.	awake	will	give	an	advantage	to	methods	
such	as	scrubbing	and	global	signal	



regression	that	reduce	or	remove	the	true	neural	differences	that	exist	between	these	conditions.		Put	
another	way,	such	metrics	are	one-sided	and	do	not	have	a	positive	control	that	will	alert	us	when	
neural	signal	is	being	removed,	which	is	in	contrast	to	the	task	fMRI-based	analysis	that we	used	here	
for	primary	evaluation	of	data	cleanup.			

Thus,	in	this	study	we	did	not	use	six	metrics	that	have	previously	been	used	in	the	literature	for	primary	
evaluation	of	data	cleanup	(Burgess	et	al.,	2016;	Ciric	et	al.,	2017;	Power	et	al.,	2014;	Power	et	al.,	2017;	
Siegel	et	al.,	2017),	however	we	provide	some	of	them	below	for	an historical	perspective	on	prior	literature:		

1) Statistical	tests	of	differences	in	network	matrices	between	high	and	low	motion	groups	or
sleeping	and	not	sleeping	subjects,	as	this	metric	would	be	improved	by	removing	true	neural	
signal	differences	related	to	motion	or	sleep.			

2) “QC-FC”	plots	in	which	different	methods	are	compared	as	to	whether	or	not	they	reduce	or
eliminate	correlations	between	some	QC	measure,	such	as	a	measure	of	subject	motion,	and	
functional	connectivity	(FC),	for	the	same	reason	as	#1	(QC-FC	plots	are	actually	even	more	
limited	because	subject-wise	connectivity	differences	related	to	neural	activity	differences	during	
periods	when	subjects	are	not	moving	will	still	drive	correlations	with	movement).			

3) Distance-dependent	functional	connectivity	correlations	in	which	different	methods	of	cleanup
are	evaluated	based	on	whether	they	eliminate	functional	connectivity	differences	in	a	distance-
dependent	fashion.		If	specific	neural	activity	patterns	are	more	prevalent	during	periods	of	sleep,	
motion,	etc.,	they	may	have	some	distance	dependence	in	their	connectivity	relative	to	awake	and	
motionless	resting	periods,	particularly	if	the	differences	in	activity	are	spatially	widespread.			

4) Global	signal	variance	explained	by	movement	and	physiological	parameters,	which	may
correlate	with	subject	behavior	in	the	scanner	and	consequently	also	correlate	with	the	global	
signal	variance	from	neural	sources.		For	example,	sleeping	may	influence	both	the	amount	of	
movement	and	physiological	parameters	such	as	respiration	and	heart	rate,	together	with	causing	
increased	global	signal	from	semi-global	neural	components—particularly	components	RC1	and	
RC5	(see	Figure	8	in	Main	Text).		Thus,	one	might	remove	all	of	the	artifactual	global	timecourse	
variance	and	still	be	left	with	correlations	between	neural	global	timecourse	variance	and	the	
original	motion	and/or	physiological	parameters.			

5) Correlation	of	resting	state	functional	connectivity	with	behavioral	variables—these
correlations	may	still	be	increased	by	methods	that	reduce	the	neural	effects	of	non-compliant	
behavior	in	the	scanner	by	reducing	overall	cross-subject	variability.		Also,	subject	behavioral	
variables	measured	outside	the	scanner	may	still	correlate	with	subject	behavior	in	the	scanner	
(e.g.,	body	weight	with	motion,	or	sleep	quality	with	likelihood	of	falling	asleep	in	the	scanner)	and	
thus	the	neural	effects	of	this	behavior.		These	issues	make	interpretation	of	the	causal	link	in	such	
behavioral/connectivity	correlations	challenging,	and	make	them	non-optimal	for	use	as	a	metric	
of	data	cleanup	quality.			

