Samarium(II) folding cascades involving hydrogen atom transfer for the synthesis of complex polycycles

Plesniak, M. P. et al.

 $Correspondence \ to: \ david.j.procter@manchester.ac.uk$

Supplementary Methods

All experiments were performed under a positive pressure of nitrogen using dry solvents unless stated otherwise. THF was distilled from sodium/benzophenone and CH₂Cl₂ was distilled from CaH₂. K₂CO₃ was oven-dried for 48 h at 140 °C. All other solvents and reagents were purchased from commercial sources and used as received. Reactions run at cryogenic temperatures for extended periods of time were cooled using a HAAKE[®] EK90 immersion cooler. ¹H NMR spectra were recorded at room temperature on a Bruker 400 or 500 MHz spectrometer. ¹³C NMR spectra were recorded at 100 or 125 MHz, respectively. All NMR spectra are referenced from the residual nondeuterated solvent peak. Assignments were determined either on the basis of unambiguous chemical shifts or coupling patterns, COSY, HSQC, HMBC, NOESY experiments. Chemical shift values are reported in parts per million (ppm) on the δ scale, with coupling constants (J) reported in Hz. Splitting patterns are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (b). Infrared spectra were recorded as evaporated films or neat using a FT/IR spectrometer, and wavelengths of maximum absorbance (v_{max}) are quoted in wave numbers (cm^{-1}) . Mass spectra were obtained from the Mass Spectroscopy Service of the University of Manchester using positive or negative electrospray (ESI) or atmospheric pressure chemical ionisation (APCI), and the parent ions [M+H]⁺, [M+Na]⁺ or [M+NH₄]⁺ are quoted. Melting points were measured on solids as obtained after chromatography or recrystallization when appropriate and are uncorrected. Column chromatography was carried out using 40–63 µ, 60 Å silica gel and the procedure included the evaporation of solvents in vacuo. Routine TLC analysis was carried out on silica gel 60 F254 coated aluminium sheets of 0.2 mm thickness. Plates were visualised using a 254 nm ultraviolet lamp and developed by dipping in aqueous potassium permanganate solution or ethanolic phosphomolybdic acid solution followed by heating.

Ethyl 5-oxodec-9-enoate S1

To a stirred solution of glutaric acid monoethyl ester chloride (3.50 mL, 22.0 mmol), and CuI (381 mg, 2.00 mmol) in THF (40 mL), pent-4-en-1-ylmagnesium bromide (46.0 mL, 20.0 mmol, 0.44 M in THF) was added during 1 h at -15 °C. After addition was complete, reaction was stirred for an additional 1 h at -15 °C and quenched with saturated aqueous NH₄Cl. The phases were separated and the aqueous layer washed with Et₂O (3 × 20 mL). The combined

organic phases were washed with brine (20 mL), dried over MgSO₄ and concentrated *in vacuo* to give an orange oil which was purified by flash chromatography eluting with EtOAc/Hexane (3:97 to give the title compound as a yellow oil (3.73 g, 17.6 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.1, 3 H, OCH₂CH₃), 1.68 (p, *J* = 7.4 Hz, 2 H, CH₂=CHCH₂CH₂CH₂CH₂), 1.89 (p, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)OEt), 2.02 – 2.10 (m, 2 H, CH₂=CHCH₂CH₂CH₂CH₂), 2.32 (t, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)OEt), 2.41 (t, *J* = 7.5 Hz, 2 H, CH₂=CHCH₂CH₂CH₂CH₂), 2.47 (t, *J* = 7.2 Hz, 2 H, CH₂CH₂CH₂C(O)OEt), 4.13 (q, *J* = 7.2 Hz, 2 H, OCH₂CH₃), 4.93 – 5.06 (m, 2 H, CH₂=CH), 5.76 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CH) pm. ¹³C NMR (100 MHz, CDCl₃) δ 14.2 (OCH₂CH₃), 18.9 (CH₂CH₂CH₂C(O)OEt), 22.8 (CH₂=CHCH₂CH₂CH₂CH₂), 33.1 (CH₂=CHCH₂CH₂CH₂), 33.3 (CH₂CH₂CH₂C(O)OEt), 41.6 (CH₂=CHCH₂CH₂CH₂), 41.9 (CH₂CH₂CH₂C(O)OEt), 60.4 (OCH₂CH₃), 115.2 (CH₂=CH), 137.9 (CH₂=CH), 173.2 (C(O)OEt), 210.1 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2938, 1731, 1712, 1640, 1446, 1414, 1373, 1178, 1095, 1029, 998, 911, 856, 775. HRMS calcd for C₁₂H₂₀O₃Na [M + Na]⁺: 235.1310, found: 235.1309.

Phenyl 5-oxodec-9-enoate S2

To a flask charged with ethyl 5-oxodec-9-enoate (1 g, 4.7 mmol) was added 2 M NaOH (4.71 mL, 9.4 mmol) and H₂O (2.5 mL) and stirred at room temperature for 2 h. The reaction mixture was diluted with H₂O (5 mL) and washed with hexane (2×10 mL). The organic layers were discarded and the aqueous phase acidified with 1 M HCl to approximately pH 1 and extracted with EtOAc (3×15 mL). The combined organic phases were washed with brine (15 mL), dried over MgSO₄ and concentrated *in vacuo* to give a white solid which was used in the next step without further purification. To a solution of the resulting crude carboxylic acid (0.42 g, 2.25 mmol) and phenol (0.21 g, 2.25 mmol) in CH₂Cl₂ (5 mL) was added EDCI and DMAP. After 16 h the reaction mixture was quenched with saturated aqueous NaHCO3 and diluted with CH₂Cl₂. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, concentrated in vacuo and purified by column chromatography eluting with EtOAc/Hexane (5:98) to give the title compound as a colorless oil (0.39 g, 1.49 mmol, 67%). ¹H NMR (500 MHz, CDCl₃) δ 1.65 (p, J = 7.4 Hz, 2H, CH₂=CHCH₂CH₂CH₂), 2.00 (m, 4 H, $CH_2CH_2CH_2C(O)OPh$, $CH_2 = CHCH_2CH_2CH_2),$ 2.38 J2 (t, = 7.4 Hz, H. CH₂=CHCH₂CH₂CH₂CH₂), 2.53 (m, 4 H, CH₂CH₂CH₂C(O)OPh, CH₂CH₂CH₂C(O)OPh), 4.90 -

