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Supplementary Figure 1 The antibody C6D4 binds to the ligand-binding domain of mouse and human
avp8 and effectively inhibits L-TGF-f binding to av8
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Supplemental Figure 4: Host cells expressing avB8 do not affect wild-type LLC tumor growth
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Supplemental Figure 16: Clone F9 specifically recognizes the integrin B8 subunit and stains human and not

mouse B8 in formalin-fixed paraffin embedded (FFPE) tissue

Supplemental Figure 17: Clone F9 stains 8 in normal human epithelial and neural-derived cell types. F9
immunostaining of archival FFPE tissues
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humanized /TGBS BAC transgenic mice
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Supplemental methods:
Antibody Generation:

C6D4: We engineered a potent antibody that inhibits av8-mediated activation of TGF-p to test the role of
avp8 in cancer growth in preclinical murine models. To accomplish this, we sought to directly target an
epitope shared by mouse and human within the ligand-binding pocket of av38. We engineered a mutant
avp8 integrin lacking the specificity-determining loop (SDL) of the human B8 subunit (a.a.195-222), which
forms a key portion of the ligand-binding pocket and its primary sequence is entirely conserved between
mouse and human (Supplemental Figure 1A). The SDL-deficient mutant was expressed as an av-associated
heterodimer on the cell surface and folded correctly, as antibodies to the f-head domain (clone 68) and Psi
domain (clone F9) both bound efficiently to the SDL-deficient mutant av38 receptor (Supplemental Figure
1B). The SDL was essential for ligand-binding and function since CHO cells expressing the SDL-deficient
B8 mutant did not bind to a TGF-f peptide containing the RGD binding motif or support TGF-f activation
(Supplemental Figure 1C). We used antibody engineering to create a recombinant antibody called C6D4,
which bound to the SDL domain and was positioned to directly interfere with binding of L-TGF-3 to avf38,

as visualized using negative-staining electron microscopy (Supplemental Figure 1D).

Thus, /ITGBS +/- mice maintained on C57B/6 were backcrossed to the LCR outbred strain to
produce live born /TGBS -/- mice. Mice were immunized with recombinant human avf8 protein for the
primary injection and then at 2 weeks and at 3 weeks prior to euthanasia. Approximately 5000 hybridomas
were generated and screened for their ability to bind to avB8 in an enzyme-linked immunosorbent assay
(ELISA). Results were confirmed by cell staining, and function blocking was determined with the use of a
TGF-B bioassay. We identified 24 hybridomas that blocked the ability of the av8 ectodomain to bind to the
latency-associated peptide of TGF-B1 and blocked TGF-3 activation in a TGF-f3 (TMLC) bioassay. Blocking
antibodies were screened against the recombinant form of avp8 engineered to lack the specificity-
determining loop (SDL) of the B8 head domain. Antibodies not binding the SDL-deficient avp8 were then
selected. Of these, 8 hybridomas produced B8-specific antibodies that did not bind to the cells expressing the
B8 SDL-deficient construct. Variable (V) genes from eight hybridomas were isolated, sequenced, and found
to comprise seven Vy and eleven Vi genes that were unique but related. Each V gene was amplified under
mutagenic PCR conditions, and a single-chain variable fragment (scFV) library was constructed by mixing
the amplified cDNA and fragments joined using splice overlap. The library served as an amplification
template using primers designed to complement rabbit IgG Vy or Vi vectors. Eleven distinct Vi genes and
sixteen distinct Vk genes were identified after sequencing >100 random clones and transfected in 165

different combinations into 293 cells. The eight pairs that produced the best binders were determined by cell
3
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staining and FACS analysis, and by measuring binding affinity for CHO cells expressing human av8. These
eight rabbit [gG Vu/Vk pairs were then used to create a new mutagenic scFV yeast display library that was
inserted into a yeast expression library vector. Two high-affinity binders from this selection and affinity
maturation step were identified and designated clone 29 and clone 44. Random mutation mutagenic libraries
were next made from Vi and Vi genes of clones 29 and 44, and from these libraries the higher-affinity
binding clones C6 and D4 were selected and sequenced. Mutations in the complementarity-determining
regions (CDRs) of C6 Vi and D4 Vk were identified, and the two chains were combined to create the

composite antibody C6D4.

C6D4 exclusively recognized avB8 and not avB1, avp3, avpS or avp6 (Supplemental Figure
1E). C6D4 bound specifically to WT but not itgh8 -/- mouse tracheal epithelial cells, demonstrating both its
specificity and recognition of mouse 8 (Supplemental Figure 1F). C6D4 potently inhibited both av[38-
mediated TGF-f activation, compared to an earlier generation allosteric anti-human specific av8 inhibitory
antibody, B5, which maximally inhibits only 60% of avp8-mediated TGF-f activation (Supplemental
Figure 1G) (1). A Kinetic Exclusion Assay (KINEXA ®, Sapidyne Instruments, Inc., Boise, ID) was used to
measure the binding affinity of C6D4 to the ectodomain of av38. C6D4 bound in solution to the ectodomain
of the avp8 integrin with an apparent affinity of 832 pM. Size exclusion chromatography and negative

staining electron microscopy were performed essentially as previously described (1).