6) In	addition,	we	avoided	metrics	that,	by	virtue	of	their	mathematical	definition,	intrinsically
prefer	that	the	mean	grey	timeseries	be	minimized.		Although	we	do	not	know	the	true	amount	of	
neural	global	signal	(though	we	believe	we	are	measuring	it	more	accurately	in	this	paper	than	in	
previous	studies),	it	is	neurobiologically	implausible	that	it	is	zero,	and	indeed	prior	reports	have	
identified	correlations	between	fMRI	global	signal	and	electrophysiology	(Scholvinck	et	al.,	2010;	
Wen	and	Liu,	2016).		Hence	assuming	that	it	will	be	zero	is	unwarranted.		Maximizing	modularity	
(Q)	will	tend	to	prefer	cleanup	methods	that	generate	less	global	or	semi-global	signal	because	the	
resulting	modules	will	be	smaller	and	have	fewer	between-network	connections	relative	to	



within-network	connections.		Q	should	in	general	be	higher	when	global	signal	is	lower,	other	
things	being	equal.		Because	we	do	not	have	a	ground	truth	measure	of	the	amount	of	global	or	
semi-global	neural	signal	in	the	data,	and	because	this	may	also	vary	according	to	subjects’	within-
scanner	behavior,	we	do	not	know	the	optimal	value	of	Q.			

Because	each	of	the	above	measures	will	tend	to	give	an	advantage	to	non-selective	methods	that	
minimize	the	global	signal	or	reduce	real	differences	in	neural	signal	during	different	patterns	of	subject	
behavior,	we	approached	the	problem	differently	(though	it	is	worth	noting	that	we	found	several	other	
widely	used	tools	very	helpful,	such	as	DVARS	for	highlighting	locations	of	strong	signal	deviations	and	
greyplots	for	exploring	the	spatio-temporal	structure	of	the	data).		As	mentioned	above,	we	focused	first	
on	task	fMRI	data,	where	we	have	specific	hypotheses	about	a	portion	of	the	neural	signal	(55%	of	the	
overall	neural	signal	and	26%	of	the	global	neural	signal	after	sICA+FIX	+	tICA	cleanup	was	task-related,	
defined	as	the	variance	removed	by	regressing	out	the	GLM	design	matrix).		In	Main	Text	Section	2.1.3	we	
show	with	the	task	data	that	sICA+FIX	and	tICA	improve	statistical	sensitivity	or	remove	biases	in	the	
statistics	arising	from	stimulus	correlated	motion	or	physiology	(Figure	6,	and	Supplementary	Figures	20,	
21,	22,	23),	while	not	removing	spatial	patterns	strongly	correlated	with	the	task	activation	pattern	
(Supplementary	Figure	25).		In	contrast,	MGTR	harms	task	sensitivity	(Figure	6)	by	removing	spatial	
patterns	strongly	correlated	with	the	task	activation	pattern	(Figure	25),	and	also	drives	all	of	the	means	
of	the	task	fMRI	contrast	maps	to	zero	(Figure	6),	something	that	is	neurobiologically	implausible.			