5.00 (m, 2H, CH₂=CH), 5.72 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H, CH₂=CH), 7.00 – 7.05 (m, 2H, ArCH), 7.15 – 7.21 (m, 1H, ArCH), 7.33 (t, J = 7.9 Hz, 2H, ArCH) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 19.0 (CH₂CH₂CH₂C(O)OPh), 23.0 (CH₂=CHCH₂CH₂CH₂CH₂), 33.2 (CH₂=CHCH₂CH₂CH₂CH₂), 33.5 (CH₂CH₂CH₂C(O)OPh), 41.5 (CH₂=CHCH₂CH₂CH₂CH₂), 42.1 (CH₂CH₂CH₂C(O)OPh), 115.4 (CH=CH₂), 121.6 (ArCH), 125.9 (ArCH), 129.5 (ArCH), 138.0 (CH=CH₂), 150.8 (OArCH), 171.8 (C(O)OAr), 210.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2936, 1756, 1711, 1640, 1593, 1493, 1456, 1413, 1374, 1311, 1162, 1131, 999, 915, 749, 690. HRMS calcd for C₁₆H₂₀O₃Na [M + Na]⁺: 283.1305, found 283.1291.

Octa-1,7-dien-3-one S3

To an oven-dried, 3-neck round bottom flask, cooled under nitrogen, zinc dust (9.80 g, 150 mmol) and iodine (2.50 g, 10.0 mmol) were added and the flask flushed with nitrogen before the addition of dimethylacetamide (100 ml). After the decolourisation of the reaction mixture, 5-bromo-1-pentene (11.8 ml, 100 mmol) was added and the reaction was heated at 80 °C for 5 h. After cooling to room temperature, the reaction mixture was sparged with nitrogen followed by the addition of Pd(PPh₃)₄ (1.10 g, 1.00 mmol) and acryloyl chloride (8.89 ml, 110 mmol). After stirring over night at room temperature, the reaction was quenched with 0.05 M HCl (100 ml) and filtered. The aqueous phase was diluted with H₂O (200 mL) and extracted with Et₂O $(3 \times 100 \text{ mL})$. The combined organic phases were washed with saturated aqueous NaHCO₃ (50 mL), 10% aq. LiCl (50 mL) and brine (50 mL). The combined aqueous washes were back extracted with Et₂O (2×50 mL). The combined organic phases were dried over MgSO₄, concentrated in vacuo at room temperature and purified by column chromatography eluting with Et₂O/pentane (0:100 to 5:95) to give the product as a colourless oil (7.09 g, 57.0 mmol, 57%). ¹H NMR (400 MHz, CDCl₃) δ 1.74 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.05 – 2.14 (m, 2 H, $CH_2CH_2CH_2C(O)$), 2.60 (t, J = 7.4 Hz, 2 H, $CH_2CH_2CH_2C(O)$), 4.95 – 5.07 (m, 2 H, CH2=CHCH2), 5.73 – 5.86 (m, 2 H, CH2=CHCH2, 1 H from C(O)CH=CHcisHtrans), 6.22 (dd, J = 17.6, 1.2 Hz, 1 H, C(O)CH=CH_{cis}H_{trans}), 6.36 (dd, J = 17.6, 10.5 Hz, 1 H, $C(O)CH=CH_{cis}H_{trans})$. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 33.0 (CH₂CH₂CH₂C(O)), 38.6 (CH₂CH₂CH₂C(O)), 115.3 (CH₂=CHCH₂), 127.9 (C(O)CH=CH₂), 136.5 (C(O)CH=CH₂), 137.8 (CH₂=CHCH₂), 200.4 (C(O)) ppm. Consistent with the literature.¹

Dimethyl 2-cyclopentylmalonate S4

General procedure **A**. To a solution of dimethyl malonate (1.72 mL, 15.0 mmol) and cyclopentyl iodide (2.60 mL, 22.5 mmol) in DMSO (15 mL) was added KO*t*-Bu (2.02 g, 18.0 mmol) and the reaction stirred for 4 h at 100 °C. After cooling, the reaction was quenched with H₂O (10 mL) and acetic acid (4 mL). The organic layer was then extracted with Et₂O (3 × 20 mL). The combined organic phases were dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (4:96) to give the product as a colourless oil (2.30 g, 11.5 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 1.16 – 1.29 (m, 2 H, CH_aH_bCH₂CH₂H_aH_b), 1.51 – 1.70 (m, 4 H, CH₂CH₂CH₂CH₂), 1.79 – 1.91 (m, 2 H, CH_aH_bCH₂CH₂CH_aH_b), 2.42 – 2.56 (m, 1 H, CHCHC(O)OMe), 3.22 (d, *J* = 10.2 Hz, 1 H, CHCHC(O)OMe), 3.73 (s, 6 H, 2 × OCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 24.9 (CH₂CH₂CH₂CH₂), 30.8 (CH₂CH₂CH₂CH₂), 39.7 (CHCHC(O)OMe), 52.3 (OCH₃), 57.0 (CHCHC(O)OMe), 169.5 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2953, 2870, 1732, 1434, 1323, 1197, 1145, 1021, 895. HRMS calcd for C₁₀H₁₆O₄K [M + K]⁺: 239.0680, found 239.0679.