F9: We desired to create a robust, specific antibody suitable for staining human 38 in FFPE, to determine the
cell-type distribution of av8 in human tissues. We used antibody engineering create an antibody, clone F9.
Thus, a yeast display scFV library was created using V-genes from hybridoma clones 6B9 and 4F1, a new
clone 6B9.1 was selected from this library. A second yeast display scFV library was created using the V-
genes of 6B9.1 and following random PCR mutagenesis, sixteen affinity-matured variants from this second
library were characterized in terms of binding affinity and two clones C4 and D10 were transformed in to
rabbit IgG format. Both reacted weakly with human 8 in formalin-fixed paraffin-embedded tissue. A third
mutagenic scFV library was then created from the variable regions of C4 and D10 and inserted in a phage
display vector (pHen) and displayed as scFv on the phage surface. The induced phage library was screened
against formalin fixed immobilized avB8. After multiple rounds of selection, fifteen related phage clones
were identified and the final clone F9 was chosen and transformed into IgG format and characterized for

binding to formalin-fixed paraffin embedded tissues.

F9 recognizes a human-specific epitope that specifically stains cells transfected with av38 but not
mock transfected cells and strongly detects a band of the appropriate size on Western blot (Supplemental

Figure 15). F9 stains formalin fixed paraffin embedded (FFPE) tissues of mice humanized for the 8
4



[, I SN VS B \S ]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32

integrin subunit (1) but not wild-type mice (Supplemental Figure 16). The main tissues expressing 8 in the
humanized mice are neural, epithelial (bronchial, pancreatic, bile duct, intestinal crypt, kidney glomerular
podocyte) with no detectable expression in hepatocytes, myocytes, mesenchymal or immune cell
compartments (Supplemental Figure 16). This pattern of distribution is reproduced in normal human tissues

(Supplemental Figure 17).
Immunostaining protocol:

Tumor immunostaining: Formalin-fixed paraffin-embedded (FFPE) tissue sections were deparaffinized, and
antigen retrieval was performed using either 0.4% (2)sin (#P-7125, Sigma) at 37°C for 5 min in a water bath,
a Tris-EDTA buffer, pH 9.0 in a pressure cooker (97°C for 20 min), Reveal Declocker (Biocare Medical,
Pacheco, CA) in a pressure cooker (95°C for 20 min), or a combination of pepsin and Reveal Decloaker
steps, followed by treatment with peroxidase blocker (K4007, Dako). Non-specific binding was blocked with
protein blocking solution (X0909, Dako) and Avidin/Biotin Blocking kit (004303, Thermo Fisher Scientific).
Sections were stained with anti-mouse B8 (clone F9), B5 (anti-human 8 which does not work in FFPE
immunostaining and thus used as isotype control), PD-L1 (E1L3N®) XP® Rabbit mAb (CST#13684) at
1:200 dilution in TBS with 0.05% Tween-20 overnight a 4°C. EIL3N® has been shown to produce
concordant staining with 22C3 the FDA approved companion diagnostic to pembrolizumab , CD31 (NB100-
2284, Novus Biologicals, Littleton, CO), Ki-67 (00375, Bethyl Livingston, TX), CD4 (14976682,
ebioscience, San Diego, CA), CD8 (14080882, ebioscience) , F4/80 (MCA497B, BioRad, Hercules, CA)
followed by detection with Biotin-SP conjugated anti-rat [gG (Jackson ImmunoResearch, West Grove, PA
712-065-153), anti-rabbit HRP (K4003, Dako), or streptavidin-HRP and DAB detection, as appropriate.
TUNEL was performed according to the manufacturer’s instructions (G3250, Promega, Madison, WI). For
F9, the slides were additionally stained with labeled polymerase-HRP anti-mouse (Dako K4003) for 1 hr at
RT, washed, and treated with Tyramide signal amplification solution A at a dilution of 1:100 (Life
Technologies) according to the manufacturer’s instructions. For PD-L1, stained slides were additionally

treated with SignalStain®Boost IHC detection reagent (CST#8114) for 1 hr at RT.

Immunohistochemical scoring: All samples were blinded as to group, isotype, or test antibody. Digital
images of blinded tumor groups were taken (Spot Imaging) and assessed for staining. For human samples,
digital images of isotype or F9/PD-L1 were taken (5/tumor at 200x) and assessed for F9 and PD-L1
positivity using PD-L1 scoring criteria (3). Briefly, tumor cells with membrane staining were counted and
compared to numbers of tumor cells without membrane staining and tumor proportion score (TPS)
determined as stained cells/total tumor cells (4). Ambiguous staining results (i.e. faint membrane staining, or

heavy background) were resolved by comparison to isotype stained slides. For mouse tumors, vascular

5
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density (number of vessels/field) and vessel branch points (branch points/mm?) were determined as described
(5). Tumor infiltrating lymphocytes were assessed from 5 random digital images (Spot Imaging) taken from
the periphery or central area of each tumor. The periphery of the tumor was defined as areas stained with ink
prior to fixation and embedding, and/or showing entrapped adipocytes, skeletal muscle or skin appendages,
and the central area defined as areas at least three contiguous 200X magnification fields from the periphery.

