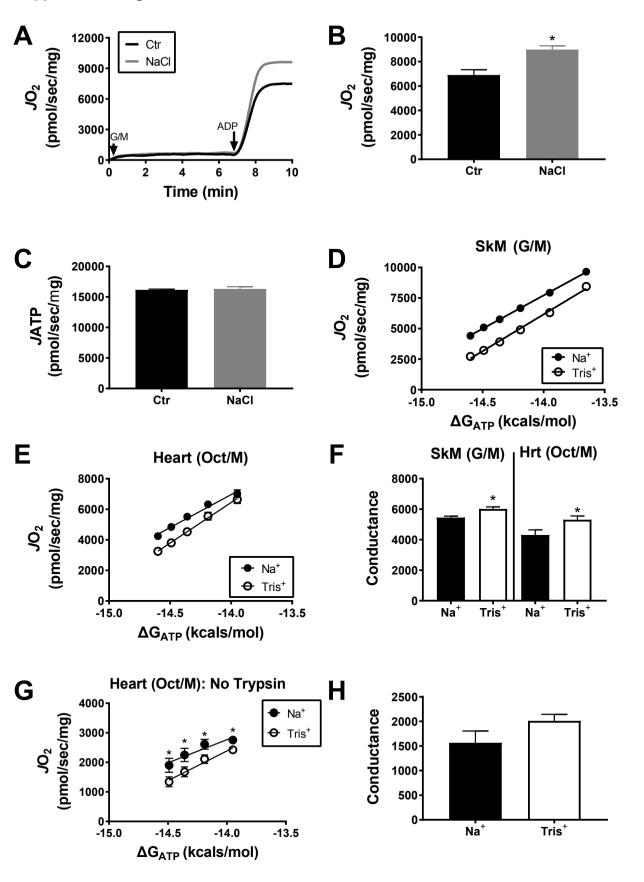
Cell Reports, Volume 24

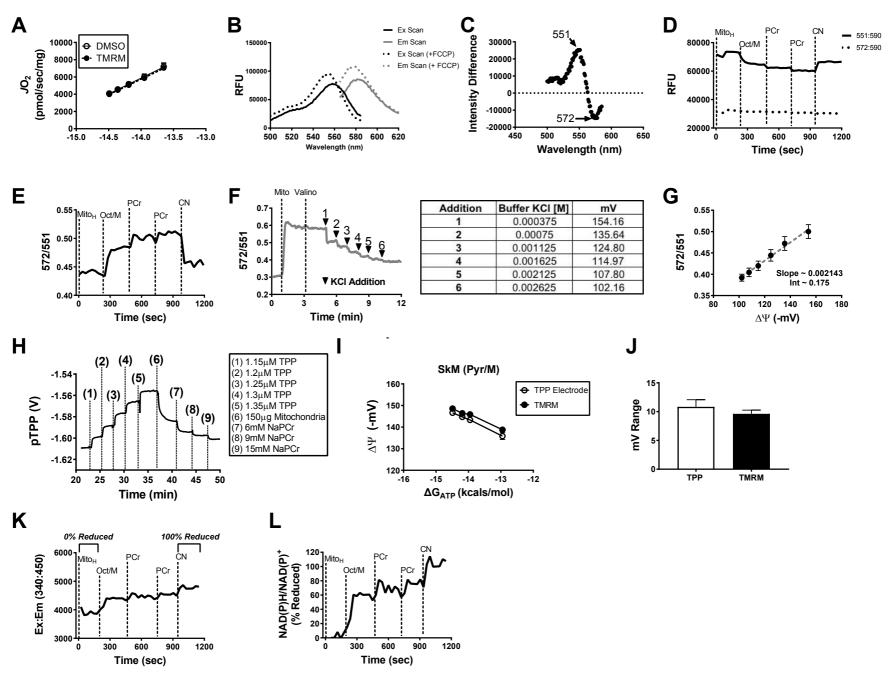
# **Supplemental Information**


# **Mitochondrial Diagnostics: A Multiplexed Assay**

#### **Platform for Comprehensive Assessment**

## of Mitochondrial Energy Fluxes

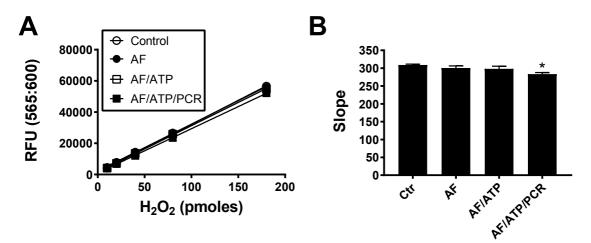
Kelsey H. Fisher-Wellman, Michael T. Davidson, Tara M. Narowski, Chien-Te Lin, Timothy R. Koves, and Deborah M. Muoio


Supplemental Figure 1.



# Figure S1. The presence of Na<sup>+</sup> impairs respiratory conductance. Related to Figure 1 and Star Methods – "Mitochondrial Respiratory Control".

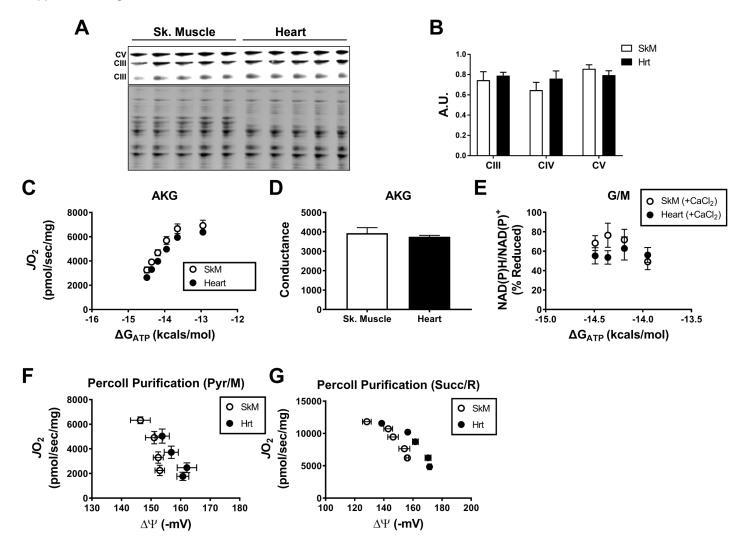
(A) Representative trace displaying oxygen consumption in skeletal muscle mitochondria pre-incubated with NaCl (10 mM) or vehicle and energized with G/M (10/2.5 mM), followed by the addition of ADP (1 mM). (B) ADP-dependent  $JO_2$  in skeletal muscle mitochondria respiring on G/M and pre-incubated with NaCl or vehicle. (C) JATP synthesis in skeletal muscle mitochondria energized with G/M in the absence or presence of NaCl (10 mM). (D-E) Phosphocreatine titration experiments performed in skeletal muscle mitochondria energized with G/M (D) and heart mitochondria energized with Oct/M (E) in