Dimethyl 2-cycloheptylmalonate S5

Prepared according to general procedure **A** using dimethylmalonate (800 µL, 7.00 mmol), cycloheptyl iodide (1.21 g, 5.39 mmol), KO*t*-Bu (726 mg, 6.47 mmol) and DMSO (6 mL) to give the title compound as a colourless oil (940 mg, 4.12 mmol, 76%). ¹H NMR (400 MHz, CDCl₃) δ 1.25 – 1.39 (m, 2 H, C*H*₂), 1.41 – 1.54 (m, 4 H, 2 × C*H*₂), 1.55 – 1.73 (m, 6 H, 3 × C*H*₂), 2.24 – 2.34 (m, 1 H, C*H*(CH₂)₂), 3.29 (d, *J* = 8.7 Hz, 1 H, C*H*CH(CH₂)₂), 3.73 (s, 6 H, 2 × OC*H*₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 26.4 (*C*H₂), 28.0 (*C*H₂), 31.9 (*C*H₂), 39.5 (*C*H(CH₂)₂), 52.3 (*C*HCH(CH₂)₂), 58.4 (OCH₃), 169.4 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹):

¹ Qian, M.; Covey, D. F. Adv. Synth. Catal. **2010**, 352 (11–12), 2057–2061.

2924, 2855, 1732, 1434, 1246, 1194, 1149, 1017. HRMS calcd for $C_{12}H_{20}O_4$ [M + K]⁺: 267.0993, found 267.0992.

Dimethyl 2-(4-chlorobenzyl)malonate S6

General procedure **B**. NaH (0.40 g, 10.0 mmol) was added to an oven dried flask under nitrogen atmosphere before suspension in THF (50 mL). The reaction mixture was cooled to 0 °C followed by dropwise addition of dimethyl malonate (2.30 mL, 20.0 mmol). The reaction mixture was allowed to warm to room temperature and was stirred for 30 min. After that time, the reaction mixture was cooled to 0 °C followed by addition of 1-(bromomethyl)-4chlorobenzene (1.25 mL, 10.0 mmol). After stirring at room temperature for 14 h, the reaction mixture was quenched with H₂O (30 ml) and extracted with Et₂O (3×50 mL). The combined organic phases were then washed with brine (20 mL), dried with MgSO₄, concentrated in vacuo and purified by column chromatography eluting with EtOAc/toluene (2:98) to give the title compound as a colourless oil (1.99 g, 7.76 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 3.19 (d, *J* = 7.9 Hz, 2 H, CHCH₂), 3.63 (t, *J* = 7.9 Hz, 1 H, CHCH₂), 3,70 (s, 6 H, 2 × OCH₃), 7.11 (d, J = 8.5 Hz, 2 H, ArCH), 7.25 (d, J = 8.5 Hz, 2 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 34.2 (CHCH₂), 52.8 (OCH₃), 53.6 (CHCH₂), 128.9 (ArCH), 130.3 (ArCH), 132.9 (ArC), 136.3 (ArC), 169.1 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2954, 1733, 1492, 1435, 1410, 1345, 1283, 1230, 1151, 1093, 1065, 1016, 962, 813, 717, 668. HRMS calcd for C₁₂H₁₃ClO₄K [M+K]⁺: 295.0139, found 295.0134.

Dimethyl 2-(4-fluorobenzyl)malonate S7

Prepared according to general procedure **B** using dimethyl malonate (2.30 mL, 20.0 mmol), 1-(bromomethyl)-4-fluorobenzene (2.05 g, 10.0 mmol), NaH (0.40 g, 10.0 mmol) and THF (50 mL) to give the title compound as a colourless oil (2.00 g, 8.33 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 3.19 (d, *J* = 7.8 Hz, 2 H, CHC*H*₂), 3.63 (t, *J* = 7.8 Hz, 1 H, C*H*CH₂), 3,70 (s, 6 H, 2 × OC*H*₃), 6.93 – 7.00 (m, 2 H, ArC*H*), 7.13 – 7.18 (m, 2 H, ArC*H*). ¹³C NMR (100 MHz, CDCl₃) δ 34.1 (CHCH₂), 52.8 (OCH₃), 53.8 (CHCH₂), 115.6 (d, *J* = 21.2 Hz, ArCH), 130.5 (d, *J* = 8.1 Hz, ArCH), 133.5 (d, *J* = 3.4 Hz, ArC), 161.9 (d, *J* = 244.8 Hz, ArC), 169.2 (*C*(O)O) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.95 ppm. IR v_{max} (neat/cm⁻¹): 2956, 1734, 1602, 1510, 1436, 1345, 1222, 1158, 1097, 1064, 1026, 961, 826, 763, 668. HRMS calcd for C₁₂H₁₃FO₄K [M+K]⁺: 279.0435, found 279.0429.

Dimethyl 2-(3,5-dimethylbenzyl)malonate S8

Prepared according to general procedure **B** using dimethyl malonate (2.30 mL, 20.0 mmol), 1-(bromomethyl)-3,5-dimethylbenzene (1.99 g, 10.0 mmol), NaH (0.40 g, 10.0 mmol) and THF (50 mL) to give the title compound as a colourless oil (2.14 g, 8.55 mmol, 86%). ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 6 H, 2 × ArC-CH₃), 3.14 (d, *J* = 7.8 Hz, 2 H, CHCH₂), 3.65 (t, *J* = 7.8 Hz, 1 H, CHCH₂), 3,71 (s, 6 H, 2 × OCH₃), 6.80 (s, 2 H, ArCH), 6.85 (s, 1 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (ArC-CH₃), 34.8 (CHCH₂), 52.7 (OCH₃), 53.8 (CHCH₂), 126.7 (ArCH), 128.6 (ArCH), 137.8 (ArC), 138.2 (ArC), 169.5 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2953, 1733, 1607, 1435, 1345, 1269, 1227, 1199, 1148, 1067, 1030, 963, 853, 697, 668. HRMS calcd for C₁₄H₁₈O₄Na [M+Na]⁺: 273.1103, found 273.1096.