The mean immune cell count was determined from cell number/mm?, as described (6).
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Supplemental Figure 1: The antibody C6D4 binds to the ligand-binding domain of mouse and human
avp8 and effectively inhibits L-TGF-f binding to avB8 A) Ribbon model of the avB8 headpiece
homology-modeled (Chimera v1.12) from the av33 crystal structure [Protein Data Bank (PDB)

31JE](7) showing the av-(green) and B8-(blue) head domains and the 38-specifity determining loop (SDL,
red) forming a portion of the ligand-binding pocket. Depiction rendered in PyMOL (PyMOL v1.8.4.0). The
position and amino acid sequence of mouse and human SDL are shown below in red typeface. B) A mutant
construct lacking the B8-SDL (A-SDL) was heterologously expressed on CHO cells and was recognized by
domain specific antibodies (Clone 68, BI domain; F9, Psi domain) but not the anti-B8 antibody, C6D4, which
was engineered to bind to the B8 SDL. C) The ability of CHO cells expressing A-SDL to adhere to a peptide
derived from the TGF-f3 integrin binding motif (left panel) or to mediate TGF-f activation in a TGF-3
bioassay (right panel) were compared to CHO cells expressing wild-type (WT) 8. Results were normalized
to expression levels as shown in B. D) Class averages of negative-staining electron microscopy of the
purified avp8 ectodomain alone (left panel), with bound L-TGF-f3 (middle panel), or with a fragment of
antigen binding (Fab) of C6D4 (right panel). E) C6D4 binds exclusively to avB8. Soluble avp1, avp3,
avps, avp6, or avp8 were immobilized on ELISA plates (1 pg/ml) and C6D4 binding assessed by sandwich
ELISA. Shown in binding relative to BSA coated wells. F) C6D4 binds to 8 expressed by mouse tracheal
epithelial cells derived from WT (itgh8+/+, n=6) but not from itgb8 -/- mice (n=3). G) C6D4 blocks av[38-
mediated TGF-p activation by CHO cells stably transfected with a 38 expression construct. C6D4-mediated
inhibition TGF-B activation was compared to an allosteric anti-human B8 antibody, BS5, which maximally
blocks 60% of TGF-f activation (1). All Experiments were repeated a minimum of three times. *p<0.05,
**p<0.01, ***p<0.001, ***p<0.0001 as determined by unpaired Student’s t-test.



O 00NN Ui A WIN —

A B +IFN=y C D +IFN=y E
" Isotype Isotype e /Isotype ; _Isotype n /Isotype
= c6D4 C6D4 IR S __CeD4 = /(6D4
MC38 S =i / | S S -
O .! O = o .
(W (W) (W)
PD-L1 PD-L2
F G +IFN-y H | +IFN-y J
1 Isotype Isotype Isotype Isotype Isotype
. it [Z I e =
E/i(é\élgo *2 c6D4 c6D4 = écem o | cops *g c6D4
S . / | 3 | 3.
2" ! 0 -| 0
S~ O 9 -
—_—
PD-L1 PD-L2 LAP-B1
K L +rny M N +IFN-y o
: | Isotype ] Isotype { Isotype
wn - e wv ssed 4]
= Jjetpe c6D4 - é c6D4 ; / s
mockLLC 5" ||fceos / 3~ 37
S O - S .
PD-L1
P ) Q +IFN-y T _
- Isotype Isotype ﬂ ﬂ
B Cc6D4 i C6D4 c c
B8LLC 5 \ / 5 - 5
o QO = o
o (s O
PD-L1 PD-L2
U Vo e w X N Y
Y Y
ﬂ Isotype Isotype ﬂ Isotype |sotype ﬂ /Isotype
Ex-vivo g C6l’34 g / C6D4 C6D4 g o[ ceos
B8-LLC 3~ N 74 3"