which the PCr was supplied as either di-sodium phosphocreatine (Na<sup>+</sup>) or di-tris phosphocreatine (Tris<sup>+</sup>). ATP in each experiment was added as either a sodium or tris salt for consistency. (F) Calculated linear slopes (i.e., respiratory conductance) from the experiments in panels F-G. (G-H) Phosphocreatine titration experiments performed in heart mitochondria prepared without trypsin or EDTA and energized with Oct/M in which the PCr was supplied as either di-sodium phosphocreatine (Na<sup>+</sup>) or di-tris phosphocreatine (Tris<sup>+</sup>). ATP in each experiments with Oct/M in which the PCr was supplied as either di-sodium phosphocreatine mitochondria prepared without trypsin or EDTA and energized with Oct/M in which the PCr was supplied as either di-sodium phosphocreatine (Na<sup>+</sup>) or di-tris phosphocreatine (Tris<sup>+</sup>). ATP in each experiment was added as either a sodium or tris salt for consistency. (H) Calculated linear slopes (i.e., respiratory conductance) from the experiments in panels G. Data are mean  $\pm$  SEM. Differences between groups were analyzed by unpaired 2-tailed t-tests. \*P<0.05. N=3-5/group, where "N" represents 3-4 biological replicates (i.e., mitochondrial preparations).


