
“supplementary” — 2018/5/15 — 19:00 — page 1 — #1i
i

i
i

i
i

i
i

1

SUPPLEMENTARY

1 Identifying transpositions
Both the HX1 and the GIAB projects provide a list
of insertions, detected using long-read approaches. Each
insertion has an insertion site and an insertion sequence. We
identified those insertions that are caused by a transposition
event using the following algorithm:

1. We used TRF (2) on the insertion sequences to identify
their period. Given an insertion sequence S, its period
is a sequence P such that S can be obtained by
concatenating P n times (where n≥1). For example,
T is the period of the sequence TTTTTTT, AG is the
period of AGAGAGAG and AGCTCGA is the period
of AGCTCGA.

2. For a given insertion, let l be the length of its period
P . We extracted from the reference a genomic region
surrounding the insertion site; in particular, let i be the
genomic coordinate of the insertion site, we extracted
the region between i−2l and i+2l. We call the
extracted sequence R.

3. We computed the local alignment between P and R.
The scoring scheme assigns 1 point to matches, -2 to
mismatches, -3 to gap open and -1 to gap extension. If
the alignment score is at least 90% of the length of P ,
we classified the insertion as a tandem duplication.

4. To classify the remaining insertions into transpositions
and novel insertions, we mapped their original insertion
sequences to the reference using Blast 2.5.0 (1), default
parameters and soft masking disabled. We required
the hits to cover at least 90% of the query. When no
hits were found, we classified the insertion as novel,
otherwise we classified it as a transposition.

2 Post-processing of results
HX1 does not report SVs on chrY, although the individual is
male; on the other hand, GIAB does not report alternative
chromosomes. For consistency, we only compare on chr1-
22, and we remove predictions on all the other contigs.
Furthermore, for all tools we filter centromeric regions as they
are notoriously difficult and leading to false positives.

3 Comparing predicted transpositions to the benchmark
Since not all the methods report the source of the
transposition, we have two different criteria for comparing a
benchmark insertion and a predicted transposition. Let µ and
σ be the mean and the standard deviation of the insert size of
all the read pairs in the dataset we are considering. Let d be
µ+3σ. We say that two coordinates are close if they are in the
same chromosome and within d bps from each other.

Our first criteria, applicable to all methods, is the following.
When only the insertion site is predicted, it must be within
maxFS of to the actual insertion site. When the two ends
of the transposition event are given, one of them must within
maxFS of the insertion site.

Our second criteria, not applicable to DD DETECTION
and the tested database-based methods, requires both ends

Table 1. For HX1 and HG001, we report the percentage of discordant pairs
supporting a benchmark transposition where the stable read was correctly
identified.

Strategy HX1 HG001
Highest MQ 97.6% 93.7%
Discordant count 84.5% 71.4%
Different Chromosome Count 82.2% 69.9%

to be reported. As previously, one end within maxFS of
the insertion site. Furthermore, we locally align the insertion
sequence S reported in the benchmark to the 2 ·maxFS bp-
long region centred at the other end of the event. We assign a
score of 2 to matches, -2 to mismatches, -4 to gap open and -1
to gap extension. We accept the transposition if the alignment
score is greater than the length of S.

We consider a benchmark transposition as correctly
predicted if it is matched by any called insertion, whether a
tandem duplication, transposition or novel insertion. Note that
this is only relevant to the general SV callers (Delly, Lumpy,
Socrates), since all the other tools specialise in predicting
transpositions. We consider a call a true positive when it
matches an insertion in the benchmark.

4 Determining the stable end
A crucial part of the algorithm is determining the stable
end given a discordant pair of reads. We tested three simple
strategies:

Highest MQ: selects the read with the highest map quality
as the stable end;

Discordant count: given a read r, counts the number of
discordant pairs having a read within a distance of maxFS of
r. In the pair, it selects as stable the mate with the highest such
number;

Different Chromosome Count: given a read r, extracts
the set D of discordant pairs having a read within a distance
of maxFS of r, and counts the number of unique different
chromosomes the mates in D are mapped to. In the pair, it
selects as stable the mate with the highest such number.

In the case of a tie, the algorithm duplicates the pair and
both reads are selected as stable and unstable once. For this
reason, we consider the pair as correctly classified.

Table 1 reports the percentages of success of the methods.
Highest MQ is not only the lighter strategy computationally
and the easiest to implement, but it is also the best performing
strategy.

5 Tested programs
All programs were tested on a cluster running CentOS 6.5. The
C++ compiler was g++ 4.9.3. For Mobster and Socrates, Java
8 was used. In the commands, two recurring variables will be
$reference , which is the location of the reference genome, and
$bam, which is the location of the input BAM file. The other
variables will be named with self-explanatory names.