PD-L1 PD-L2

Supplemental Figure 2: Expression of PD-L1, PD-L2 and L-TGF- on MC38 and LLC cells MC38
Cells (A-E) or MC38 cells isolated from tumors (F-J), Mock transfected (K-O), $8 LLC (P-T) or 38 LLC
cells isolated from tumors (U-Y) were stained for A, B, F, G, K, L, P, Q, U, V) PD-L1; C, D, H, I, M, N, R,
S, W, X)PD-L2 ;and E, J, O, T, Y) LAP of L-TGF-B1 24 hr after treatment with isotype control (light
grey) or C6D4 (dark grey). B, D, G, I, L, N, Q, S, V, X) MC38 or B8 LLC were treated for 24 hr with
recombinant [FNy ( 10 ng/ml)and isotype control (light grey) or C6D4 (dark grey) and stained for PD-L1.
Histogram overlays are shown with control antibody stained cells indicated by unfilled histograms. Shown
are representative histograms from at least 2 experiments (n > 8 mice/group).
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Supplemental Figure 3: TRAMP-C2 tumor growth is significantly inhibited by C6D4 A) The murine
prostatic adenocarcinoma line TRAMP-C2 expresses avp8. TRAMP-C2 cells were stained for avB8 using C6D4
(filled). Staining was compared to isotype stained TRAMP-C2 cells (open). Shown is a representative experiment of 3.
B) The murine prostatic adenocarcinoma line TRAMP-C2 does not express cell surface latent TGF-f1. TRAMP-C2
cells were stained for latent TGF-1 using an antibody to the latency associated peptide (LAP) of TGF-fB1 (filled).
Staining was compared to isotype stained TRAMP-C2 cells (open). The histograms are superimposable indicating no
detectable latent TGF-B1 expression. Shown is a representative experiment of 3. C) TRAMP-C2 cells in culture
activate TGF-. TRAMP-C2 cells were co-cultured with TMLC TGF-3 reporter cells in the presence of isotype (open
squares), C6D4 (filled squares) or 1D11(filled circles). All antibodies used at 10 pg/ml. Activation is shown in
arbitrary light units. Shown is an average of three experiments repeated in triplicate. D-F) TRAMP-C2 cells (10 x 10°)
were injected into the flank of male C57BL/6 mice and after 17-19 days mice with palpable tumors were treated with
D) C6D4 or E) isotype control (SV5) on days 0, 5 and 9 (7 mg/kg 1.P.) as indicated by arrows. Shown are
representative spider plots (D-E) of a representative of two experiments. In F) shown are tumor volume averages over

time from two pooled experiments (n=8/group). Arrows indicate antibody injection days. **p<0.01 by two-sided
unpaired Student’s t-test
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Supplemental Figure 4: Host cells expressing avp8 do not affect wild-type LL.C tumor growth Wild-
type LLC cells were injected subcutaneously into female C57BL/6 mice and mice were injected with isotype control
antibody or C6D4 (7 mg/kg 1.P.) on days 0 and 7 (arrows). A) Average tumor volumes from a representative
experiment of 4 (open squares, isotype, n=9; filled squares, C6D4, n=11). B) Individual tumor weights (day 14)
depicted in scatterplot from 4 independent experiments from mice treated as shown in A. Open squares, isotype, n=40;
filled squares, C6D4, n=40).
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Supplemental Figure 5: avB8 expression increases LL.C tumor vessel growth, tumor cell survival and
immune exclusion A) 38 LLC tumors or B) mock- LLC tumors were stained with anti-CD31 and C) vascular
density and D) vessel branching assessed morphometrically. B8 LLC tumors from mice treated with isotype (E) or
C6D4 (F) were stained with anti-CD31 and G) vascular density and H) vessel branching assessed morphometrically.
B8 LLC tumors from mice treated with isotype (I) or C6D4 (J) were stained by TUNEL (left panels) or Ki-67 (right
panels) and assessed for apoptosis (K) or Ki-67 proliferation index (L). B8 LLC tumors from mice treated with isotype
(M, P, S) or C6D4 (N, Q, T) were stained with anti-CD4 (M, N), anti-CD8 (P, O), or anti-F4/80 to stain macrophages
(S, T). Representative positively stained immune cells are indicated by arrows. Quantification at tumor edge or center
from individual mice for CD4 (O), CD8 (R) or F4/80 (U) are shown. n >8. Significance was determined by unpaired
Student’s t-test *p<0.05, **p<0.01, *p<0.001, ****p<0.0001
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Supplemental Figure 6: Vessel growth is independent of tumor size Tumor volumes of MC38 (A-C) and
B8 LLC tumors (D-F) harvested from mice in a representative experiment shown in Figure 3 and Supplemental
Figure 5 were compared with A, D) tumor weight, B, E) vessel density and C, F) branch points/mm?”. Above each
graph are the Pearson r and corresponding p value. Only tumor weight is significantly correlated with volume.
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Supplemental Figure 7: Apoptosis, proliferation and immune cell localization are not correlated with

tumor size Tumor volumes of MC38 (A, B, E, F, I, J, M, N) and 8 LLC ( C, D, G, H, K, L, O, P) tumors

from mice in a representative experiment shown in Figure 3 were assessed for correlation with A, C)
TUNEL positive cells’/HPF, B, D) Ki-67 positive cells’HPF, E, G) CD4+ cells at the tumor edge or F, H)
center. I, K) CD8+ cells at the tumor edge or J, L) center. M, O) F4/80 positive cells at the tumor edge or
center N, P). Above each graph are the Pearson r and corresponding p values. None of the endpoints