Dimethyl 2-(4-methoxybenzyl)malonate (S9)

Prepared according to general procedure **B** using dimethyl malonate (4.38 mL, 38.3 mmol), 1-(chloromethyl)-4-methoxybenzene (3 g, 19.2 mmol), NaH (0.46 g, 19.2 mmol) and THF (96 mL) to give the title compound as a colourless oil (0.7519 g, 2.98 mmol, 16%). ¹H NMR (500 MHz, CDCl₃) δ 3.18 (d, *J* = 7.8 Hz, 2 H, CHC*H*₂), 3.65 (t, *J* = 7.7 Hz, 1 H, C*H*CH₂), 3.72 (s, 6 H, 2 × OC*H*₃), 3.80 (s, 3 H, ArOC*H*₃), 6.84 (d, *J* = 8.2 Hz, 2 H, ArC*H*), 7.13 (d, *J* = 8.2 Hz, 2 H, ArC*H*). ¹³C NMR (126 MHz, CDCl₃) δ 34.1 (CHCH₂), 52.7 (OCH₃), 54.0 (CHCH₂), 55.3 (ArOCH₃), 114.1(ArCH), 129.8 (ArC), 129.9 (ArCH), 158.5 (ArC), 169.4 (*C*(O)O). IR v_{max} (neat/cm⁻¹): 2954, 2361, 1732, 1435, 1344, 1245, 1177, 1149, 1030, 912, 821, 731. HRMS calcd for $C_{13}H_{17}O_5[M + H]^+$: 253.1071, found 253.1065.

Diethyl 2-(propan-2-yl-2-d)malonate S10

EtO₂C CO₂Et

To a suspension of NaBD₄ (300 mg, 7.16 mmol) in EtOH (4 mL), diethyl isopropylidenemalonate (1.43 g, 7.16 mmol) was added dropwise at 0 °C. The reaction was allowed to warm to room temperature and stirred for 16 h before being quenched with brine (40 mL) and extracted with Et₂O (4 × 30 mL). The combined organic phases were then dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with Et₂O/Pentane (5:95) to give a colourless oil (752 mg, 4.30 mmol, 60%). ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, 6 H, CD(CH₃)₂), 1.27 (t, *J* = 7.1 Hz, 6 H, OCH₂CH₃), 3.11 (s, 1 H, CHCD(CH₃)₂), 4.20 (q, *J* = 7.1 Hz, 4 H, OCH₂CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CD(*C*H₃)₂), 20.4 (OCH₂CH₃), 28.5 (1:1:1 t, *J* = 20.1 Hz, (*C*D(CH₃)₂)), 59.3 (*C*HCD(CH₃)₂), 61.1 (OCH₂CH₃), 168.9 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2965, 2360, 1729, 1465, 1446, 1390, 1368, 1304, 1229, 1184, 1128, 1095, 1034, 860, 668. HRMS calcd for C₁₀H₁₇DO₄K [M + K]⁺: 242.0899, found 242.0898.

Diphenyl 2-isopropylmalonate S11

General procedure **C**. To a flask charged with diethyl isopropylmalonate (2.02 g, 10.0 mmol) was added 2 M NaOH (13.5 mL, 27.0 mmol) and the solution heated at reflux for 3 h. After cooling, the reaction mixture was diluted with H₂O (10 mL) and washed with hexane (2 × 20 mL). The organic layers were then discarded and the aqueous phase acidified with 1 M HCl to approximately pH 1 and extracted with EtOAc (3 × 30 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO₄ and concentrated *in vacuo* to give a white solid which was used in the next step without further purification. Crude diacid was suspended in dry CH₂Cl₂ (30 mL) under nitrogen and cooled to 0 °C followed by the dropwise addition of few drops of DMF and oxalyl chloride (2.57 mL, 30.0 mmol). The reaction was stirred for 3 h at room temperature with venting before being concentrated *in vacuo* to give a yellow oil. Phenol (1.88 g, 20.0 mmol) and DMAP (122 mg, 1 mmol) were then added, the flask flushed

with nitrogen and CH₂Cl₂ (30 mL) added. The reaction mixture was cooled to 0 °C followed by the addition of Et₃N (5.58 mL, 40.0 mmol). After stirring at room temperature for 14 h, the reaction mixture was diluted with CH₂Cl₂ (30 mL) and washed with H₂O (2 × 20 ml), sat. NaHCO₃ (20 mL) and brine (20 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/hexane (5:95) to give a white solid (2.15 g, 7.20 mmol, 72% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, *J* = 6.8 Hz, 6 H, CH(CH₃)₂), 2.62 – 2.72 (m, 1 H, CH(CH₃)₂), 3.65 (d, *J* = 8.0 Hz, 1 H, CHCH(CH₃)₂), 7.12 – 7.18 (m, 4 H, ArCH), 7.25 – 7.29 (m, 2 H, ArCH), 7.38 – 7.44 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 20.5 (CH(CH₃)₂), 28.9 (CH(CH₃)₂), 58.7 (CHCH(CH₃)₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.1 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2968, 1774, 1751, 1589, 1484, 1471, 1456, 1342, 1286, 1150, 1107, 1069, 1019, 981, 970, 950, 929, 912, 819, 751. M.p. (CHCl₃) = 52 – 53 °C. HRMS calcd for C₁₈H₁₈O₄K [M + K]⁺: 337.0837, found 337.0833.

Diphenyl 2-cyclopentylmalonate S12

Prepared according to general procedure **C** using dimethyl 2-cyclopentylmalonate (1.00 g, 5.00 mmol), 2 M NaOH (6.80 mL, 13.5 mmol), oxalyl chloride (1.29 mL, 15.0 mmol), phenol (940 mg, 10.0 mmol), DMAP (61 mg, 0.50 mmol), Et₃N (2.79 mL, 20.0 mmol) and CH₂Cl₂ (15 mL) to give the title compound as a white solid (1.33 g, 4.11 mmol, 82% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.46 – 1.57 (m, 2 H, CH₂), 1.61 – 1.82 (m, 4 H, 2 × CH₂), 2.04 – 2.14 (m, 2 H, CH₂), 2.70 – 2.81 (m, 1 H CH(CH₂)₂), 3.71 (d, *J* = 10.0 Hz, 1 H, CHCH(CH₂)₂), 7.12 – 7.19 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.38 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 25.1 (*C*H₂), 30.9 (*C*H₂), 39.6 (*C*H(CH₂)₂), 57.3 (*C*HCH(CH₂)₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.3 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2954, 2869, 1773, 1752, 1591, 1492, 1456, 1323, 1294, 1187, 1161, 1121, 1070, 1024, 1005, 971, 924, 904, 821, 745, 687. M.p. (CHCl₃) = 42 – 43 °C. HRMS calcd for C₂₀H₂₀O₄K [M + K]⁺: 363.0993, found 363.0962.