DD DETECTION’s source code was cloned from the
repository at https://bitbucket.org/mkroon/dd detection/
overview. The command used was:

$ d d d e t e c t i o n −f $ r e f e r e n c e − i c o n f i g . t x t

https://bitbucket.org/mkroon/dd_detection/overview
https://bitbucket.org/mkroon/dd_detection/overview

“supplementary” — 2018/5/15 — 19:00 — page 2 — #2i
i

i
i

i
i

i
i

2

−c ALL −o $ o u t p u t d i r

config.txt contains the location of the BAM file, the mean
insert size of the dataset and a sample name.

Delly’s source code was cloned from the repository at https:
//github.com/dellytools/delly. The command used was:

$ d e l l y c a l l − t TRA −o $ o u t p u t f i l e
−g $ r e f e r e n c e $bam

Lumpy’s source code was cloned from the repository at
https://github.com/arq5x/lumpy-sv. The command used was:

$ l u m p y e x p r e s s −B $bam −o $ o u t p u t f i l e

MELT was downloaded from its official page http://
melt.igs.umaryland.edu. The archive contains a runnable jar
and databases for humans (hg19 and hg38) as well as for
chimpanzee. The command used was:

j a v a − j a r MELT. j a r S i n g l e −b a m f i l e $bam
−c 60 −h $ r e f e r e n c e −n $ p r o v i d e d b e d f i l e
−w $ w o r k d i r − t t r a n s p o s o n f i l e l i s t

Mobster’s source code was cloned from https://github.com/
jyhehir/mobster, and was installed using the provided script.
The parameters provided in the default Mobster.properties file
were used. Mobster comes with two databases, one for hg19
and one for hg38. The appropriate one was used in all datasets.
The command used was:

$ j a v a − j a r M o b i l e I n s e r t i o n s . j a r
−p r o p e r t i e s Mobster . p r o p e r t i e s
−in $bam −sn $sample name −o u t $ o u t p u t p r e f i x

Retroseq was downloaded from https://github.com/tk2/
RetroSeq. It works in two consecutive steps, and commands
used were:

. / r e t r o s e q . p l −d i s c o v e r −bam $bam
−o u t p u t $ w o r k d i r / d i s c o v e r . t x t
−r e f TE s $refTE− f i l e

. / r e t r o s e q . p l −c a l l −bam $bam
− i n p u t $ w o r k d i r / d i s c o v e r . t x t
− r e f $ r e f e r e n c e
−o u t p u t $ w o r k d i r / c a l l s . v c f − s o f t

Since Retroseq does not come with a database of transposable
elements, we built one from Mobster’s database. We divided
the entries into ALU, L1 and Others.

Socrates was downloaded as a jar, version 1.13 (latest
currently available). The command used was:

$ j a v a − j a r s o c r a t e s . j a r $ b o w t i e 2 i d x $bam

TranSurVeyor, the command used was:

$ py thon s u r v e y o r . py $bam $ w o r k d i r $ r e f e r e n c e
−− t h r e a d s 8 −−s a m t o o l s / p a t h / t o / s a m t o o l s
−−bwa / p a t h / t o / bwa

REFERENCES

1. S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic
local alignment search tool. Journal of molecular biology, 215:403–410,
October 1990.

2. G Benson. Tandem repeats finder: a program to analyze dna sequences.
Nucleic acids research, 27:573–580, January 1999.

https://github.com/dellytools/delly
https://github.com/dellytools/delly
https://github.com/arq5x/lumpy-sv
http://melt.igs.umaryland.edu
http://melt.igs.umaryland.edu
https://github.com/jyhehir/mobster
https://github.com/jyhehir/mobster
https://github.com/tk2/RetroSeq
https://github.com/tk2/RetroSeq

“supplementary” — 2018/5/15 — 19:00 — page 3 — #3i
i

i
i

i
i

i
i

3
Pe

rc
en

ta
ge

0

0.075

0.15

0.225

0.3

Number of copies in hg19
1 2-10 11-100 101-1000 >1000

(a) HG002

Pe
rc

en
ta

ge

0

0.075

0.15

0.225

0.3

Number of copies in hg19
1 2-10 11-100 101-1000 >1000

(b) HG003

Pe
rc

en
ta

ge

0

0.075

0.15

0.225

0.3

Number of copies in hg19
1 2-10 11-100 101-1000 >1000

(c) HG004

Figure S1. Transpositions in the benchmark of (a) HG002, (b) HG003 and (c) HG004 were partitioned into categories according to how many times the transposed
(i.e. inserted) sequence appears in the reference. Most of them appear multiple times.

	Supplementary
	REFERENCES