correlate with volume.
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Supplemental Figure 8: IFNy secreting CD4+ or TCRB+ NK1.1 + or MDSC cells are not significantly
increased in B8 LLC tumors from C6D4 treated mice Tumor infiltrating lymphoid cells from B8-LLC tumors
harvested at day 14 post injection from mice treated with isotype or C6D4 (7 mg/kg) on days 0 and 7 underwent
multicolor cell staining and analysis. Tumor associated lymphoid cells isolated from tumors from mice treated with
isotype (open boxes) or C6D4 (closed boxes) are stained to identify numbers of CD4+ T-Cells (A) and IFNy secreting
CD4+ T-Cells (B), which were enumerated by size, CD45+, TCRB+, NK1.1-, CD4+, IFNy surface capture positivity
relative to an isotype control (A, B) and percentages determined (C). Numbers of NK1.1+ TCRB+ NK1.1+ “like” T-
cells (D) were similarly identified and numbers (E) and percentages of IFNy secreting (F) cells determined. CD45+
CD11b high cells were separated in Ly6g negative and positive (g-MDSC) populations. Ly6g negative cells were
separated into Ly6c negative and positive (m-MDSC) populations, as described (8). The Ly6¢ negative population was
further separated into F4/80 positive populations and then separated into CD1 1¢ positive MHCII high and low
populations, as described (9).
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Supplemental Figure 9: Gating strategy for CD4+ Treg cells 8 LLC tumors were established in C57BL/6
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mice expressing GFP inserted into FoxP3 downstream of the endogenous Foxp3 STOP codon (B6.Cg-

Foxp3tm2Tch/J). Tumor infiltrating lymphoid cells harvested from B8-LLC tumors at day 14 post injection from mice
treated with isotype or C6D4 (7 mg/kg) on days 0 and 7 underwent multicolor cell staining and analysis. Gating

strategy is shown to isolate CD45+ TCRp+ CD4+ FoxP3-GFP+ CD25+ cells.
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Supplemental Figure 10: Gating strategy for IFNy secreting CD4+, CD8+ T-cells, and NK1.1+ cells
Tumor infiltrating lymphoid cells from p8-LLC tumors harvested at day 14 post injection from mice treated with
isotype or C6D4 (7 mg/kg) on days 0 and 7 underwent multicolor cell staining and analysis. Show is a representative
gating strategy to isolate CD45+ populations expressing either TCR3, NK1.1 or both and the secretion of IFNy by the
NKI1.1+ TCRp- subset, the TCRB+ NK1.1-CD4+ subset and the TCR3+ NK1.1-CD8+ subset. The IFNy shifts are
similar as described for surface capture assays of stimulated ex vivo peripheral blood mononuclear cells (10). The

shifts shown above represent 1 hr of cytokine secretion from freshly isolated unstimulated ex-vivo tumor associated
immune cells.
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Supplemental Figure 11 Gating strategy for tumor-associated macrophages, g-MDSC and m-MDSC
Tumor associated macrophages (TAM) are a heterogeneous cell population that have been separated from resident
macrophages by surface expression of CD11b positive, Ly6C negative, Ly6G negative, CD11c¢ high, and F4/80