Diphenyl 2-cyclohexylmalonate S13

Prepared according to general procedure **C** using diethyl 2-cyclohexylmalonate (1.21 g, 5.00 mmol), 2 M NaOH (6.80 mL, 13.5 mmol), oxalyl chloride (1.29 mL, 15.0 mmol), phenol (940 mg, 10.0 mmol), DMAP (61 mg, 0.50 mmol), Et₃N (2.79 mL, 20.0 mmol) and CH₂Cl₂ (15 mL) to give the title compound as a white solid (1.27 g, 3.75 mmol, 75% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.18 – 1.47 (m, 5 H, 1 H from CH₂, 4 H from 2 × CH₂), 1.70 – 1.78 (m, 1 H, 1 H from CH₂), 1.80 – 1.88 (m, 2 H, CH₂), 1.94 – 2.02 (m, 2 H, CH₂), 2.32 – 2.43 (m, 1 H, CH(CH₂)₂), 3.68 (d, *J* = 8.4 Hz, 1 H, CHCH(CH₂)₂), 7.11 – 7.19 (m, 4 H, ArCH), 7.24 – 7.30 (m, 2 H, ArCH), 7.37 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 26.0 (CH₂), 26.0 (CH₂), 30.8 (CH₂), 38.1 (CH(CH₂)₂), 58.1 (CHCH(CH₂)₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.0 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2927, 2853, 2358, 1773, 1751, 1591, 1492, 1449, 1292, 1190, 1162, 1116, 1069, 1024, 962, 744, 687. M.p. (CHCl₃) = 44 – 46 °C. HRMS calcd for C₂₁H₂₂O₄K [M + K]⁺: 377.1150, found 377.1150.

Diphenyl 2-cycloheptylmalonate S14

Prepared according to general procedure **C** using dimethyl 2-cycloheptylmalonate (1.14 g, 5.00 mmol), 2 M NaOH (6.80 mL, 13.5 mmol), oxalyl chloride (1.29 mL, 15.0 mmol), phenol (940 mg, 10.0 mmol), DMAP (61 mg, 0.50 mmol), Et₃N (2.79 mL, 20.0 mmol) and CH₂Cl₂ (15 mL) to give the title compound as a white solid (1.33 g, 3.79 mmol, 76% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.53 – 1.72 (m, 8 H, 4 × CH₂), 1.74 – 1.85 (m, 2 H, CH₂), 1.91 – 2.01 (m, 2 H, CH₂), 2.51 – 2.61 (m, 1 H, CH(CH₂)₂), 3.79 (d, *J* = 7.7 Hz, 1 H, CHCH(CH₂)₂), 7.12 – 7.18 (m, 4 H, ArCH), 7.25 – 7.30 (m, 2 H, ArCH), 7.38 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 26.7 (*C*H₂), 28.0 (*C*H₂), 32.1 (*C*H₂), 39.6 (*C*H(CH₂)₂), 58.5 (*C*HCH(CH₂)₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.3 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2926, 2857, 1774, 1750, 1591, 1492, 1457, 1341, 1294, 1188, 1161, 1118, 1069, 1023, 1005, 963, 828, 743, 687. M.p. (CHCl₃) = 38 – 39 °C. HRMS calcd for C₂₂H₂₄O₄Na [M + Na]⁺: 375.1567, found 375.1571.

Diphenyl 2-methylmalonate S15

$$PhO_2C CO_2Ph$$

Me

Prepared according to general procedure **C** using diethyl 2-methylmalonate (1.74 g, 10.0 mmol), 2 M NaOH (13.5 mL, 27.0 mmol), oxalyl chloride (2.57 mL, 30.0 mmol), phenol (1.88 g, 20.0 mmol), DMAP (122 mg, 1.00 mmol), Et₃N (5.58 mL, 40.0 mmol) and CH₂Cl₂ (30 mL) to give the title compound as a white solid (1.38 g, 5.10 mmol, 51% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.71 (d, *J* = 7.3 Hz, 3 H, CHCH₃), 3.94 (q, *J* = 7.3 Hz, 1 H, CHCH₃), 7.13 – 7.19 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.37 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (CHCH₃), 46.4 (CHCH₃), 121.3 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 150.5 (ArC), 168.4 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 1749, 1591, 1492, 1456, 1330, 1187, 1160, 1134, 1068, 1023, 1005, 927, 745, 687. M.p. (CHCl₃) = 40 – 42 °C. HRMS calcd for C₁₆H₁₄O₄K [M + K]⁺: 309.0524, found 309.0520.

Diphenyl 2-ethylmalonate S16

Prepared according to general procedure **C** using diethyl 2-ethylmalonate (1.89 g, 10.0 mmol), 2 M NaOH (13.5 mL, 27.0 mmol), oxalyl chloride (2.57 mL, 30.0 mmol), phenol (1.88 g, 20.0 mmol), DMAP (122 mg, 1.00 mmol), Et₃N (5.58 mL, 40.0 mmol) and CH₂Cl₂ (30 mL) to give the title compound as a white solid (1.70 g, 6.00 mmol, 60% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.20 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 2.18 – 2.28 (m, 2 H, CHCH₂CH₃), 3.78 (t, *J* = 7.4 Hz, 1 H, CHCH₂CH₃), 7.11 – 7.19 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.37 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 11.9 (CH₂CH₃), 22.3 (CHCH₂CH₃), 53.5 (CHCH₂CH₃), 121.4 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.7 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2971, 1770, 1750, 1591, 1492, 1457, 1349, 1286, 1252, 1186, 1160, 1132, 1070, 1023, 1006, 943, 905, 882, 821, 744, 687. M.p. (CHCl₃) = 25 – 27 °C. HRMS calcd for C₁₇H₁₆O₄K [M + K]⁺: 323.0680, found 323.0678.

