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Supplement 1: Methodology

The input to Disentangler is always a set of N sequences of fixed length L over alphabet A = {A,C,G,T}.
We denote the `-th symbol in the i-th sequence by xi,`, the i-th sequence by xi = (xi,1, . . . , xi,L) and

the entire data set by x = (x1, . . . , xN ).
We treat all sequences in our data set to be independent and identically distributed (i.i.d.), so we can

view a single sequence of length L as random variables X = (X1, . . . , XL). From modeling perspective,
the goal is to find a probability distribution over X, which we denote by P (X).

Supplement 1.1: Graphical Models

A Bayesian network [1] is a general probabilistic graphical model that consists of a directed acyclic graph
(DAG) G and a set of associated conditional probability parameters θG . Each node in the graph represents
exactly one random variable of interest, and G implies

P (X|G) =

L∏
`=1

PG(X`|Pa(X`)), (1)

where Pa(X`) returns the parents of node X` in G. Different DAGs thus encode different models assump-
tion that often differ in their model complexity. Bayesian network structure learning, i.e., inferring a
DAG directly from the data that that gives the optimal tradeoff between model complexity and data fit
is an NP-hard problem. The problem can be simplified by introducing domain-specific knowledge that
puts restrictions on the set of admissable DAGs.
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Figure 1: Probabilistic graphical models for transcription factor binding sites. Specifying the maximal
model complexity allows different degrees of proximal and distal dependency. a) PWM model
as graphical model b) First-order inhomogeneous Markov model (WAM) c) Second-order inho-
mogeneous Markov model d) tree-structured Bayesian network e) general Bayesian network.
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Some of these are of particular importance for the modeling of biological sequence motifs (Figure 1).
First, an empty DAG represents total statistical independence and is thus equivalent to a PWM model [2].
Second, setting Pa(X`) = {X`−d, . . . , X`−1} yields d-th order inhomogeneous Markov models, where the
case of d = 1 is also known as weight array model [3]. Third, limiting the indegree |Pa(X`)| ≤ 1 yields
a forest structure, which becomes a tree-structured network when |Pa(X`)| = 1 holds for all but one
sequence positions. Finally, limiting the indegree |Pa(X`)| ≤ d yields Bayesian network of (maximal)
order d.

Supplement 1.2: Parsimonious Context Trees

Learning conditional probability distributions in graphical models has the drawback that the number of
parameters grows exponentially with the number of parent variable. Hence, dependencies to multiple
conditioning variables can only be justified by a large amount of data. One way to circumvent this
problem, is to give structure to a conditional distribution, for instance via a context tree [4]. While being
effective to learn, context trees are still somewhat limited in their expressiveness, since they arise from
pruning the tree of context words, which corresponds to the parameter space of the model.

A parsimonious context trees [5], abbreviated PCT, allows to merge parameters based on the context
and thus allows a higher degree of flexibility. A PCT of depth d is formally defined as a rooted, balanced
tree that organizes the set of all possible realizations of the parent variables in different groups, represented
by the leaves in the tree. Except for the root, each node in PCT is labeled by a non-empty subset of
A, while labels of all children of an arbitrary inner node forming a partition of A. The cross product of
the labels on each path from a leaf to the root defines a non-empty subset of Ad and thus the set cross
products from of all leaves of a PCT forms a partition of Ad. Examples for PCT and CT, which show
the two structural differences PCTs allow, are given in Figure 2.
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Figure 2: Examples for context tree (left) and Parsimonious context tree (right) of depth 2 over DNA
alphabet. PCTs allow, in contrast to CTs, subtrees below nodes with more than one symbol,
which allows context specific-skipping of a variable. They also allow variable grouping of sym-
bols into child nodes of a common parent, whereas CTs allow at most one child node per parent
labeled with more than one symbol.

Learning PCTs with a given scoring function in reasonable time is challenging, but can, especially for
TFBS data, be solved with recent additions [6] to the original dynamic programming algorithm [5].

Supplement 1.3: Sparse graphical models for modeling TFBS

A PWM model ignores statistical dependencies among sequence positions entirely. Hence, the DAG is
fixed and no conditional probability distributions exist, so learning the model requires only fitting the
3 ∗ L free parameters.

As discussed in the previous section, using graphical models such inhomogeneous Markov models or
Bayesian networks entails the problem of either over- or underfitting. Hence, we use PCT-augmented
variants of them, that allow to effectively take into account proximal and distal dependencies within
transcription factor binding motifs.

Supplement 1.3.1: Proximal dependence model

We use a dth-order inhomogeneous Markov model that is equipped with a PCTs at each position, which
can reduce the actual order well below d. Here, the DAG (Figure 1) is fixed once d is selected, but there
is, in addition to fitting the parameters, the structure learning task of selecting the optimal PCTs at
each position based on the data. This inhomogeneous parsimonious Markov model (iPMM) is core of
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InMoDe [7]. In this work, we refer to it as proximal dependence model (of order d) in order to emphasize
the features that are modeled instead of the technical components that it uses.

Supplement 1.3.2: Distal dependence model

In analogy, a distal dependence model (of order d) is essentially a Bayesian network with |Pa(X`)| ≤ d
that is also equipped with a PCT for each conditional distribution, hereby assuming that parent variables
are ordered according to their position in the sequence. This model resembles variable-order Bayesian
networks [8], which use traditional context trees [4] instead of PCTs. Here, PCTs for all potential pairs
of variable and parent-variables are to be learned from the data. In addition the optimal DAG based on
the PCT-based local scores needs to be found. For this task, we use Edmonds’ algorithm for d = 1 [9, 10]
and dynamic programming [11] otherwise. Learning additionally requires selecting the optimal network
structure based on learned PCTs,

Supplement 1.4: Mixture models

The key idea behind a mixture model is to model P (X) not by a single distribution, but to assume the
existence of K component models. However, since we do not know which of the K models a particular
sequence is associated with, we model this as a latent variable U ∈ {1, . . . ,K}. Hence,

P (X|Θ) =

K∑
k=1

αkPk(X|Sk, θk) (2)

where αk = P (U = k) denotes the probability of latent variable U assuming component k, and Sk and
θk denote the structure and all parameters in the k-th component model.

While dependency type and order could differ among the K mixture components in principle, we
focus on the simple special case where all components are from the same model class. We thus consider
mixtures of PWM models, mixture of dth-order proximal dependence models, and mixtures of dth-order
distal dependence models.

In Equation 2, which defines the probability of an observed data point given the model, the number
of mixture components K is given. When learning a mixture model, K can also be a user-defined input
parameter [7]. A more sophisticated approach is to estimate K̂ directly from data, typically from a
small selection of candidate values, so that K̂ ∈ {Kmin, . . . ,Kmax} [12]. In this work, we always consider
Kmin = 1, so that only Kmax remains as user-input.

Supplement 1.5: FAB algorithm

The most flexible model combination under consideration is mixture model of up to Kmax components,
each of which can be a d-th order distal dependence models. For each component, we denote the model
structure, which includes DAG and PCTs, by Sk, and the set of required conditional probability param-
eters θk.