high (9) and based on their respective high or low expression of MHCII can be associated with tumor elimination or
progression (11). Tumor infiltrating lymphoid cells from B8-LLC tumors harvested at day 14 post injection from mice
treated with isotype or C6D4 (7mg/kg) on days 0 and 7 underwent multicolor cell staining and analysis. A
representative gating strategy for TAM is shown for CD45+ CD11b+ Ly6g low Ly6c low F4/80+ CD11¢+ MHCII
high/low. The gating for granulocytic-MDSC (g-MDSC) and monocytic-MDSC (m-MDSC) are indicated.
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Supplemental Figure 12 TGF-B1 is expressed on the cell surface but not integrin B8 on tumor
associated CD4+, Treg from FoxP3-GFP mice B8 LLC tumors were established in mice expressing GFP
inserted into FoxP3 downstream of the endogenous Foxp3 STOP codon (B6.Cg-Foxp3tm2Tch/J). After tumors
reached endpoint, tumor infiltrating lymphoid cells were isolated and stained for human 8 (C6D4-PE), CD45, TCRS,
CD4, CD8, Grl, CD25 and the latency associated peptide (LAP) of TGF-B1. To determining specific staining for
small amounts of cell surface 8, a 100-fold excess of unlabeled C6D4 (C6D4 Comp) or isotype control (isotype
comp, anti-human 8 Mab clone B5) was added to C6D4-PE stained samples. A representative histogram overlay of
isotype control and LAP stained FoxP3+CD25+ cells are shown. Shown is a representative experiment (n=3).
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Supplemental Figure 13: The integrin B8 subunit is not expressed by tumor associated CD4+,
dendritic cells, or macrophages in humanized /7GB8 BAC transgenic mice Mice expressing human 38
under the control of 70 kb of 5’ and 30 kb of 3’ ITGBS flanking regions, respectively, were crossed to itgh8 -/- mice to
create humanized /TGBS8 mice (1). These mice were used to confirm that a highly sensitive anti-human 8 antibody
could not detect 38 in immune cells. B8 LLC cells were injected into the flank of humanized /TGBS mice or WT mice
as a control. After tumors reached endpoint (day 14), tumor infiltrating lymphoid cells were isolated and stained for
human 8 (68-PE), CD45, TCRp, CD4, CDS8, CD11b, CD11c, F4/80 and Ly6¢. Gating strategies are indicated in a
box between panels A-C and D-F. Boxes within the panels indicate the expected location where 38 positive CD4,
dendritic cells and macrophages would be expected, based on isotype controls.
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Supplemental Figure 14: Expression of ITGB8 across various human epithelial, neural and
hematogenous and lymphoid-derived malignant cell lines The EMBL-EBI expression database
(https://www.ebi.ac.uk/gxa/home) was used to access commonly used human A) cell lines (12) and B) normal and
tumor tissues. Reads are expressed as transcripts per million (TPM) for each A) cell line (glioma, n=24; colon, n=45;
lung=146, breast, n=61; gynecolologic (Gyn): ovary, uterus and cervix, n=55; pancreas, n=30, melanoma, n=44,
hematolymphoid (blood, bone marrow (BM), lymph node (LN), n=92) and B) malignant and benign tissues
(hematolymphoid, mesenchymal, epithelial, neural ) including bladder, brain, breast, gastrointestinal tract, kidney,
liver and gall bladder, lung, head and neck, ovary, pancreas, prostate, melanoma, mesenchyme, thyroid, cervix and
uterus). Color codes indicate red: epithelial derivatives; green: mesenchymal derivatives; blue, hematolymphoid
derivatives; black: neural derivatives. Increased relative expression compared to blood, bone marrow and lymphoid
derived cells line was determined by Kruskal-Wallis and Dunn’s multiple comparison test and correlation (Pearson r)
determined using Prism (V. 7.0b) ****p<(0.0001
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Supplemental Figure 15: Antibody clone F9 specifically recognizes the integrin 8 subunit when
expressed on transfected cells and in immunoblots A) Transfected CHO cells either stably expressing the
human 8 subunit or empty vector were stained with F9 or isotype control. Shown are histogram overlays. B)
Recombinant av8 ectodomain at various concentrations (100, 10, 1 ng/lane, non-reduced) was detected by antibody
clone F9 by immunoblotting and luminescent detection. Shown are molecular weight markers (MWM). The expected
migration of the B8 ectodomain is 80-90 kDa.
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Supplemental Figure 16: Antibody clone F9 specifically recognizes the human integrin B8 subunit and
not mouse 8 in brain and epithelial formalin-fixed paraffin embedded (FFPE) tissue Staining of
ITGBS humanized mouse tissues (A, C, E, G, I, K, M, O, P) compared with wild-type mouse tissues (B, D,
F, H, J, L, N). A,B) hippocampus; C, D) small bowel E,F) pancreas; G,H) colon; LJ) liver; K,L.) skin; M,
N) kidney, O) cardiac muscle P) spleen. Arrows indicate positively stained epithelial cells and structures.
Sze bars below panel P = 150 um applies to all panels except G and H where the bars =75 um.
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Supplemental Figure 17: Clone F9 stains B8 in normal human epithelial and neural-derived cell types.
F9 immunostaining of archival FFPE tissues A) lung (airway); B) placenta; C) fallopian tube; D) kidney;