Diphenyl 2-phenylmalonate S17

Prepared according to general procedure **C** using diethyl 2-phenylmalonate (2.36 g, 10.0 mmol), 2 M NaOH (13.5 mL, 27.0 mmol), oxalyl chloride (2.57 mL, 30.0 mmol), phenol (1.88 g, 20.0 mmol), DMAP (122 mg, 1.00 mmol), Et₃N (5.58 mL, 40.0 mmol) and CH₂Cl₂ (30 mL) to give the title compound as a white solid (1.97 g, 6.12 mmol, 61% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 5.16 (s, 1 H, CHPh), 7.14 – 7.21 (m, 4 H, ArCH), 7.25 – 7.32 (m, 2 H, ArCH), 7.39 – 7.53 (m, 7 H, ArCH), 7.61 – 7.67 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 58.0 (CHPh), 121.3 (ArCH), 126.3 (ArCH), 128.8 (ArCH), 129.0 (ArCH), 129.5 (ArCH), 129.6 (ArCH), 131.8 (ArC), 150.6 (ArC-O), 166.5 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3065, 2358, 1751, 1590, 1491, 1456, 1306, 1186, 1161, 1120, 1070, 1023, 1004, 972, 907, 835, 744, 722, 687. M.p. (CHCl₃) = 63 – 65 °C. HRMS calcd for C₂₁H₁₆O₄Na [M + Na]⁺: 355.0941, found 355.0944.

Diphenyl 2-benzylmalonate S18

Prepared according to general procedure **C** using dimethyl 2-benzylmalonate (2.22 g, 10.0 mmol), 2 M NaOH (13.5 mL, 27.0 mmol), oxalyl chloride (2.57 mL, 30.0 mmol), phenol (1.88 g, 20.0 mmol), DMAP (122 mg, 1.00 mmol), Et₃N (5.58 mL, 40.0 mmol) and CH₂Cl₂ (30 mL) to give the title compound as a white solid (2.46 g, 7.10 mmol, 71% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 3.51 (d, *J* = 7.9 Hz, 2 H, CHCH₂Ph), 4.20 (t, *J* = 7.9 Hz, 1 H, CHCH₂Ph), 7.03 – 7.08 (m, 4 H, ArCH), 7.24 – 7.30 (m, 2 H, ArCH), 7.30 – 7.35 (m, 1 H, ArCH), 7.35 – 7.43 (m, 8 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 34.8 (CHCH₂Ph), 53.9 (CHCH₂Ph), 121.3 (ArCH), 126.3 (ArCH), 127.2 (ArCH), 128.8 (ArCH), 129.1 (ArCH), 129.6 (ArCH), 137.2 (ArC), 150.4 (ArC-O), 167.2 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3029, 2358, 1752, 1591, 1491, 1455, 1337, 1272, 1186, 1161, 1126, 1069, 1023, 971, 917, 829, 744, 700, 687, 621. M.p. (CHCl₃) = 47 – 49 °C. HRMS calcd for C₂₂H₁₈O4K [M+K]⁺: 385.0837, found 385.0836.

Diphenyl 2-(4-chlorobenzyl)malonate S19

Prepared according to general procedure **C** using dimethyl 2-(4-chlorobenzyl)malonate (1.89 g, 7.35 mmol), 2 M NaOH (9.90 mL, 19.8 mmol), oxalyl chloride (1.80 mL, 21.0 mmol), phenol (1.13 g, 12.0 mmol), DMAP (73 mg, 0.60 mmol), Et₃N (2.10 mL, 15.0 mmol) and CH₂Cl₂ (29 mL) to give the title compound as a white solid (1.44 g, 3.80 mmol, 52% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 3.44 (d, *J* = 7.8 Hz, 2 H, CHC*H*₂), 4.12 (t, *J* = 7.8 Hz, 1 H, CHCH₂), 7.04 (d, *J* = 8.0 Hz, 4 H, ArC*H*), 7.24 – 7.36 (m, 6 H, ArC*H*), 7.39 (t, *J* = 8.0 Hz, 4 H, ArC*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 34.1 (CHCH₂), 53.8 (CHCH₂), 121.4 (ArC*H*), 126.5 (ArCH), 129.1 (ArCH), 129.8 (ArCH), 130.6 (ArCH), 133.2 (ArC), 135.8 (ArC), 150.4 (ArC-O), 167.1 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 1750, 1591, 1491, 1270, 1185, 1161, 1126, 1103, 1092, 1070, 1023, 1015, 806, 745, 686, 668. M.p. (CHCl₃) = 45 – 46 °C. HRMS calcd for C₂₂H₁₇ClO₄Na [M+Na]⁺: 403.0713, found 403.0708.

Diphenyl 2-(4-fluorobenzyl)malonate S20

Prepared according to general procedure **C** using dimethyl 2-(4-fluorobenzyl)malonate (1.86 g, 7.72 mmol), 2 M NaOH (10.4 mL, 20.8 mmol), oxalyl chloride (1.97 mL, 22.9 mmol), phenol (1.23 g, 13.1 mmol), DMAP (80 mg, 0.66 mmol), Et₃N (2.30 mL, 16.4 mmol) and CH₂Cl₂ (32 mL) to give the title compound as a white solid (1.69 g, 4.64 mmol, 60% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 3.45 (d, *J* = 7.8 Hz, 2 H, CHCH₂), 4.12 (t, *J* = 7.8 Hz, 1 H, CHCH₂), 7.01 – 7.08 (m, 6 H, ArCH), 7.24 – 7.29 (m, 2 H, ArCH), 7.30 – 7.35 (m, 2 H, ArCH), 7.39 (t, *J* = 7.9 Hz, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 34.0 (CHCH₂), 54.1 (CHCH₂), 115.8 (d, *J* = 21.2 Hz, ArCH), 121.4 (ArCH), 126.5 (ArCH), 129.7 (ArCH), 130.8 (d, *J* = 8.1 Hz, ArCH), 132.9 (d, *J* = 3.4 Hz, ArC), 150.5 (ArC-O) 162.2 (d, *J* = 246.0 Hz, ArC), 167.2 (*C*(O)O) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ -115.44 ppm. IR v_{max} (neat/cm⁻¹): 1750, 1591, 1510, 1492, 1272, 1220, 1185, 1159, 1125, 1096, 1070, 1024, 826, 745, 687, 668.

