Myeloid HO-1 Modulates Macrophage Polarization and Protects Against Ischemia-Reperfusion Injury

Zhang M¹, Nakamura K², Kageyama S², Lawal AO¹, Gong K-W¹, Bhetraratana M¹, Fujii T², Sulaiman D¹, Hirao H², Bolisetty S³, Kupiec-Weglinski JW², Araujo JA^{1,4}

From the Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA¹, Department of Surgery, David
Geffen School of Medicine, University of California, Los Angeles, CA², Department of Medicine, University of Alabama, AL³, and Department of Environmental Health
Sciences, Fielding School of Public Health, University of California, Los Angeles, CA⁴.

Table of contents

Figure S11
Figure S22
Figure S33
Figure S44
Figure S55
Figure S66
Figure S77
Table S1 8
Table S2 8
Table S39

Figure S1. Strategy for the generation of mHO-1-KO mice and mHO-1-Tg mice. Breeding strategy employed to develop myeloid specific HO-1 knockout (mHO-1-KO) mice and myeloid specific HO-1 transgenic (mHO-1-Tg) mice. Both mHO-1-KO and mHO-1-Tg mice were obtained via successive cross-breeding strategy as shown. Homozygous floxed HO-1-KO or Tg (HO-1-KO fl/fl/HO-1-Tg fl/fl) mice and homozygous LysM-Cre (LysM-Cre +/+) mice were crossed to obtain heterozygous mice for both alleles, HO-1-KO/Tg fl/+ and LysM-Cre +/-. Further, heterozygous floxed HO-1-KO/Tg mice (HO-1 fl/+ LysM-Cre +/-) were crossed to obtain homozygous myeloid specific floxed HO-1-KO/Tg mice (HO-1-KO/Tg fl/fl LysM-Cre +/+).

Figure S2. Deletion efficiency of HO-1 in Alveolar and Bone marrow derived macrophages (BMDMs).

dsRED fluorescence detection in macrophages from mHO-1-KO mice. A: Alveolar macrophages (AM). Top: Floxed HO-1 (HO-1-KO fl/fl) controls. Bottom: mHO-1-KO mice. 200X. B: BMDMs. Top: Floxed HO-1 (HO-1-KO fl/fl) controls. Bottom: mHO-1-KO mice. magnification, ×200; Phase: phase contrast. dsRED: red fluorescence channel. Composite: overlay images from phase contrast and red fluorescence channel.

Figure S3. HO-1 mRNA expression in tissues from mHO-1-KO mice vs. controls. HO-1 mRNA levels in tissue homogenate of liver, spleen, lung, kidney and heart from mHO-1-KO mice vs. controls (n=5/group). Data were normalized to β -actin gene expression, and shown mean ± SEM (scatter dot blot). Statistical analyses were done with two-tailed Mann-Whitney U test. ns: not significant; **p < 0.01

Figure S4. HO-1 mRNA expression in tissues from mHO-1-Tg mice vs. controls.

HO-1 mRNA levels in tissue homogenate of liver, spleen, lung, kidney and heart from mHO-1-Tg mice vs. controls (n=5/group). Data were normalized to β -actin gene expression, and shown as mean ± SEM (scatter dot blot). Statistical analyses were done with two-tailed Mann-Whitney U test. ns: not significant

Figure S5. The correlation between human HO-1 and cytokine expression in post transplantation liver biopsies.

The correlations of gene expression between HO-1 and proinflammatory cytokines MCP-1 and IL-1 β and anti-inflammatory cytokines Arg1 and CD163 expression in post transplantation liver biopsy samples were analyzed with non-parametric spearman method in Graphpad prism 6 (n = 21, 11 low HO-1 and 10 high HO-1).

Figure S6. HO-1 localization in IR-stressed liver.

Immunofluorescence staining of HO-1 (green, left column), CD68 for hepatic macrophages (red, middle column) and merged images (right column), IR-stressed livers. Representative of three experiments is shown. Magnification 400X

Figure S7. Comparisons of floxed HO-1-Tg and wild-type mice.