The learning task is thus to find (i) the number of mixture components K̂, (ii) the model structures

Ŝk for each of the K̂ components, and (iii) the conditional probability parameters θ̂k. Here, we use the
factorized information criterion (FIC) as objective function [13], which is an approximation of the marginal
log-likelihood of the mixture model. In practice, FIC cannot be computed exactly, since latent variables
in u, indicating the mixture component assignment, are involved. However, assuming a variational
distribution q over the latent variables u, a lower-bound F(q,Θ|x) ≤ FIC(Θ|x) can be computed. It is
given by

F(q,Θ|x) =

K∑
k=1

N∑
i=1

qi,k logPk(xi|θk)−
K∑
k=1

Dk
2

logN − Dα
2

logN −H(q) (3)

Here, D = |α− 1|, Dk denotes the number of free parameters in θk, and H(q) denotes the entropy of q.
For the special case of K = 1, the variational distribution q = 1 is fixed, so Equation 3 yields FIC

exactly which turns out to coincide with the BIC score [14] for a single-component model. For K > 1,
Equation 3 can be evaluated in closed form for arbitrary but fixed choices of q, but it may be a loose
lower bound to FIC if q is far from the true distribution. However, given some initial guess for it, we
can iteratively update model parameters and variational distribution. Hereby, we monotonically improve
F(q(t),Θ|x) for increasing t until it convergences to a local maximum.
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Assuming an initial variational distribution q(0) over u, we iteratively execute the following four steps:

q
(t)
ik ∝ α

(t−1)
k P (xi|θ(t−1)

k ) exp
−Dk

2α
(t−1)
k N

(4)

α
(t)
k =

N∑
i=1

q
(t)
i,k/N (5)

S
(t)
k = arg max

Sk

N∑
i=1

q
(t)
i,k lnP (xi|θ̂k(x,q(t))− Dk

2
ln

N∑
i=1

q
(t)
i,k (6)

[where θ̂k(x,q(t)) is the Maximum Likelihood estimate of θk on data x, weighted by q]

θ
(t)
k = arg max

θk

N∑
i=1

q
(t)
i,k lnP (xi|θ(t)

k ) (7)

This factorized asymptotic Bayesian (FAB) inference algorithm [13] is very similar in spirit to the EM
algorithm [15], which it actually contains as special case when all model structures S1, . . . , SKmax

are
fixed. Such a practically relevant special case within this work is when all component models are PWM
models. As the fourth step of the FAB algorithm shows, parameter estimation with given structure is
essentially a weighted maximum likelihood estimation.

The FAB algorithm terminates when the objective function (Equation 3) improves, within two iterations
steps, by less than a user-specified threshold (in all case studies 10−6 is used). Since the algorithm
finds only a local maximum of the target function, it needs to be started multiple times with different
initializations. However, depending on the size and the nature of the data set as well as the number of
component models and their maximal complexity, different amounts of restarts are needed to approximate
the global optimum with some confidence.

IMD learns at every step only a two-component PWM mixture model, which optimizes quickly. Here,
we use constantly 100 restarts, but terminate a single restarts that does not reach the the threshold of
10−6 after 60 seconds, so that a single recursion of IMD takes 6,000 second in the absolute worst case. For
MCA, we use the following criteria, which turned out to give reasonable compromise between invested
time and quality of the solution in preliminary studies:

• Three restarts at least for every model.

• As many additional restarts as possible within a given time limit.

• Terminate earlier when the best optimum was found within the first 1% of iteration steps.

The FAB algorithm is started with a maximal value Kmax of mixture components and has a shrinking
function [13] that reduces the number of components if they are not supported by the data. To be precise,

we remove a component k, if
∑N
i=1 qi,k < δ. In the current implementation, we use δ = max(3, 0.01 ∗N).

However, shrinking is some effective only after an excessive of running time due to the complexity of
the component models. In order to select number of mixture components and component complexity
simultaneously, it is thus needed to start the optimization with all possible values of K ≤ Kmax and pick
the best result. Since the running time is dominated by the run of Kmax, and most applications, such as
IMD and MCA need different values of Kmax anyway, this does not constitute a lot additional effort.
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Supplement 2: Tools used in case studies

Supplement 2.1: NPLB

No Promoter Left Behind (NPLB) is a tool for characterizing promoter architectures [16], but can be also
be used to cluster a set of pre-aligned binding sites, including a model selection step to infer the optimal
the number of clusters.

We use the latest version available at
https://github.com/NarlikarLab/NPLB

for building a command line version of the tool.

Supplement 2.2: DIVERSITY

DIVERSITY [17] is a motif discovery tool that attempts to find multiple modes, which are different
PWM models, of TFBS binding from ChIP-seq data. A webserver is available at:
http://diversity.ncl.res.in

We use the latest version available at
https://narlikarlab.github.io/DIVERSITY

for building a command line version of the tool.

Supplement 2.3: InMoDe

InMoDe [7] is a collection of seven tools for learning, leveraging, and visualizing intra-motif dependencies
within DNA binding sites and similar functional nucleotide sequences.

We use the command line application, which is available as runnable .jar at:
http://jstacs.de/index.php/InMoDe

For the motif discovery studies, we use the subtool “FlexibleMoDe” with default parameters, which
always returns two motifs. We consider the one that represents the majority of sequences as primary
motif of interest for further analysis with Disentangler.

Supplement 2.4: Slim-Dimont

Sparse local inhomogeneous mixture (Slim) models [18] are statistical models for discrete sequences (as
for instance DNA sequences) that allow for simultanous discriminative learning of features and model
parameters. Slim models can be used in combination with Dimont for de-novo motif discovery.

We use the command line application, which is available as runnable .jar at:
http://jstacs.de/index.php/Slim

If the tool returns more than one motif, we consider the first motif as primary motif of interest for
further analysis with Disentangler.

Supplement 2.5: BaMMmotif

Bayesian Markov Model motif discovery tool (BaMMmotif) [19] is an expectation maximization algorithm
for the de novo discovery of enriched motifs as modelled by higher-order Markov models.

Following the suggestions from the authors, we use the latest version BaMMmotif2, available from
https://github.com/soedinglab/BaMMmotif2

It requires initial seeds to start motif discovery, which can be, according to suggestions from the authors,
be obtained by first running another motif discovery software called PenGmotif, available from
https://github.com/soedinglab/PEnG-motif

If the sequential application of these tools returns more than one motif, we consider the first motif as
primary motif of interest for further analysis with Disentangler.
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Supplement 3: Data extraction

Supplement 3.1: JASPAR

When extracting data from the 2016 Jaspar release [20], we pick all TF data sets that have actual sequence
data, as opposed to sole weight matrices, available, and download the sites from
http://jaspar2016.genereg.net/html/DOWNLOAD/sites.tar.gz
For each data set, we extract the motif alignment proposed by the database, which is indicated by upper-
case letters in the sequence files. We further process the data by two simple steps for removing artifacts.
First, we discard all binding sites that contain ambiguous nucleotides. Second, we verify for each data
set that position-specific mononucleotide counts in the aligned binding sites indeed reproduce the weight
matrix given in the database. This is not true for a few data sets from C. elegans, where all sites that were
originally located on the forward strand are shifted into 3’ direction by 2bp in relation to those that were
originally located on the negative strand. We thus correct for this shift during the data extraction in order
to avoid artificial, shift-induced intra-motif dependencies. After having completed these pre-processing
steps, we discard all data sets that contain less than 100 sequences and finally retain the following 158
data sets. Data sets highlighted in boldface are discussed in the main manuscript in particular detail.