M.p. (CHCl₃) = 44 – 45 °C. HRMS calcd for $C_{22}H_{17}FO_4Na$ [M+Na]⁺: 387.1009, found 387.1004.

Diphenyl 2-(3,5-dimethylbenzyl)malonate S21

Prepared according to general procedure **C** using dimethyl 2-(3,5-dimethylbenzyl)malonate (1.95 g, 7.80 mmol), 2 M NaOH (10.6 mL, 21.1 mmol), oxalyl chloride (1.70 mL, 20.0 mmol), phenol (1.25 g, 13.3 mmol), DMAP (81 mg, 0.67 mmol), Et₃N (2.34 mL, 16.6 mmol) and CH₂Cl₂ (20 mL) to give the title compound as a white solid (1.62 g, 4.32 mmol, 55% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 6 H, 2 × ArC-CH₃), 3.40 (d, *J* = 7.8 Hz, 2 H, CHCH₂), 4.13 (t, *J* = 7.8 Hz, 1 H, CHCH₂), 6.93 (s, 2 H, ArCH), 6.97 (s, 1 H, ArCH), 7.03 – 7.05 (d, 4 H, *J* = 8.0 Hz, ArCH), 7.22 – 7.28 (m, 2 H, ArCH), 7.39 (t, *J* = 8.0 Hz, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (ArC-CH₃), 34.8 (CHCH₂), 54.1 (CHCH₂), 121.5 (ArCH), 126.4 (ArCH), 127.0 (ArCH), 128.9 (ArCH), 129.7 (ArCH), 137.1 (ArC), 138.4 (ArC), 150.6 (ArC-O), 167.4 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 1750, 1591, 1491, 1186, 1160, 1123, 1069, 1024, 849, 745, 687, 668. M.p. (CHCl₃) = 56 – 58 °C. HRMS calcd for C₂₄H₂₂O₄Na [M+Na]⁺: 397.1416, found 397.1411.

Diphenyl 2-(4-methoxybenzyl)malonate S22

Prepared according to general procedure **C** using dimethyl 2-(4-methoxybenzyl)malonate (0.75 g, 2.98 mmol), 2 M NaOH (4.0 mL, 8.05 mmol), oxalyl chloride (0.66 mL, 7.75 mmol), phenol (0.49 g, 5.17 mmol), DMAP (31 mg, 0.25 mmol), Et₃N (1.10 mL, 7.75 mmol) and CH₂Cl₂ (20 mL) to give the title compound as a colourless oil (0.54 g, 1.43 mmol, 48% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 3.34 (d, *J* = 7.9 Hz, 2 H, CHCH₂), 3.74 (s, 3 H, 2 × OCH₃), 4.04 (t, *J* = 7.9 Hz, 1 H, CHCH₂), 6.82 (d, *J* = 8.7 Hz, 2 H, ArCH), 6.92 – 7.00 (m, 4 H, ArCH), 7.13 – 7.22 (m, 4 H, ArCH), 7.26 – 7.34 (m, 4 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 34.1 (CHCH₂), 54.3 (CHCH₂), 55.4 (OCH₃), 114.3 (ArCH), 121.4 (ArCH), 126.4 (ArCH), 129.2

(Ar*C*), 129.7 (Ar*C*H), 130.3 (Ar*C*H), 150.5 (Ar*C*), 158.9 (Ar*C*), 167.3 (*C*(O)O). IR ν_{max} (neat/cm⁻¹): 2933, 1750, 1591, 1513, 1492, 1344, 1160, 1125, 1032, 824, 745, 688. HRMS calcd for C₂₃H₂₀O₅Na [M + Na]⁺: 399.1203, found 399.1200.

Diphenyl 2-(propan-2-yl-2-d)malonate S23

PhO₂C CO₂Ph Me Me

Prepared according to general procedure **C** using diethyl 2-(propan-2-yl-2-d)malonate (700 mg, 3.50 mmol), 2 M NaOH (4.70 mL, 9.45 mmol), oxalyl chloride (0.91 mL, 10.5 mmol), phenol (658 mg, 7.00 mmol), DMAP (43 mg, 0.35 mmol), Et₃N (1.95 mL, 14.0 mmol) and CH₂Cl₂ (11 mL) to give the title compound as a white solid (700 mg, 2.34 mmol, 67% over 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.25 (s, 6 H, CD(CH₃)₂), 3.66 (s, 1 H, CHCD(CH₃)₂), 7.13 – 7.19 (m, 4 H, ArCH), 7.24 – 7.30 (m, 2 H, ArCH), 7.38 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 20.4 (CD(CH₃)₂), 28.6 (1:1:1 t, *J* = 20.3 Hz, CD(CH₃)₂), 58.6 (CHCD(CH₃)₂), 121.4 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 150.5 (ArC), 167.1 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2976, 1773, 1750, 1589, 1484, 1469, 1457, 1394, 1373, 1306, 1225, 1186, 1175, 1159, 1150, 1117, 1069, 1052, 1019, 980, 948, 922, 912, 895, 835, 798, 751, 733, 692. M.p. (CHCl₃) = 52 – 53 °C. HRMS calcd for C₁₈H₁₇DO₄K [M + K]⁺: 338.0899, found 338.0900.