Supplemental Figure 2.



# Figure S2. Approximation of mitochondrial $\Delta \Psi$ via TMRM and measurement of NAD(P)H/NAD(P)<sup>+</sup> redox state under varying ATP free energies. Related to Star Methods – "Mitochondrial membrane potential ( $\Delta \Psi$ ) and NAD(P)H/NAD(P)<sup>+</sup> Redox" and "Mitochondrial membrane potential ( $\Delta \Psi$ ) using a TPP<sup>+</sup> selective electrode".

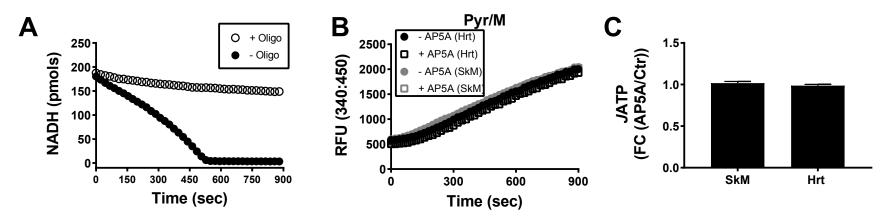
(A) Relationship between  $JO_2$  and  $\Delta G_{ATP}$  in isolated skeletal muscle mitochondria in the presence of TMRM (0.2  $\mu$ M) or DMSO. Experiments were carried out in Buffer D, supplemented with ATP (5 mM), Cr (5 mM), PCr (3 mM) and 20U/ml CK. Assay additions were mitochondria (0.025 mg/ml), G/M and PCr x 4 (3 mM additions each). (B) Excitation and emission scans carried out in Buffer D. supplemented with TMRM (0.2 µM) and FCCP (5 µM) or ethanol. Mitochondria from skeletal muscle (0.1 mg/ml) were present for all experiments. (C) Excitation spectra calculated from the difference in fluorescence intensity between scans performed in the absence and presence of FCCP displayed in panel B (e.g., (EX Scan – EX Scan (+FCCP)) = Ex Diff). The peaks of each spectra are indicated by black arrows and the difference between them (572-551 = 21) is the quantified spectral shift experienced by TMRM as it accumulates in energized mitochondria. (D) Representative trace showing TMRM fluorescence at Ex/Em: 551:590 and Ex/Em: 572/590 during a CK clamp experiment in isolated heart mitochondria. (E) The ratio of emission intensities calculated from the experiment depicted in panel D recorded at excitation wavelengths of 572 and 551. (F) Representative trace displaying a  $\Delta\Psi$  standard curve whereby the TMRM fluorescence ratio (572/551) was plotted against time. Protocol additions were heart mitochondria (Mito, 0.1 mg/ml), valinomycin (Valino, 40 ng/ml), and KCl (indicated by numbered black arrows). The table below indicates the extra-mitochondrial [KCI] at each titration step, as well as the calculated  $\Delta \Psi$  according to the Nernst equation. (G) TMRM fluorescence ratio (572/551) plotted against the calculated  $\Delta \Psi$  (-mV). (H) Representative trace showing  $\Delta \Psi$  assessment using a TPP<sup>+</sup> selective electrode during a phosphocreatine titration experiment. (I) Relationship between  $\Delta \Psi$ and  $\Delta G_{ATP}$  in isolated skeletal muscle mitochondria energized with Pyr/M. Membrane potential was assessed using either TMRM or a TPP<sup>+</sup> selective electrode. (J) Change in  $\Delta \Psi$ , expressed in mVs, during the phosphocreatine titration experiments depicted in panel I using both experimental methodologies. (K) Representative trace showing NAD(P)H auto-fluorescence (Ex/Em: 340/450) during a CK clamp experiment in isolated heart mitochondria. The annotated sections of the trace utilized to calculate % Reduction correspond to isolated mitochondria devoid of substrates (0% Reduced) and the addition of cyanide (100% Reduced). (L) The % Reduction in the NAD(P)H/NAD(P)<sup>+</sup> redox state calculated from the experiment depicted in panel K. (A, G-J) Data are mean  $\pm$  SEM. Differences between groups were analyzed by 2-tailed unpaired t-tests. N=3-4/group, where "N" represents 3-4 biological replicates (i.e., mitochondrial preparations).