E) skin; F) breast; G) pancreatic duct; H) pancreatic islet; I) prostate; J) Colon; K) liver bile duct; L)
stomach. Arrows indicate positively stained cells and structures. 75 pum size bar in L refers to all panels
except B and F where it represents 150 um.
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Supplemental Figure 18: Clone F9 does not stain B8 in stromal or immune cells in LLC tumors
growing in humanized ITGB8 BAC transgenic mice WT LLC cells were injected in the flanks of /ITGBS
BAC transgenic mice. After tumors reached 1000 mm? they were removed including the stromal surrounding
the tumor and were formalin fixed and paraffin embedded. Sections were stained with anti-8, clone F9
which recognizes a human-specific epitope and thus will only recognize human 38 expressing host cells and
not WT LLC cells which form the tumor and do not express 8. Shown in A, C is a photomicrograph of an
H&E stained section taken at 200X (A) and 400X (C) magnification and a photomicrograph of a F9
immunostained section taken at 200X magnification (B), and 400X magnification (D), illustrating that the
only structure or cell type stained is a nerve (arrow) and no other host stromal or immune cells. A, B) Bar =
150 um, C, D) Bar =75 um
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Supplemental Figure 19: Full uncropped unedited immunoblot photomicrograph used for
Supplemental Figure 15 Shown is a photomicrograph of the entire immunoblot of purified secreted av8
detected with anti-B8, clone F9. Lanes 2 and 3 are cropped and shown in Supplemental Figure 15. A faint
band in lane 1 represents sample spill-over.
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Supplemental Table 2: Significantly differentially expressed genes
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BP G0:1990266 r::i‘:;r;"tfg‘r"' 3/15 103/20349 5.48E-05 0.003723133 Ccl24/Cel6/Ifng 3
. granulocyte g
BP G0:0071621  emotanic 3/15 108/20349 6.32E-05 0.00393109 Cel24/Ccl6/Ifng 3
BP G0:0097530 g::{é‘::ifg;e 3/15 126/20349 9.99E-05 0.005739542 Ccl24/Cel6/Ifng 3
positive regulation
BP G0:0002687 of leukocyte 3/15 133/20349 | 0.000117259 | 0.006256631 Ccl24/Cxcl9/F7 3
migration
BP G0:0097529 mye:;grftl:g:cyte 3/15 176/20349 | 0.000268088 | 0.012473238 Ccl24/Cel6/Ifng 3
. regulation of
BP GO:0002685 | 1o ot 5 R bion 3/15 179/20349 | 0.000281738 | 0.012473238 Ccl24/Cxcl9/F7 3
. positive regulation
BP G0:0030335 of coll misration 4/15 458/20349 | 0.000283862 | 0.012473238 Ccl24/Cxcl9/F7/Ifng 4
BP G0:2000147 p";;té‘ﬁl rr:’f)‘:i'ﬁg"” 4/15 476/20349 | 0.000328755 | 0.013643339 Ccl24/Cxcl9/F7/Ifng 4
positive regulation
BP G0:0051272 c‘[’)fr:;!:':r:t 4/15 490/20349 | 0.000367052 | 0.014430939 Ccl24/Cxcl9/F7/Ifng 4
movement
BP G0:0051607 dEfensevrifjf"”se to 3/15 202/20349 | 0.000401559 | 0.014549765 Cxcl9/Mmp12/ifng 3
BP GO:0009615 | response to virus 3/15 245/20349 | 0.000704783 | 0.021936361 Cxcl9/Mmp12/ifng 3
positive regulation
BP G0:0032103 of response to 3/15 268/20349 | 0.000914094 | 0.027313142 Ccl24/Cxcl9/F7 3
external stimulus
regulation of
BP G0:0050678 epithelial cell 3/15 321/20349 | 0.001537087 | 0.039593236 Ccl24/Mmp12/ifng 3
proliferation
BP G0:0042060 wound healing 3/15 351/20349 | 0.001984594 | 0.044923997 F7/F10/Mmp12 3
MP2 G0:0008009 | chemokine activity 3/17 39/20291 4.38E-06 0.000181786 Ccl24/Ccl6/Cxcl9 3
MF G0:0042379 Chem"t')‘i':jirzzcepmr 3/17 52/20291 1.05E-05 0.000181786 Cel24/Ccl6/Cxcl9 3
serine-type
MF G0:0004252 endopeptidase 4/17 188/20291 1.55E-05 0.000181786 F7/F10/Gzmg/Gzmd 4
activity
MF G0:0004175 e"dgsteh‘/’itt'ydase 5/17 430/20291 2.09E-05 0.000181786 F7/F10/Gzmg/Mmp12/Gzmd 5
MF G0:0048018 rece:ctg\:i'tiga”d 5/17 451/20291 2.63E-05 0.000181786 Ccl24/Ccle/Cxcl9/Ifng/Retnla 5
MF G0:0005125 cytokine activity 4/17 216/20291 2.67E-05 0.000181786 Ccl24/Ccl6/Cxcl9/Ifng 4
. serine-type -~
MF G0:0008236 | e ey 4/17 217/20291 2.71E-05 0.000181786 F7/F10/Gzmg/Gzmd 4
MF G0:0017171 se”"aect‘i‘\’/i;"'ase 4/17 222/20291 2.97E-05 0.000181786 F7/F10/Gzmg/Gzmd 4
MF G0:0030545 recep;‘é;;iﬁ“'amr 5/17 484/20291 3.69E-05 0.000200987 Ccl24/Ccl6/Cxcl9/ifng/Retnla 5
MF G0:0005126 C"t"kti)'i‘rf drif‘;ept‘" 4/17 285/20291 7.85E-05 0.000384715 Ccl24/Ccle/Cxcl9/Ifng 4
. G-protein coupled
MF G0:0001664 aventor binding 3/17 270/20291 | 0.001379912 | 0.005634639 Cel24/Ccl6/Cxclo 3
Macrophages Down
Category ID Description GeneRatio BgRatio pvalue padj genelD Cc;t;nt
. positive regulation
BP G0:0030335 of coll migration 4/11 458/20349 7.37E-05 0.007781287 Col1a1/Postn/Ednra/Lrrc15 4
BP G0:2000147 p"s;té‘ﬁl rrii‘t‘i'ﬁg"” 4/11 476/20349 8.56E-05 0.007781287 Colla1/Postn/Ednra/Lrrc15 4
positive regulation
BP G0:0051272 c‘[’)fr:sg:':r:t 4/11 490/20349 9.58E-05 0.007781287 Col1a1/Postn/Ednra/Lrrc15 4
movement
BP G0:0030198 e“frc;a”n“i'gﬁ';‘:mx 3/11 206/20349 | 0.000158897 | 0.007781287 Collal/Postn/Mfap4 3
extracellular
BP G0:0043062 structure 3/11 207/20349 | 0.000161186 | 0.007781287 Col1a1/Postn/Mfapd 3
organization
. osteoblast
BP G0:0001649 difforantition 3/11 209/20349 | 0.000165828 | 0.007781287 Col1a1/Igfbp5/Tnc 3
. cellular response to
BP G0:0071214 Abiotic st 3/11 217/20349 | 0.000185269 | 0.007781287 Col1al/Ednra/Mfapd 3
cellular response to
BP G0:0104004 environmental 3/11 217/20349 | 0.000185269 | 0.007781287 Col1al/Ednra/Mfapd 3