It	might	be	argued	that	this	is	something	of	a	‘straw	man’	insofar	as	relatively	few	studies	actually	carry	
out	GSR	or	MGTR	on	task	fMRI	data.		However,	we	consider	it	to	be	an	appropriate	comparison,	because	
the	issues	involved	in	using	or	not	using	GSR	are	largely	the	same	for	task	and	resting-state	fMRI.		
Additionally,	in	Main	Text	Sections	2.1.2	and	2.2.2	(Figures	5	and	10)	we	show	that	tICA	cleanup	is	as	
effective	as	MGTR	at	removing	banding	patterns	in	spatio-temporal	“greyplots”	of	both	task	fMRI	and	
resting	state	fMRI	timeseries	–	banding	patterns	that	have	been	convincingly	linked	to	respiration	(Power	
et	al.,	2018;	Power	et	al.,	2017).		Because	we	lack	a	specific	hypothesis	about	the	temporal	pattern	of	
neural	signal	in	resting-state	fMRI	data,	there	is	no	objective	measure	upon	which	to	compute	statistical	
sensitivity	and	to	compare	different	cleanup	approaches.		We	can	nonetheless	characterize	the	effects	of	
differing	cleanup	approaches	on	functional	connectivity	maps.		Like	task	fMRI	data,	however,	a	zero-
mean	resting-state	correlation	matrix	is	highly	improbable	as	a	ground	truth.		Indeed,	in	Main	Text	
Section	2.2.3	(Figures	11	and	13)	we	show	that	while	sICA+FIX	data	without	temporal	ICA	cleanup	has	a	
positive	bias,	MGTR	induces	network-specific	negative	biases	in	the	functional	connectivity	maps,	just	
like	the	network-specific	bias	in	task	fMRI	data	in	Supplementary	Figure	25	above,	a	finding	that	was	
predicted	in	the	literature	(Gotts	et	al.,	2013;	Saad	et	al.,	2012).		Unlike	the	relatively	uniform	cleanup	
from	tICA,	the	MGTR	bias	in	resting	state	fMRI	data	affects	non-cognitive	and	task	positive	regions	much	
more	than	other	cognitive	regions	and	task	negative	regions.		It	is	thus	not	surprising	that	while	both	
approaches	increase	gradient	magnitude,	MGTR	also	shifts	gradients	by	virtue	of	spatially	non-uniform	
removal	of	neural	signal.		Indeed,	it	was	concerns	over	this	shift	in	functional	connectivity	gradients	that	
led	MGTR	not	to	be	used	in	a	prior	neuroanatomical	study	(Glasser	et	al.,	2016a),	and	led	the	authors	to	
explore	the	global	signal	in	considerable	detail.			

That	said,	having	outlined	these	interpretational	issues,	there	is	still	value	generating	some	of	the	metrics	
mentioned	above	(Burgess	et	al.,	2016;	Ciric	et	al.,	2017;	Power	et	al.,	2014;	Power	et	al.,	2017;	Siegel	et	
al.,	2017)	on	our	data	to	provide	a	historical	perspective	on	the	prior	literature	so	long	as	we	do	not	
attempt	to	interpret	them	as	telling	us	that	one	method	or	another	is	“better,”	using	the	problematic	null	
assumptions	discussed	above.		In	the	following	four	figures	we	illustrate	(1)	the	difference	in	correlation	
between	DVARS	Dips	timepoints	and	non-DVARS	Dips	timepoints	and	(2)	QC-FC	correlations	between	
subject-wise	functional	connectivity	(‘FC’)	of	all	timepoints	and	the	number	of	DVARS	Dips	as	the	‘QC’	
measure.		All	correlations	were	computed	using	Pearson	correlations,	although	we	found	highly	similar	
results	when	using	non-parametric	Spearman	correlations	for	the	QC-FC	plots.	These	analyses	were	



performed	on	each	subject’s	concatenated	task	or	resting	state	fMRI	data	after	minimal	preprocessing	
(MPP),	minimal	preprocessing	+	mean	grey	timecourse	regression	(MPP	+	MGTR),	sICA+FIX,	sICA+FIX	+	
MGTR,	and	sICA+FIX	+	tICA.		Each	panel	of	each	figure	is	a	scatterplot	of	correlation	vs	Euclidean	distance	
between	parcels	in	millimeters	(see	combined	figure	legend	below	for	details).		In	addition	we	computed	
the	slopes	of	linear	regression	lines,	the	medians	of	the	distributions,	and	the	widths	(standard	
deviations)	of	the	distributions,	which	are	tabulated	in	the	sixth	panel.		Because	all	four	figures	show	the	
same	trends,	we	will	describe	them	together.			