JASPAR ID Sequence length Sample size TF Name TFclass ID

MA0003.2 15 5098 TFAP2A 1.3.1.0.1
MA0007.2 15 11206 AR 2.1.1.1.4
MA0014.2 19 896 PAX5 3.2.2.2.2
MA0024.2 11 1059 E2F1 3.3.2.1.1
MA0035.3 11 17955 Gata1 2.2.1.1.1
MA0036.2 14 4380 GATA2 2.2.1.1.2
MA0037.2 8 4628 GATA3 2.2.1.1.3
MA0039.2 10 4311 Klf4 2.3.1.2.4
MA0047.2 12 800 Foxa2 3.3.1.1.2
MA0050.2 21 1362 IRF1 3.5.3.0.1
MA0052.2 15 1473 MEF2A 5.1.1.1.1
MA0058.2 10 24565 MAX 1.2.6.5.5
MA0060.1 16 116 NFYA
MA0060.2 18 8768 NFYA 4.2.1.0.1
MA0062.2 11 987 Gabpa 3.5.2.1.4
MA0065.2 15 855 Pparg::Rxra
MA0076.2 11 3427 ELK4
MA0079.3 11 8734 SP1 2.3.1.1.1
MA0080.3 15 63715 Spi1 3.5.2.5.1
MA0083.2 18 2277 SRF 5.1.2.0.1
MA0093.2 11 16842 Lin-14
MA0095.2 12 7171 YY1
MA0098.2 15 1868 Ets1 3.5.2.1.1
MA0100.2 10 979 Myb 3.5.1.1.1
MA0102.3 11 15318 CEBPA 1.1.8.1.1
MA0103.2 9 3555 ZEB1 3.1.8.3.1
MA0104.3 8 1403 Mycn 1.2.6.5.2
MA0105.3 11 5112 NFKB1 6.1.1.1.1
MA0106.2 15 1231 TP53
MA0112.2 20 467 ESR1 2.1.1.2.1
MA0114.2 15 16768 HNF4A 2.1.3.2.1
MA0137.2 15 2069 STAT1 6.2.1.0.1
MA0137.3 11 3629 STAT1 6.2.1.0.1
MA0138.2 11 867 REST 2.3.4.0.27
MA0139.1 11 943 CTCF 2.3.3.50.1
MA0140.2 18 4955 GATA1::TAL1
MA0141.1 12 3605 Esrrb 2.1.1.2.4
MA0142.1 15 1356 Pou5f1::Sox2
MA0143.1 15 662 Sox2 4.1.1.2.2
MA0143.3 8 1476 Sox2 4.1.1.2.2
MA0144.1 19 821 Stat3 6.2.1.0.3
MA0144.2 11 21620 STAT3 6.2.1.0.3
MA0145.1 14 4039 Tcfcp2l1
MA0146.1 20 468 Zfx 2.3.3.65.1
MA0147.1 10 681 Myc 1.2.6.5.1
MA0147.2 10 5335 Myc 1.2.6.5.1
MA0148.1 11 888 FOXA1 3.3.1.1.1
MA0148.3 15 22008 FOXA1 3.3.1.1.1
MA0149.1 18 105 EWSR1-FLI1
MA0150.2 15 726 Nfe2l2
MA0154.2 11 33855 EBF1 6.1.5.0.1
MA0161.1 6 6912 NFIC
MA0162.2 14 12256 EGR1 2.3.1.3.1
MA0216.2 11 2303 cad
MA0247.2 10 515 tin
MA0258.1 18 357 ESR2 2.3.1.3.2
MA0258.2 15 8243 ESR2 2.3.1.3.2
MA0259.1 8 104 ARNT::HIF1A
MA0261.1 6 158 lin-14
MA0452.2 14 1296 Kr
MA0461.1 8 7714 Atoh1 1.2.3.4.8
MA0462.1 11 10522 BATF::JUN
MA0463.1 14 956 Bcl6 2.3.3.22.2
MA0464.1 11 15804 Bhlhe40
MA0465.1 11 1597 CDX2 3.1.1.9.2
MA0466.1 11 99494 CEBPB 1.1.8.1.2
MA0467.1 11 2097 Crx 3.1.3.17.3
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MA0468.1 11 38217 DUX4 3.1.3.7.5
MA0469.1 11 2549 E2F3 3.3.2.1.3
MA0470.1 11 1878 E2F4 3.3.2.1.4
MA0471.1 11 2757 E2F6 3.3.2.1.6
MA0472.1 15 1246 EGR2 2.3.1.3.2
MA0473.1 13 13518 ELF1 3.5.2.3.1
MA0474.1 11 16727 Erg 3.5.2.1.6
MA0475.1 11 3667 FLI1 3.5.2.1.5
MA0476.1 11 29396 FOS 1.1.2.1.1
MA0477.1 11 5272 FOSL1 1.1.2.1.3
MA0478.1 11 5318 FOSL2 1.1.2.1.4
MA0479.1 11 8211 FOXH1 3.3.1.8.1
MA0480.1 11 2490 Foxo1 3.3.1.15.1
MA0481.1 15 311 FOXP1 3.3.1.16.1
MA0482.1 11 2746 Gata4 2.2.1.1.4
MA0483.1 11 1761 Gfi1b 2.3.3.21.2
MA0484.1 15 9452 HNF4G 2.1.3.2.2
MA0485.1 13 885 Hoxc9
MA0486.1 15 225 HSF1 3.4.1.0.1
MA0488.1 13 20968 JUN 1.1.1.1.1
MA0489.1 14 10956 JUN(var.2) 1.1.1.1.1
MA0490.1 11 16992 JUNB 1.1.1.1.2
MA0491.1 11 38710 JUND 1.1.1.1.3
MA0492.1 15 33631 JUND(var.2) 1.1.1.1.3
MA0493.1 11 526 Klf1 2.3.1.2.1
MA0494.1 19 1269 Nr1h3::Rxra
MA0495.1 18 53758 MAFF 1.1.3.2.1
MA0496.1 15 60790 MAFK 1.1.3.2.3
MA0497.1 15 2209 MEF2C 5.1.1.1.3
MA0498.1 15 2607 Meis1 3.1.4.2.1
MA0499.1 13 24514 Myod1 1.2.2.1.1
MA0500.1 11 19356 Myog 1.2.2.1.2
MA0501.1 15 1090 MAF::NFE2
MA0502.1 15 7020 NFYB 4.2.1.0.2
MA0503.1 11 3429 Nkx2-5(var.2) 3.1.2.17.22
MA0504.1 15 395 NR2C2 2.1.3.4.2
MA0505.1 15 1702 Nr5a2 2.1.5.0.2
MA0506.1 11 4624 NRF1 1.1.1.2.2
MA0507.1 13 2287 POU2F2 3.1.10.2.22
MA0508.1 15 4603 PRDM1 2.3.3.12.1
MA0509.1 14 2138 Rfx1 3.3.3.0.1
MA0510.1 15 3868 RFX5 3.3.3.0.5
MA0511.1 15 1062 RUNX2 6.4.1.0.1
MA0512.1 11 5348 Rxra 2.1.3.1.1
MA0513.1 13 899 SMAD2::SMAD3::SMAD4
MA0514.1 10 2067 Sox3 4.1.1.2.3
MA0515.1 10 249 Sox6 4.1.1.4.2
MA0516.1 15 1686 SP2 2.3.1.1.2
MA0517.1 15 620 STAT1::STAT2
MA0518.1 14 2873 Stat4 6.2.1.0.4
MA0519.1 11 16507 Stat5a::Stat5b
MA0520.1 15 1852 Stat6 6.2.1.0.7
MA0521.1 11 12895 Tcf12 1.2.1.0.3
MA0522.1 11 17261 Tcf3 4.1.3.0.2
MA0523.1 14 4188 TCF7L2 4.1.3.0.3
MA0524.1 15 18426 TFAP2C 1.3.1.0.3
MA0525.1 20 9632 TP63
MA0526.1 11 13819 USF2 1.2.6.2.2
MA0527.1 15 705 ZBTB33 2.3.2.1.122
MA0528.1 21 15235 ZNF263 2.3.3.0.799
MA0529.1 15 3985 BEAF-32
MA0530.1 15 474 cnc::maf-S
MA0531.1 15 1902 CTCF
MA0532.1 15 118 Stat92E
MA0533.1 21 4737 su(Hw)
MA0534.1 15 104 EcR::usp
MA0535.1 15 102 Mad
MA0536.1 11 869 pnr
MA0537.1 11 3368 blmp-1
MA0538.1 15 156 daf-12
MA0541.1 15 2206 efl-1
MA0542.1 8 722 elt-3
MA0543.1 15 1253 eor-1
MA0544.1 12 310 snpc-4
MA0545.1 11 381 hlh-1
MA0546.1 10 1010 pha-4
MA0547.1 15 318 skn-1
MA0548.1 15 150 AGL15
MA0550.1 14 153 BZR1
MA0552.1 14 114 PIF1
MA0553.1 8 147 SMZ
MA0554.1 15 888 SOC1
MA0556.1 15 291 AP3
MA0558.1 21 275 FLC
MA0559.1 14 558 PI
MA0560.1 10 527 PIF3
MA0561.1 8 335 PIF4
MA0562.1 8 286 PIF5
MA0563.1 11 150 SEP3
MA0940.1 13 1622 AP1
MA1012.1 14 142 AGL27
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Supplement 3.2: GTRD