stimulus
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1
. cellular response to
BP G0:0071496 external stimulus 3/11 226/20349 0.000208849 0.008040669 Collal/Postn/Ednra 3 i
BP GO:0007162 | Megative regulation 3/11 252/20349 | 0.000287714 | 0.010224916 Col1a1/Postn/Tnc 3i_
of cell adhesion
BP G0:0001503 ossification 3/11 378/20349 0.000939142 0.021323137 Collal/lgfbp5/Tnc 3g
. 54
3 . proteinaceous ] ] N
CC G0:0005578 extracellular matrix 6/11 348/20585 9.62E-09 2.60E-07 Col1a1/Postn/Tnc/Bgn/Cilp/Mfap4 6 A
- A\
cc G0:0044420 | extracellular matrix 3/11 129/20585 | 3.82E-05 | 0.000516248 Col1a1/Tnc/Mfapa 3
component 7
MF G0:0001968 fibronectin binding 3/9 30/20291 2.44E-07 5.60E-06 Igfbp5/Tnc/Lrrc15 3
B8 LLC cells Up <
Category 1D Description GeneRatio BgRatio pvalue padj genelD Count>3
None
B8 LLC cells Down
Category ID Description GeneRatio BgRatio pvalue padj genelD Count>3
None
CD8+ T-cells Up
Category 1D Description GeneRatio BgRatio pvalue padj genelD Count>3
None
CD8+ T-cells Down
Category 1D Description GeneRatio BgRatio pvalue padj genelD Count>3
None
CD4+ T-cells Up
Category 1D Description GeneRatio BgRatio pvalue padj genelD Count>3
CD4+ T-cells Down
Category ID Description GeneRatio BgRatio pvalue padj genelD Count>3
BP G0:0048821 erythrocyte 3/a 33/20349 1.55E-08 3.73E-07 Hbb-b1/Hbb-b2/Hba-a1 3
development
. myeloid cell g g . . .
BP G0:0061515 development 3/4 68/20349 1.42E-07 1.71E-06 Hbb-b1/Hbb-b2/Hba-a1 3
BP G0:0030218 erythrocyte 3/4 117/20349 7.38E-07 5.81E-06 Hbb-b1/Hbb-b2/Hba-a1 3
differentiation
. erythrocyte g g . . .
BP G0:0034101 homeostasis 3/4 128/20349 9.68E-07 5.81E-06 Hbb-b1/Hbb-b2/Hba-a1 3
BP G0:0002262 myeloid cell 3/a 161/20349 1.93E-06 9.28E-06 Hbb-b1/Hbb-b2/Hba-a1 3
homeostasis
BP G0:0048872 homeostasis of 3/4 294/20349 1.18E-05 4.05E-05 Hbb-b1/Hbb-b2/Hba-a1 3
number of cells
. myeloid cell - -
BP G0:0030099 differentiation 3/4 373/20349 2.41E-05 7.23E-05 Hbb-b1/Hbb-b2/Hba-a1 3
cc G0:0044445 cytosolic part 5/6 240/20585 |  1.23E-09 1.11E-08 Hbb-b1/ H:I"/'Zi/:é’:"bs/ Hba- 5
CcC G0:0072562 blood microparticle 5/6 107/20585 2.70E-06 1.22E-05 Hbb-bs/Hba-al/Hbb-bt 3
MF G0:0019825 oxygen binding 5/6 19/20291 8.22E-12 1.07E-10 Hbb-b2/Hbb-bs/Hba-al/Hbb-bt 4
MF G0:0004601 peroxidase activity 5/6 41/20291 1.52E-07 8.21E-07 Hbb-bs/Hba-al/Hbb-bt 3
oxidoreductase
MF GO:0016684 | 2CtVity, acting on 5/6 44/20291 1.89E-07 8.21E-07 Hbb-bs/Hba-a1/Hbb-bt 3
peroxide as
acceptor
MF G0:0016209 antioxidant activity 5/6 79/20291 1.13E-06 3.66E-06 Hbb-bs/Hba-al/Hbb-bt 3

'CF, Biologic Function
2MF, Molecular Function
3CC, Cellular Component

9  Supplemental Table 2: Gene Ontology Enrichment
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