Importantly,	though	we	use	a	new,	more	robust	QC	metric,	DVARS	Dips	(Supplementary Figures	1,	2	and	
3)	for	fMRI	data	with	high	temporal	and	spatial	resolution,	the	previously	described	dependence	of	
functional	connectivity	on	distance	in	the	presence	of	motion	is	replicated	in	the	MPP	and	MPP	+	MGTR	
results	for	both	task	fMRI	and	resting	state	fMRI.		The	slopes	of	the	regression	lines	are	more	different	
from	zero	for	MGTR-based	approaches	than	non-MGTR-based	approaches,	suggesting	that	MGTR	
universally	increases	the	distance	dependence	of	these	measures	while	sICA+FIX	and	sICA+FIX	+	tICA	
reduce	distance	dependence	(consistent	with	what	was	found	with	GSR	and	ICA-AROMA	in	(Ciric	et	al.,	
2017).		Indeed,	it	appears	that	the	use	of	GSR	together	with	a	lack	of	wide	availability	of	automated	
spatial	ICA-based	cleanup	methods	was	largely	or	completely	responsible	for	the	now	thought	to	be	
erroneous	findings	of	distance	dependent	connectivity	changes	with	age	(Dosenbach	et	al.,	2010;	Fair	et	
al.,	2008;	Fair	et	al.,	2009;	Fair	et	al.,	2007)	that	led	to	an	increased	focus	on	motion	and	other	structured	
noise	in	fMRI	data	(Power	et	al.,	2012;	Satterthwaite	et	al.,	2012;	Van	Dijk	et	al.,	2012).		Further,	from	the	
literature	it	appears	that	the	spatial	ICA-based	cleanup	methods	(Griffanti	et	al.,	2014;	Salimi-Khorshidi	
et	al.,	2014)	(Pruim	et	al.,	2015a;	Pruim	et	al.,	2015b)	(Kundu	et	al.,	2012)	produce	similar	reductions	in	
distance	dependent	connectivity	as	the	“scrubbing”	technique	(Power	et	al.,	2012;	Power	et	al.,	2014)	
though	spatial	ICA-based	cleanup	removes	such	effects	selectively	without	requiring	complete	removal	
of	the	problematic	frames.		Importantly,	a	major	limitation	of	scrubbing	relative	to	ICA-based	cleanup	is	
that	scrubbing	is	a	binary	decision	dependent	on	the	chosen	QC	metric	thresholds,	whereas	ICA	will	
clean	the	entire	timeseries	of	artifacts,	including	timepoints	that	would	be	below	a	scrubbing	threshold	
but	will	undoubtedly	include	some	spatially-specific	structured	noise	from	motion,	physiology,	or	MR	
physics	sources.		ICA-based	cleanup	produces	weighted	“softer”	scrubbing-like	changes	(i.e.,	DVARS	
Dips)	only	when	required	to	clean	the	data.			

In	the	figures	below,	the	two	analysis	variants	involving	MGTR	generally	have	the	median	closest	to	zero	
which	is	not	surprising	given	that	MGTR	centers	the	functional	connectivity	around	zero;	however,	
sICA+FIX	and	sICA+FIX	+	tICA	also	generally	make	the	median	closer	to	zero	(relative	to	MPP	and	
sICA+FIX	respectively).		The	distributions	of	the	data	are	generally	tighter	for	the	non-MGTR	methods	
than	the	MGTR	methods,	indicating	that	MGTR-based	methods	either	have	greater	difference	in	
correlation	at	the	extremes	between	DVARS	Dips	and	non-Dip	timepoints	or	stronger	correlation	with	
number	of	DVARS	Dips	at	the	extremes.		In	agreement	with	the	overall	higher	percentage	of	frames	with	
DVARS	Dips	in	the	task	fMRI	data	(1.7%)	compared	to	the	resting	state	fMRI	data	(1.3%),	the	motion-
related	effects	are	stronger	in	the	task	fMRI	data	than	the	resting	state	fMRI	data	in	the	HCP	subject	
population	of	young	adults	(i.e.,	slopes	farther	from	zero	and	wider	distributions).		It	is	worth	noting	that	
we	do	not	think	the	decrease	in	the	median	QC-FC	value	with	sICA+FIX	+	tICA	(relative	to	sICA+FIX)	is	
actually	related	to	motion	per	se,	but	rather	to	removing	global	physiological	noise	arising	from	
respiration	that	is	subject-wise	correlated	with	motion,	as	motion	itself	is	unlikely	to	produce	greymatter	
specific	global	signal	intensity	changes	of	the	type	removed	by	tICA	(Glasser	et	al.,	2016b).		Indeed,	in	a	
recent	paper	using	multi-echo	acquisitions	(which	allow	separation	of	BOLD	T2*	decay	dependent	and	
non-BOLD S0	initial signal	intensity	changes)	global	respiratory	effects	of	the	kind	removed	by	tICA	
cleanup	were	shown	to	occur	via	the	T2*	decay	dependent	BOLD	mechanism,	in	contrast	to	the	spatially	
specific	effects	of	head	motion	that	are	removed	by	sICA+FIX,	which	were	shown	to	occur	via	non-BOLD 	
S0	inital intensity	fluctuations	(Power	et	al.,	2018).		Similarly,	we	believe	the	greater	offset	between	the	
median	QC-FC	and	zero	in	the	resting	state	data	vs.	the	task	fMRI	data	after	sICA+FIX	+	tICA	is	due	to	