We use ChIP-seq metaclusters for human and mouse from GTRD [21], available from:
http://gtrd.biouml.org/downloads/current/human_meta_clusters.interval.gz

http://gtrd.biouml.org/downloads/current/mouse_meta_clusters.interval.gz

Metaclusters aggregate multiple ChIP-seq experiments and evaluation pipelines, yielding a unique data
set for each TF, which is identified by its TFclass [22] ID. We associate TFclass IDs with JASPAR IDs
according to the transcription factor name or variants thereof.

However, not all TF names in JASPAR have a unique TFclass ID, and not all TFs that have a TFclass
ID are represented have meta clusters in GTRD. For all JASPAR data sets, where both TFclass ID can
be identified, and a metacluster is available, the TFclass ID is given in the table in the previous section.
These are the datasets-pairs that are used in the validation study (Figure 6C in the manuscript).

For each match, we extract the sequences for the metacluster from the human/mouse genome, and treat
it as positive data set. For each positive data set, we generate control data by learning a second-order
homogeneous Markov chain, and sampling 100,000 sequences of length L̄ from it, where L̄ is the mean
sequence length in the positive data set.

Supplement 3.3: ENCODE

we use all data sets in the Uniform TFBS track of the ENCODE project [23], which are available at
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform

as input data for motif discovery. The data sets differ in TF (antibody), cell line, treatment, or producing
lab, but have been processed with a uniform pipeline, yielding a ranked peak list with corresponding
enrichment scores. For each data set, we pick the top 5, 000 peaks and extract, for each peak, a 500bp
sequence fragment (250bp upstream/downstream from the peak center) the human genome, version hg19.
Extraction is done with a perl script
http://www.jstacs.de/downloads/extract_data.pl

available with documentation at
http://jstacs.de/index.php/Slim

in order to ensure that the sequence files have a .fasta annotation that compatible with Slim-Dimont [18].
This information, which contains sequence weights, is ignored by the other motif discovery tools.
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Supplement 4: Additional results

This section presents (i) additional figures that could not be included in the main manuscript for space
constraints, and (ii) some additional studies that address secondary aspects of the topic.

Supplement 4.1: Preliminary study: Finding optimal number of PWMs

We consider the following simple model selection task: Given a set of pre-aligned and strand-oriented
TFBS, select the optimal number PWMs for modeling the data when choosing from a pre-defined range
(1, . . . ,Kmax).

We compare the model selection results from Disentangler to two other sequence analysis tools that,
albeit originally proposed for slightly different use cases, contain the given task as special case. NPLB [16]
can be constrained to the given task by setting its λ-parameter to 0 and the minimal and maximal number
of architectures to 1 and Kmax. DIVERSITY [17] is directly applicable to the given task when the motifs
widths are fixed to the length of the input sequences, and the minimal maximal number of modes to 1
and Kmax.
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Figure 3: Cross-comparison of the predictions from Disentangler, NPLB, and DIVERSITY for determin-
ing the optimal among up to Kmax = 5 PWMs. The area of each circle is proportional to
number of data sets.

We apply these three tools to find the optimal number of PWM-motifs for 158 JASPAR data sets.
While Disentangler and NLPB give a solution even for very large data sets in a few hours at most,
DIVERSITY did not finish computations for nine data sets, all with N > 25, 000, within seven days.
For these nine data sets, both Disentangler and NPLB output the maximal number of five motifs to
be optimal. For the remaining 148 data sets, we plot the cross-comparisons among the predictions in
Figure 3. NPLB and Disentangler agree in their prediction for the majority of data sets, and in the case
of disagreement, the number of predicted motifs varies only slightly. DIVERSITY, however, appears to
be more conservative in this setting, predicting in many cases substantially less motifs than the two other
tools, but still more than one for the majority of data sets.

The observations are relevant in two aspects. First, the FIC-based learning approach used in Disen-
tangler is – when being limited to PWM models as mixture components – at least as liberal as these of
comparable tools, so it does not systematically under-estimate the number of motifs. Second, limiting
the models to PWMs leads in many cases to the prediction of multiple models due to additional sta-
tistical features in the data beyond PWM assumptions. Since each data set can be assumed to contain
binding sites of only one TF and little evidence for intermixing exists here, selecting the optimal number
of PWM models alone cannot accurately detect inter-motif heterogeneity, which justifying the need for a
new method like IMD.