A. Liver histology of C57BL/6 wild-type (WT) and floxed HO-1-Tg (Tg fl/fl) after liver IRI. Representative section (magnification, ×100). B. Suzuki's histological grading of liver IRI (left). Serum ALT levels (Middle). Serum AST levels (right). (n=8, 6 control, 2 Tg fl/fl). Data are shown as mean \pm SEM (scatter dot blot). Statistical analyses were done with two tailed Mann-Whitney U test. ns: not significant

Table S1: (Genotyping	primers,	using	agarose	gel	electrophoresis
-------------	------------	----------	-------	---------	-----	-----------------

Primer name	Primer sequence
Mouse Hmox1-g62145r	5'- GTC TGT AAT CCT AGC ACT CGA A-3'
Mouse Hmox1-g61822f	5'- CTC ACT ATG CAA CTC TGT TGG AGG -3'
DsRed-N2	5'- GGA AGG ACA GCT TCT TGT AGT CG -3'
pLysM-FP1	5'- CTT GGG CTG CCA GAA TTT CTC -3'
LysM-RP2	5'- CCT CAC CCC AGC ATC TCT AAT TC -3'
VE-Cad-Cre-R	5'- ATCACTCGTTGCATCGACCGGTAA -3'
Human <i>HMOX1</i> 42F	5'- GGG TGA TAG AAG AGG CCA AGA -3'
Human <i>HMOX1</i> 81R	5'- CTT GTT GCG CTC AAT CTC CT -3'

Table S2: Genotyping primers using Roche UPL probes and real-time PCR

Primer name	Primer sequence
Human <i>HMOX1</i> (101)fp	5' GGC CTC CCT GTA CCA CAT C 3'
Human <i>HMOX1</i> (101)rp	5' AGA CTG GGC TCT CCT TGT TG 3'
Mouse <i>Gja5</i> (6)fp	5' GGC TAC CAG AAG GTG AGC AG 3'
Mouse <i>Gja5</i> (6)rp	5' AGG CAG GGA CAT CGT GTT AT 3'
Mouse <i>Hmox1</i> (17)fp	5' AGG CTA AGA CCG CCT TCC T 3
Mouse <i>Hmox1</i> (17)rp	5' TGT GTT CCT CTG TCA GCA TCA 3'
uniHO1 (49/134)fp	5'CAT GCC CCA GGA TTT GTC 3'
uniHO1 (49/134)rp	5' TCA TGA ACT CAG CAT TCT C 3'
Mouse <i>Actb</i> (56)fp	5' AAG GCC AAC CGT GAA AAG AT 3'
Mouse Actb (56)rp	5' GTG GTA CGA CCA GAG GCA TAC 3'

Table S3: Primers	used for	gene e	expression
---------------------------	----------	--------	------------

Primer name	Primer sequence
Mouse Cxcl10fp	5'-CCAGAATCGAAGGCCATCAA-3'
Mouse Cxcl10rp	5'-CATTTCCTTGCTAACTGCTTTCAG-3'
Mouse Mcp-1 fp	5'- CATCCACGTGTTGGCTCA-3'
Mouse Mcp-1 rp	5'- GATCATCTTGCTGGTGAATGAGT-3'
Mouse IL1 β fp	5'-TGTAATGAAAGACGGCACACC-3'
Mouse <i>IL1 β rp</i>	5'-TCTTCTTTGGGTATTGCTTGG-3
Mouse Arg1 fp	5'-GAATGGAAGAGTCAGTGTGG-3'
Mouse Arg1 rp	5'-AATGACACATAGGTCAGGGT-3
Mouse Cd163 fp	5'-GACGACAGATTCAGCGACTT-3'
Mouse Cd163 rp	5'-CCGAGGATTTCAGCAAGTCCA-3'
Human CXCL10 fp	5'-GCTGCCGTCATTTTCTGC-3'
Human CXCL10 rp	5'-TCTCACTGGCCCGTCATC-3'
Human <i>MCP-1 fp</i>	5'-TTCTGTGCCTGCTGCTCAT-3'
Human <i>MCP-1 rp</i>	5'-GGGGCATTGATTGCATCT-3'
Human <i>IL-1 β fp</i>	5'-CTGTCCTGCGTGTTGAAAGA-3'
Human <i>IL-1 β rp</i>	5'-TTGGGTAATTTTTGGGATCTACA-3'
Human ARG1 fp	5'-GGCAAGGTGATGGAAGAAAC-3'
Human <i>ARG1 rp</i>	5'-AGTCCGAAACAAGCCAAGGT-3'
Human <i>CD163 fp</i>	5'-GGATCTGCTGACTTCAGAAG-3'
Human <i>CD163 rp</i>	5'-CTCCTTGTCTGTTCCTCCAA-3'
Human <i>CD80 fp</i>	5'- AAACTCGCATCTACTGGCAAA-3'
Human <i>CD80 rp</i>	5'- GGTTCTTGTACTCGGGCCATA-3'