drowsy/sleeping	subjects	in	the	resting	state	fMRI	data	that	do	not	occur	in	the	task	fMRI	data,	a	behavior	
that	may	also	be	subject-wise	correlated	with	motion.		Thus,	any	difference	in	the	offset	from	zero	
(captured	by	the	median	value)	between	sICA+FIX	+	tICA	and	the	MGTR	variants	is	reflective	of	the	global	
neural	signal,	and	we	believe	that	the	sICA+FIX	+	tICA	plots	represent	the	best	available	current	estimate	
of	what	these	metrics	should	look	like	when	global	neural	signal	is	preserved.	

Combined	 legend	 for	 Supplementary Figures	29,	 30,	 31,	 32.	 	 Either	 the	 correlation	 difference	
between	 DVARS	 Dips	 timepoints	 and	 non-Dips	 timepoints	 (Supplementary Figures	 29	 and	 30)	 or	
“QC-FC”	 correlation	between	 subject-wise	 connectivity	of	 all	 timepoints	 and	 the	number	of	DVARS	
Dips	(Supplementary Figures	31	and	32)	is	displayed	for	task	

fMRI	(Supplementary Figures	29	and	31)	or	resting	state	fMRI	(Supplementary 30	and	32).		Correlations	
were	computed	between	all	parcels	in	the	HCP-MMP1.0	multi-modal	cortical	parcellation	(such	that	each	
‘edge’	between	parcels	constitutes	one	data	point).		Five	different	analyses	are	shown	ranging	from	
minimal	preprocessed	data	(MPP),	MPP	+	mean	grey	timecourse	regression	(MPP	+	MGTR),	sICA+FIX,	
sICA+FIX	+	MGTR,	and	sICA+FIX	+	tICA.		In	each	case	the	plot	is	a	scatter	plot	across	all	‘edges’	with	
correlation	difference	or	QC-FC	correlation	on	the	y-axis	and	Euclidean	distance	between	parcels	in	
millimeters	on	the	x-axis.		Distances	were	computed	between	the	average	midthickness	coordinates	of	
each	of	the	HCP’s	multi-modal	parcellation’s	cortical	areas.		Hotter	colors	indicate	a	higher	density	of	data	
points.		A	straight	black	line	marks	0,	a	wiggling	black	line	represents	a	fitted	curve	(specifically,	1mm	
width	mean	correlation	values),	and	a	red	line	marks	the	linear	regression	fit	of	the	entire	point	cloud.		
The	sixth	panel	shows	a	table	containing	the	slope	of	the	regression	line,	the	median	of	the	point	cloud	
along	the	y	axis	(collapsed	across	all	distances),	and	the	width	of	the	point	cloud	(measured	as	the	
standard	deviation	(STDev)	collapsed	across	all	distances).		



Supplementary	Figure	29	shows	the	DVARS	Dips vs non-Dips	difference	in	correlation	for	task	fMRI	data.	



Supplementary	Figure	30	shows	the	DVARS	Dips vs non-Dips	difference	in	correlation	for	resting	state	fMRI	data.	



	 	

Supplementary	Figure	31	shows	the	DVARS	Dips	QC-FC	plots	for	task	fMRI	data.	

	 	



	 	

Supplementary	Figure	32	shows	the	DVARS	Dips	QC-FC	plots	for	resting	state	fMRI	data.	
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