9



Supplement 4.2: Intra-motif complexity measure on JASPAR data

Distribution of the intra-motif complexity measure over 158 JASPAR data sets for different models. The
rightmost column shows how many times a particular model is optimal. These values sum up to 153, the
PWM model is optimal for the remaining five data sets.
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According to MCA, mixtures of PWM models are a surprisingly poor representation of intra-motif com-
plexity average, even a five-component mixture hardly outperforms simple proximal dependency. A likely
explanation is that weak dependencies cannot be effectively represented with a mixture of PWMs. Even
the two-component mixture model requires, compared to a single PWM model, twice as many model pa-
rameters to be fitted, whereas dependency models that contain a local structure such as PCTs can spend
additional parameters only when needed. For some data sets, PWM mixtures are a better representation
than proximal dependency, though. One example are motifs with a conserved core of three nucleotides or
more, where a mixture model can take into account these features through multiple components. Proxi-
mal dependency cannot model correlations among both flanks surrounding the core, whereas a mixture
model can take into account these features through multiple components. However, distal dependency
captures the same features often in a more effective way. Compared to proximal dependency of the same
order, distal dependency never yields a lower intra-motif complexity, as the model classes are nested. The
more relevant comparison between proximal and distal dependency concerns the magnitude of improve-
ment achieved by the latter. Here, we observe an increase in intra-motif complexity of about 33% on
average, so only 2/3 of dependencies can be utilized by Markov models are variants thereof. Third-order
distal dependency performs overall best, with a median intra-motif complexity of 2.5. Mixtures with
first-order distal dependency components fail to improve on that, but they are faster to learn when the
motif is long.

Supplement 4.3: Dist(3) visualization for DUX4

The following figure is an addition to Figure 7 of the main manuscript. It visualizes the third-order distal
dependence model for the DUX4 data set from JASPAR. It achieves the highest intra-motif complexity
measure as well as the highest TPR for classifying the corresponding GTRD data set.
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Supplement 4.4: Benchmark validation on SwissRegulon TFBS

The main benchmark studies rely on data sets of pre-aligned TFBS from JASPAR. For further valida-
tion, we repeat the benchmark with pre-aligned TFBS from SwissRegulon [24]. http://swissregulon.
unibas.ch/data/hg19/hg19_sites.gff.gz

The alignments following the tag “Sequence” were extracted and compiled into individual data sets ac-
cording to the tag “Motif”. This preprocessing yields 683 data sets with the following distributions of
sequence length L and sample size N :
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Supplement 4.4.1: Benchmarking IMD

We follow the exact experimental setup that produces Figure 5A in the main manuscript. For this purpose
we construct intermixtures from data sets of same length L for all possible 7 ≤ L ≤ 17 (there are only few
data sets for lengths longer or shorter than that). Using the intermixture threshold T = 0.19, we obtain
the following results. The first plot below is an average over all sequence lengths, the remaining plots are
specific for each data set group. The results demonstrate that IMD also works on data from SwissRegulon
and that the threshold T is a robust choice that neither systematically over- nor underestimates the
number of intermixed data sets.
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Supplement 4.4.2: Benchmarking MCA

Next, we apply MCA and compute the intra-motif complexity measure for each model under consideration
and each data set: In contrast to data sets extracted from JASPAR, the vast majority of data sets

in SwissRegulon show only a very small amount of intra-motif complexity, which is likely due to the
particular computational pipeline that did predict them. For further benchmarking, we thus focus on the
66 data which have (i) ∆ > 1 and (ii) an associated data set in GTRD (identified by TFClass ID, in the
same way as for JASPAR data). For each of these data sets, we compute the correlation between ∆m

and the predictive performance on GTRD meta peaks.

Due to the small intra-motif complexities, the models differ only slightly. As a consequence, there is a
large number of insignificant correlations. The positive correlations outnumber the negative ones, but
only by a relative small margin, even when limiting the data sets only to the 10 data sets with the highest
∆, Hence, very strong conclusions cannot be drawn based on the available data.
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Supplement 4.5: Disentangler applied to output of Slim-Dimont

The following tables shows sequence logos of the primary motif reported by Slim-Dimont with default
parameters on ENCODE ChIP-seq data, together with the IMD clusters, restricted to these cases where
IMD return M̂ ∈ (2, 3). The ID given the in the table is the part of the filename that uniquely identifies
a given dataset within the Uniform TFBS track. In other words, the filename of a data set is given by
wgEncodeAwgTfbsIDUniPk.narrowPeak.gz
Data sets highlighted in boldface are the examples that are discussed in detail.

TF name ID Slim-Dimont
prediction

IMD cluster
1

IMD cluster
2

ATF2 HaibGm12878Atf2sc81188V0422111

ATF3 HaibA549Atf3V0422111Etoh02

ATF3 HaibGm12878Atf3Pcr1x

BCL11A HaibGm12878Bcl11aPcr1x

BCL11A HaibH1hescBcl11aPcr1x

BCL3 HaibGm12878Bcl3V0416101

BDP1 SydhK562Bdp1

BRCA SydhHelas3Brca1a300Iggrab

c-Fos SydhHelas3Cfos

c-Fos SydhGm12878Cfos

c-Jun SydhH1hescCjunIggrab

c-Jun SydhK562Cjun

c-Jun SydhK562CjunIfna30
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c-Jun SydhK562CjunIfna6h

c-Jun SydhK562CjunIfng30

c-Myc UtaH1hescCmyc

CBX3 HaibK562Cbx3sc101004V0422111

CCNT2 SydhK562Ccnt2

CEBPB HaibGm12878Cebpbsc150V0422111

CHD2 SydhH1hescChd2Iggrab

CHD2 SydhHelas3Chd2Iggrab

COREST SydhK562Corestab24166Iggrab

COREST SydhGm12878Corestsc30189Iggmus

COREST SydhHepg2Corestsc30189Iggrab

COREST SydhK562Corestsc30189Iggrab

E2F6 HaibK562E2f6V0416102

E2F6 SydhHelas3E2f6

E2F6 SydhK562E2f6Ucd

eGFP-HDAC8 UchicagoK562Ehdac8

eGFP-JunD UchicagoK562Ejund

Egr-1 HaibH1hescEgr1V0416102

ELK1 SydhK562Elk112771Iggrab

ELK1 SydhHelas3Elk112771Iggrab

EZH2 BroadHsmmtEzh239875

FOSL1 HaibH1hescFosl1sc183V0416102

FOSL1 HaibK562Fosl1sc183V0416101

FOXM1 HaibGm12878Foxm1sc502V0422111

FOXP2 HaibPfsk1Foxp2Pcr2x

GR HaibEcc1GrV0416102Dex100nm

GTF2F1 SydhHelas3Gtf2f1ab28179Iggrab

HDAC2 BroadK562Hdac2a300705a

HDAC2 HaibH1hescHdac2sc6296V0416102

HDAC2 HaibHepg2Hdac2sc6296V0416101

HDAC2 HaibK562Hdac2sc6296V0416102

HSF1 SydhHepg2Hsf1Forskln

IRF1 SydhK562Irf1Ifng6h

IRF4 HaibGm12878Irf4sc6059Pcr1x

JunD SydhH1hescJundIggrab

JunD SydhHepg2JundIggrab

JunD SydhK562JundIggrab

KAP1 SydhU2osKap1Ucd

Max SydhH1hescMaxUcd

MEF2C HaibGm12878Mef2csc13268V0416101

MTA3 HaibGm12878Mta3sc81325V0422111

Mxi1 SydhGm12878Mxi1Iggmus

Mxi1 SydhHepg2Mxi1

Mxi1 SydhK562Mxi1af4185Iggrab

MYBL2 HaibHepg2Mybl2sc81192V0422111
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NANOG HaibH1hescNanogsc33759V0416102