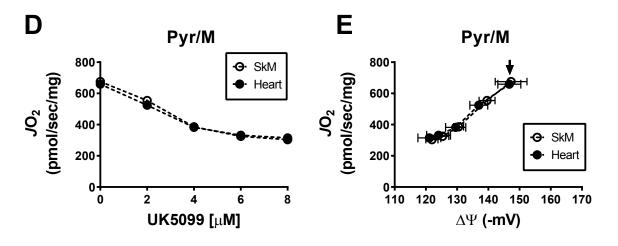

### Supplemental Figure 3.



#### Figure S3. Related to Star Methods – "Mitochondrial JH2O2 Emission".

(A) Resorufin fluorescence plotted against  $H_2O_2$  in pmoles during  $H_2O_2$  standard curve experiments performed in the presence of vehicle alone (Control), AF (0.1  $\mu$ M), AF plus ATP (AF/ATP; 0.1  $\mu$ M/5mM) and AF plus ATP and PCr (AF/ATP/PCR; 0.1  $\mu$ M/5mM/9mM). (B) Calculated slopes from the experiments depicted in panel A. Data are mean  $\pm$  SEM. Differences between groups were analyzed by 2-tailed unpaired t-tests comparing each group to the control (Ctr). \*P<0.05. N=3/group, where "N" represents 3 biological replicates (i.e., mitochondrial preparations).


#### Supplemental Figure 4.




#### Figure S4. Related to Figures 4 and 6.

(Å) Immunoblot analysis of CIII, CIV and CV in skeletal muscle and heart isolated mitochondria lysates. (**B**) Quantification of the blots depicted in panel A. (C) Relationship between mitochondrial  $JO_2$  versus ATP free energy ( $\Delta G_{ATP}$ ) in mitochondria energized with AKG (10 mM). (**D**) Calculated slopes from the linear portions of the data depicted in panel A. (**E**) Relationship between mitochondrial NAD(P)H/NAD(P)<sup>+</sup> redox versus ATP free energy ( $\Delta G_{ATP}$ ) in mitochondria energized with G/M in the presence of 0.6 mM CaCl<sub>2</sub> (free Ca<sup>+</sup> ~ 500nM). (**F**-**G**) Mitochondria  $JO_2$  plotted against  $\Delta \Psi$  in the presence of Pyr/M (**F**) and Succ/Rot (**G**) in percoll purified mitochondria. Data are mean  $\pm$  SEM. Differences between groups were analyzed by 2-tailed unpaired t-tests. (**A**-**F**) N=4-6 individual mice/group, (**G**) N=2 individual mice/group.

## Supplemental Figure 5.





#### Figure S5. Related to Figure 6 and Star Methods – "JATP Synthesis".

(A) Representative trace from a CV activity assay performed in isolated mitochondria from skeletal muscle in the absence (- Oligo) and presence (+ Oligo) of oligomycin (5  $\mu$ M). (B) Representative trace from a *J*ATP synthesis assay performed in the presence and absence of AP5A. (C) Effect of AP5A on *J*ATP in skeletal muscle and heart mitochondria, expressed as fold change (FC). (D) Oxygen consumption in mitochondria energized with Pyr/M in the presence of oligomycin following sequential additions of the pyruvate carrier inhibitor UK5099 to titrate redox state and  $\Delta\Psi$ . (E) Relationship between proton leak and  $\Delta\Psi$  assessed in the presence of oligomycin and Pyr/M suggests similar proton leak rates between the two groups. Black arrow indicates leak rates at the highest common  $\Delta\Psi$ . Data are mean  $\pm$  SEM. Differences between groups were analyzed by 2-tailed unpaired t-tests. N=4-6 individual mice/group.