NFATC1 HaibGm12878Nfatc1sc17834V0422111

NFIC HaibHepg2Nficsc81335V0422111

NR2F2 HaibK562Nr2f2sc271940V0422111

NRSF HaibA549NrsfV0422111Etoh02

NRSF HaibGm12878NrsfPcr1x

NRSF HaibH1hescNrsfV0416102

NRSF HaibHepg2NrsfPcr2x

NRSF HaibHepg2NrsfV0416101

NRSF HaibK562NrsfV0416102

NRSF HaibPanc1NrsfPcr2x

NRSF HaibPfsk1NrsfPcr2x

NRSF HaibSknshNrsfPcr2x

NRSF HaibSknshNrsfV0416101

NRSF HaibU87NrsfPcr2x

p300 HaibGm12878P300Pcr1x

p300 HaibH1hescP300V0416102

p300 HaibHepg2P300V0416101

p300 SydhGm12878P300b

p300 SydhHelas3P300sc584sc584Iggrab

PAX5-C20 HaibGm12878Pax5c20Pcr1x

PAX5-C20 HaibGm12891Pax5c20V0416101

PAX5-N19 HaibGm12878Pax5n19Pcr1x

Pbx3 HaibGm12878Pbx3Pcr1x

PLU1 BroadK562Plu1

Pol2 HaibHepg2Pol2Pcr2x

Pol2 SydhGm12878Pol2

Pol2 SydhGm12892Pol2Iggmus

Pol2 SydhGm18505Pol2Iggmus

Pol2 SydhGm18951Pol2Iggmus

Pol2 SydhHuvecPol2

Pol2 SydhK562Pol2

Pol2 SydhK562Pol2Ifng6h

Pol2 UtaGlioblaPol2

Pol2 UtaH1hescPol2

Pol2 UtaHuvecPol2

Pol2 UtaMcf7Pol2Serumstim

Pol2-4H8 HaibH1hescPol24h8V0416102

Pol2-4H8 HaibHuvecPol24h8V0416101

Pol2-4H8 HaibSknmcPol24h8V0416101

Pol2-4H8 HaibU87Pol24h8V0416101

Pol2(b) BroadNhekPol2b

Pol2(phosphoS2) SydhK562Pol2s2Iggrab

RFX5 SydhGm12878Rfx5200401194Iggmus

RFX5 SydhH1hescRfx5200401194Iggrab
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RFX5 SydhK562Rfx5Iggrab

SIN3A SydhGm12878Sin3anb6001263Iggmus

SIN3A SydhH1hescSin3anb6001263Iggrab

Sin3Ak-20 HaibA549Sin3ak20V0422111Etoh02

Sin3Ak-20 HaibH1hescSin3ak20Pcr1x

SIX5 HaibGm12878Six5Pcr1x

SP1 HaibHepg2Sp1Pcr1x

SRF HaibK562SrfV0416101

SRF HaibH1hescSrfPcr1x

SRF HaibHepg2SrfV0416101

STAT1 SydhHelas3Stat1Ifng30

STAT1 SydhK562Stat1Ifna30

STAT2 SydhK562Stat2Ifna30

STAT5A HaibGm12878Stat5asc74442V0422111

STAT5A HaibK562Stat5asc74442V0422111

SUZ12 SydhH1hescSuz12Ucd

TAF1 HaibGm12878Taf1Pcr1x

TAF1 HaibH1hescTaf1V0416102

TAF1 HaibSknshTaf1V0416101

TBLR1 SydhGm12878Tblr1ab24550Iggmus

TBLR1 SydhK562Tblr1ab24550Iggrab

TBP SydhGm12878TbpIggmus

TCF12 HaibA549Tcf12V0422111Etoh02

TEAD4 HaibHepg2Tead4sc101184V0422111

TFIIIC SydhK562Tf3c110

TFIIIC SydhHelas3Tf3c110

THAP1 HaibK562Thap1sc98174V0416101

TR4 SydhHelas3Tr4

ZBTB33 HaibGm12878Zbtb33Pcr1x

ZNF274 SydhNt2d1Znf274Ucd

TF name ID Slim-Dimont
prediction

IMD cluster
1

IMD cluster
2

IMD cluster
3

ARID3A SydhK562Arid3asc8821Iggrab

ATF3 HaibHepg2Atf3V0416101

BCL3 HaibA549Bcl3V0422111Etoh02

BRF2 SydhHelas3Brf2

c-Jun SydhHepg2CjunIggrab

c-Jun SydhK562CjunIfng6h

COREST SydhHelas3Corestsc30189Iggrab

ELK1 SydhGm12878Elk112771Iggmus

ETS1 HaibA549Ets1V0422111Etoh02

ETS1 HaibGm12878Ets1Pcr1x

FOXP2 HaibSknmcFoxp2Pcr2x

HDAC6 BroadK562Hdac6a301341a
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Ini1 SydhHelas3Ini1Iggmus

IRF1 SydhK562Irf1Ifng30

MAZ SydhHelas3Mazab85725Iggrab

Mxi1 SydhH1hescMxi1Iggrab

NRSF HaibHelas3NrsfPcr1x

p300 SydhHepg2P300sc582Iggrab

Pol2 HaibHelas3Pol2Pcr1x

Pol2 SydhGm18526Pol2Iggmus

Pol2 SydhHepg2Pol2Forskln

Pol2 SydhK562Pol2Ifng30

Pol2 SydhMcf10aesPol2Tam

Pol2 UtaProgfibPol2

RFX5 SydhHepg2Rfx5200401194Iggrab

Sin3Ak-20 HaibPfsk1Sin3ak20V0416101

SIRT6 SydhK562Sirt6

SP1 HaibH1hescSp1Pcr1x

SP1 HaibK562Sp1Pcr1x

SP2 HaibHepg2Sp2V0422111

SP2 HaibK562Sp2sc643V0416102

SP4 HaibH1hescSp4v20V0422111

SREBP1 SydhHepg2Srebp1Insln

SRF HaibGm12878SrfPcr2x

TAF1 HaibK562Taf1V0416101

TBLR1 SydhK562Tblr1nb600270Iggrab

TBP SydhHepg2TbpIggrab

ZZZ3 SydhGm12878Zzz3

Supplement 4.6: Additional intermixture types

ED FJunD MEF2CPol
68.3%

31.7%

67.9%

22.1%

68.3%

31.7%

Δ=4.5

Δ=2.8Δ=7.4

Δ=5.6 Δ=3.5

Δ=3.5

Δ=20.4

Φ=0.40

Δ=11.7

Φ=0.20

Δ=11.8

Φ=0.24

There are three further noteworthy intermixture types not mentioned in the main manuscript.
Some data sets stem from ChIP-experiments against non-specific TFs or even the RNA polymerase for

different cell lines and conditions. In such cases, we may not expect to find an overrepresented motif at all,
even though motif discovery algorithms often report one. For Pol, we obtain indeed a fairly uninformative
sequence logo. IMD separates a weak TATA motif from the remaining sequences, although the decision
is close (Φ is only marginally above T ).

For JunD the two clusters are variants of the same motif that differ by inclusion/exclusion of a central
cytosine. Such a variable spacer has been used as a motivation for incorporating intra-motif dependencies
into motif discovery [18]. Provided JunD indeed binds to both motifs alike, IMD makes here an incorrect
prediction. These cases are rare, all but one are either Jun or JunD data sets.

There are also some cases in which the predicted binding sites are an intermix of similar sites in different
shifts or strand orientations, such as MEF2C. Such purely computational artifacts can be caused by
imperfect motif discovery (local optima) or by inappropriate input parameters. One example for the
latter are all 12 data sets for NRSF (see table above). This TF can recognize an exceptionally long motif
of more than 20bp that can not be fully captured with motif width 15.
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Supplement 4.7: Disentangler applied to output of DIVERSITY

This section shows additional figures from the application of Disentangler on DIVERSITY output that
were left out of the main manuscript for space constraints.

Supplement 4.7.1: CTCF

For the ChIP-seq data set of CTCF (K562 cell line, ID=UwK562Ctcf), the following nine modes are
reported to be optimal according to DIVERSITY:

Mode Sequence logo Mode Sequence logo Mode Sequence logo

1 4 7

2 5 8

3 6 9

After joining the binding sites of mode 5 and 6, IMD reveals that all these sites are bound by the same
factor (Φ = 0.079). Applying MCA yields the following assessment of intra-motif complexity:
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Visualizations of winning model (Dist(3)), baseline PWM, and two-component PWM mixture:

Model Visualization

PWM

PWM-Mix(2) α1 = 0.3

α2 = 0.7

Dist(3)
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For studying the prediction performance in different cell lines, we use all ENCODE ChIP-seq data sets
from the Uniform TFBS track that are annotated with Antibody=CTCF and Lab=UW.

The performance measure is the true positive rate under a false positive rate of 0.01:

ID PWM PWM-Mix(5) Dist(1)-Mix(3)

UwK562Ctcf 0.624 0.647 0.683
UwGm12878Ctcf 0.653 0.680 0.764
UwHepg2Ctcf 0.593 0.621 0.650
UwHelas3Ctcf 0.632 0.657 0.759
UwA549Ctcf 0.696 0.718 0.846
UwMcf7Ctcf 0.635 0.668 0.755
UwNhekCtcf 0.634 0.662 0.828
UwHuvecCtcf 0.638 0.660 0.614
UwNhlfCtcf 0.695 0.719 0.814
UwHvmfCtcf 0.675 0.695 0.632
UwAg04449Ctcf 0.646 0.677 0.674
UwAg04450Ctcf 0.699 0.721 0.718
UwAg09309Ctcf 0.676 0.705 0.761
UwAg09319Ctcf 0.692 0.713 0.752
UwAg10803Ctcf 0.734 0.742 0.777
UwAoafCtcf 0.655 0.678 0.738
UwBe2cCtcf 0.714 0.736 0.789
UwBjCtcf 0.669 0.692 0.719
UwCaco2Ctcf 0.640 0.659 0.809
UwGm06990Ctcf 0.662 0.685 0.642
UwGm12801Ctcf 0.691 0.715 0.650
UwGm12864Ctcf 0.658 0.679 0.804
UwGm12865Ctcf 0.641 0.673 0.718
UwGm12872Ctcf 0.658 0.679 0.617
UwGm12873Ctcf 0.663 0.691 0.812
UwGm12874Ctcf 0.624 0.650 0.704
UwGm12875Ctcf 0.614 0.649 0.727
UwHacCtcf 0.670 0.695 0.761
UwHaspCtcf 0.673 0.695 0.457
UwHbmecCtcf 0.685 0.705 0.731
UwHcfaaCtcf 0.660 0.676 0.767
UwHcmCtcf 0.684 0.705 0.667
UwHcpeCtcf 0.716 0.740 0.822
UwHct116Ctcf 0.663 0.692 0.725
UwHeeCtcf 0.708 0.724 0.771
UwHek293Ctcf 0.647 0.678 0.788
UwHffCtcf 0.681 0.705 0.628
UwHffmycCtcf 0.720 0.736 0.785
UwHl60Ctcf 0.658 0.682 0.620
UwHmecCtcf 0.664 0.696 0.838
UwHmfCtcf 0.730 0.740 0.681
UwHpafCtcf 0.713 0.726 0.726
UwHpfCtcf 0.677 0.691 0.807
UwHreCtcf 0.669 0.696 0.836
UwHrpeCtcf 0.692 0.711 0.640
UwNb4Ctcf 0.700 0.730 0.758
UwNhdfneoCtcf 0.718 0.732 0.797
UwRptecCtcf 0.737 0.761 0.782
UwSaecCtcf 0.635 0.657 0.661
UwSknshraCtcf 0.642 0.667 0.832
UwWerirb1Ctcf 0.569 0.592 0.667
UwWi38Ctcf 0.638 0.660 0.659
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Supplement 4.7.2: YY1

For the ChIP-seq data set of YY1 (K562 cell line, ID=SydhK562Yy1Ucd), the following nine modes are
reported to be optimal according to DIVERSITY:

Mode Sequence logo Mode Sequence logo

1 6

2 7

3 8

4 9

5 10

After joining the binding sites of mode 3, 5, 6, 9, and 10 into one data set, IMD revals that all these sites
are bound by the same factor (Φ = 0.13).
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Visualizations of winning model, baseline PWM, and five-component PWM mixture:

Model Visualization

PWM

PWM-Mix(5) α1 = 0.154

α1 = 0.531

α1 = 0.260

α1 = 0.011

α1 = 0.044

Dist(1)-Mix(3) α1 = 0.697

α1 = 0.270

α1 = 0.033
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For studying the prediction performance in different cell lines, we use all ENCODE ChIP-seq data sets
from the Uniform TFBS track that are annotated with Antibody=YY1.

Due to the small number of data sets, we do not focus on a single lab. The performance measure is the
true positive rate under a false positive rate of 0.01:

Cell line ID PWM PWM-Mix(5) Dist(1)-Mix(3)

K562 SydhK562Yy1Ucd 0.355 0.404 0.458
GM12892 HaibGm12892Yy1V0416101 0.310 0.330 0.441
K562 HaibK562Yy1V0416102 0.328 0.363 0.427
Gm12878 SydhGm12878Yy1 0.302 0.328 0.330
Nt2d1 SydhNt2d1Yy1Ucd 0.316 0.366 0.461

Supplement 4.8: Stability analysis

Another question worthwhile to investigate is how stable the solutions of IMD and MCA are for indi-
vidual data sets. To address this issue, we pick nine sets of aligned TFBS that are discussed in the
manuscript/supplement in more detail:

• DUX4 from JASPAR (manuscript Figure 5)

• the six intermixture examples: c-Fos, SRF, and TFIIIC (manuscript Figure 7), Pol2, JunD, and
MEF2C (Supplement 4.6)

• the two merged datasets from DIVERSITY output: CTCF and YY1 (manuscript Figure 9)

For each of these cases, we carry out bootstrapping by sampling (with replacement) ten data sets of same
size from the original data set. For each of the resulting 10 × 9 resamples, we apply both subtools and
discuss the results below.

Supplement 4.8.1: Stability of IMD

We observe that IMD is very stable and yields the same intermixture number as the original data set for
the majority of cases (90%):

Resample DUX4 c-Fos SRF TFIIIC Pol2 JunD MEF2C CTCF YY1

1 1 2 2 2 2 2 2 1 1
2 1 2 3 2 2 2 2 1 1
3 1 2 3 2 2 2 2 1 1
4 1 2 3 1 2 2 2 1 1
5 1 2 3 2 2 2 2 1 1
6 1 2 3 2 4 2 2 1 1
7 1 2 3 2 2 2 2 1 1
8 1 2 2 1 2 2 2 1 1
9 1 2 2 2 2 2 2 1 1

10 1 2 3 2 2 2 2 1 1

original 1 2 2 2 2 2 2 1 1

One exception is SRF, where in 7 of 10 resamples, the second cluster which contains putative nonfunc-
tional sequences, is divided again in two different clusters. For example, SRF resample 2 yields the
following three IMD-clusters:

Such a behavior is uncritical, as the purpose of IMD is to remove possible artifacts from the motif of
interest, and that is accomplished for SRF in every case. For TFIIIC, we observe that no intermixture
is detected in two of ten resamples, which can be attributed to the fact that the intermixture measure
of the original data set is only marginally above the threshold of 0.19 (cf. manuscript Figure 7C). Small
fluctuations in the composition of the data set may thus lead to a different decision, but except for this
close case, intermixtures (or absence thereof) is always recognized as such.
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Supplement 4.8.2: Stability of MCA

For MCA, we plot the intra-motif complexity for each TF and each model, averaged over the ten re-
samples. The error bars on top of the barplots indicate double standard error. We observe that the
assessment of different models by MCA is stable for each data set as the standard errors are small:
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Supplement 5: Disentangler software

Disentangler is implemented in Java using the Jstacs library [25] and requires an existent Java installation
(8u74 or later).

Supplement 5.1: Subtools

The software contains the two subtools of Disentangler, following the terminology of the manuscript
they are called “Intermixture detection” and “Motif complexity analysis”. In addition, there is a tool
“SequenceScan” that can be used to search for motif hits within target sequences based on models that
are returned by “Motif complexity analysis”.

All tools expect a set of aligned, gapless, TFBS of the same length as input. If the content of the input
file starts with ’>’, it is interpreted as FastA file. Otherwise it is interpreted as plain text, where every
line contains a single sequence. The input expects upper- and lower case letters of the standard DNA
alphabet A,C,G,T. If other symbols from the IUPAC code (such as N) are encountered, they are replaced
by a random sample from the distribution of A,C,G,T in the data set.

Supplement 5.1.1: Intermixture detection

If ”JSD weights” is disabled, the intermixture measure is computed on a non-weighted Jenson-Shannon
divergence. Option included for experimental purposes, for practical use keeping the default is strongly
recommended. Smaller values for ”Restarts”, ”Time limit” and ”Termination threshold” can speed up
every recursive step, which can be beneficial for testing purposes, but they may affect quality of the
results. The tool returns a text file with the intermixture number and all clusters produced by IMD as
text files of the binding sites and sequence logos of the mononucleotide statistics. The values for the
intermixture measure at each recursive step can be found in the protocol.

Supplement 5.1.2: Motif complexity analysis

The tool allows to learn of proximal/distal dependency models and mixtures thereof. Note: Learning
distal dependence models of order greater than one can be very time- and memory consuming if the
input sequences are long. It is not recommended for motifs of length greater than 20. The tool returns
a text-file containing the intra-motif complexity measure of the data set, a visualization of the learned
model, and a storable (.xml) file that can be used as input to “Sequence scan”. The mixture weights and
model complexities of each component can be found in the protocol.

Supplement 5.1.3: Sequence scan

This tool is a variant of the InMoDe ScanApp [7], with increased support for different types of models,
that is, mixture models and distal dependence models. ”Input model” needs to be an model file (in .xml
format) produced by “Motif complexity analysis”. The ”FPR” pertains here to the number of sequence
that have at least one hit. The tool returns a list with coordinates of motif hits as well as the extracted
binding sites.

Supplement 5.2: User interfaces

There are two versions of a runnable .jar that differ only in the user interface.

Supplement 5.2.1: GUI

The graphical user interface (GUI) DisentanglerGUI.jar allows us to run Disentangler in an interactive
mode locally on a desktop computer. It is sufficient to explore the functionality for testing purposes and
to perform single analyses. For larger studies involving more than a few data sets, it is recommended to
use the command line interface (next section).

The GUI can be started by calling

java -jar DisentanglerGUI.jar

or by double-clicking on the .jar-file.
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Supplement 5.2.2: CLI

The command line interface (CLI) is contained in DisentanglerCLI.jar. An overview over is obtained
by calling

java -jar DisentanglerCLI.jar

which yields

Available tools:

imd - Intermixture detection

mca - Motif complexity analysis

scan - Sequence scan

Syntax: java -jar DisentanglerCLI.jar <toolname> [<parameter=value> ...]

Further info about the tools is given with

java -jar DisentanglerCLI.jar <toolname> info

Tool parameters are listed with

java -jar DisentanglerCLI.jar <toolname>

Calling DisentanglerCLI.jar with the corresponding tool name, e.g.,

java -jar DisentanglerCLI.jar imd

yields a list of input parameters (as the mandatory input file is missing):

Parameters of tool "Intermixture detection" (imd, version: 1.0):

i - Input data (The file containing the input data.) = null

it - Intermixture threshold (Threshold on intermixture measure.,

valid range = [0.0, 1.0], default = 0.19) = 0.19

w - Weighted JSD (If enabled, JSD is computed as weighted average.,

default = true) = true

n - Number of restarts (The total number of restarts to be carried out.,

valid range = [1, 10000], default = 100) = 100

t - Time limit (Upper time limit for termination of an individual run in seconds.,

valid range = [0.01, 100000.0], default = 60.0) = 60.0

tt - Termination threshold (Stop FAB algorithm at this FIC-difference.,

valid range = [1.0E-10, 1.0], default = 1.0E-6) = 1.0E-6

outdir - The output directory, defaults to the current working directory (.) = .

At least one parameter has not been set (correctly).

The command

java -jar DisentanglerCLI.jar imd i=test.txt

runs IMD with default threshold on the given input file.
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