Dimethyl 2-(tetrahydro-4H-pyran-4-ylidene)malonate S24

To an oven-dried flask containing THF (28 mL) at 0 °C was slowly added TiCl₄ (15.0 mL, 0.015 mmol). To the resulting yellow solution was added dropwise a mixture of tetrahydro-4H-pyran-4-one (500 mg, 5 mmol), dimethyl malonate (1.71 mL, 0.015 mmol) and pyridine (1.21 mL, 0.015 mmol) in THF (9 mL). The reaction was allowed to slowly warm to room temperature over 16 h. The reaction was quenched by slow addition of H₂O while stirring until a homogenous solution was obtained. The resulting aqueous solution was extracted with EtOAc (3×30 mL) and the combined organic layers were sequentially washed with 1 M HCl (30 mL) and brine (30 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (5:98) to give the title compound as a colourless

oil (950 mg, 4.44 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 2.67 (t, *J* = 5.5 Hz, 4 H, CH₂(C)), 3.76 (d, *J* = 4.2 Hz, 10 H, 4 H from CH₂O, 6 H from 2 × CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 33.1 (CH₂-C), 52.3 (2 × CH₃), 68.4 (CH₂O), 122.6 ((CH₂)₂C=C), 156.5 (C(O)OCH₃), 165.7 ((CH₂)₂C=C) ppm. Consistent with the literature.²

Dimethyl 2-(tetrahydro-2H-pyran-4-yl)malonate S25

General Procedure **D**. To a solution of dimethyl 2-(tetrahydro-4H-pyran-4-ylidene)malonate (1.65 g, 7.7 mmol) in MeOH (7.7 mL) was added NaBH₄ (290 mg, 7.7 mmol) at 0 °C. The reaction was stirred at this temperature for 2 h and at room temperature for 16 h. The reaction mixture was carefully quenched with H₂O (10 mL) and the aqueous layer extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a colorless oil (0.97 g, 4.5 mmol, 58%). ¹H NMR (400 MHz, CDCl₃) δ 1.34 – 1.63 (m, 4 H, CH₂CH), 2.25 – 2.37 (m, 1 H, CH₂CH), 3.21 (d, *J* = 9.2 Hz, 1 H, (CH₂CHC*H*), 3.40 (td, *J* = 11.8, 2.1 Hz, 2 H, CH₂O), 3.72 (s, 6 H, 2 × CH₃), 3.94 (dtd, *J* = 11.6, 2.5, 1.2 Hz, 2 H, CH₂O) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 30.7 (CH₂CHCH₂), 35.3 (CH₂CHCH₂), 52.6 (C(O)OCH₃-CH-C(O)OCH₃, 57.6 (CH₂OCH₂), 67.7 (2 x CH₃), 168.7 (2 x C(O)OCH₃) ppm. IR v_{max} (neat/cm⁻¹): 2954, 2844, 1732, 1435, 1258, 1240, 1156, 1133, 1092, 1021, 878. HRMS calcd for C₁₀H₁₆O₅ [M⁺]: 216.0992, found 216.0992.

² Liu W-B., Okamoto., N.; Alexy, E. J.; Hong, A. Y.; Tran, K., Stoltz, B. M. J. Am. Chem. Soc., **2016**, *138* (16), 5234–5237.

Diphenyl 2-(tetrahydro-2H-pyran-4-yl)malonate S26

To a mixture of dimethyl 2-(tetrahydro-2H-pyran-4-yl)malonate (990 mg, 5.3 mmol) and phenol (990 mg, 11 mmol) was slowly added POCl₃ (0.58 mL, 6.3 mmol) at 0 °C. The reaction mixture was heated at 110 °C for 2 h and, after that time, quenched with H₂O (10 mL). The resulting aqueous solution was extracted with EtOAc (3×10 mL) and the combined organic layers were sequentially washed with brine (10 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (5:95) to give the title compound as a colorless oil (820 mg, 2.42 mmol, 46%). ¹H NMR (400 MHz, CDCl₃) δ 1.65 – 1.96 (m, 4 H, CH₂CH), 2.62 (tdt, *J* = 12.1, 8.6, 3.7 Hz, 1 H, CH₂CH), 3.53 (td, *J* = 11.9, 2.1 Hz, 2 H, CH₂O), 3.74 (d, *J* = 8.6 Hz, 1 H, CH₂CHCH), 4.04 – 4.13 (m, 2 H, CH₂O), 7.14 – 7.21 (m, 4 H, ArCH), 7.26 – 7.34 (m, 2 H, ArCH), 7.40 – 7.48 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 30.7 (CH₂CH), 35.3 (CH₂CH), 57.5 (CH2CHCH), 67.7 (CH₂O), 121.3 (ArCH), 126.4 (ArCH), 129.7 (ArCH), 150.4 (ArC), 166.5 (*C*(O)OPh) ppm. IR ν_{max} (neat/cm⁻¹): 2956, 2845, 1750, 1492, 1245, 1186, 1160, 1110, 908, 831, 730, 687. M.p. (CHCl₃) = 51 – 53 °C. HRMS calcd for C₂₀H₂₀O₅ [M - H]⁻: 339.1238, found 339.1240.

Dimethyl 2-(thiophen-3-ylmethylene)malonate S27

To an oven-dried flask containing thiophene-3-carbaldehyde (2.00 g, 17.9 mmol), dimethyl malonate (2.36 g, 17.9 mmol), piperidine (0.07 mL, 0.71 mmol) and acetic acid (0.2 mL, 3.56 mmol) was added benzene (5 mL) and the mixture was heated at reflux for 4 h. The reaction mixture was quenched with H₂O (5 mL) and the aqueous layer extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a yellow oil (3.25 g, 14.4 mmol, 80%). ¹H NMR (500 MHz, CDCl₃) δ 3.84 (s, 3 H, OCH₃), 3.90 (s, 3 H, OCH₃), 7.15 (d, *J* = 5.1 Hz, 1 H, ArC*H*), 7.34 (dd, *J* = 5.1, 3.0 Hz, 1 H, ArC*H*), 7.61 – 7.64 (m, 1 H, ArC*H*), 7.74 (s, 1 H, CH=C)). ¹³C NMR (126 MHz, CDCl₃) δ 52.7 (OCH₃), 52.8 (OCH₃), 123.5 (ArC), 126.9 (ArCH), 127.1

(ArCH) 131.1 (ArCH), 134.8 (CH=C), 136.1 (CH=C), 164.8 (C(O)O), 167.4 (C(O)O). IR ν_{max} (neat/cm⁻¹): 3099, 2952, 1721, 1622, 1435, 1355, 1244, 1160, 1067, 927, 826, 731, 676, 635. HRMS calcd for C₁₀H₁₁O₄S [M + H]⁺: 227.0373, found 227.0369.

Dimethyl 2-(thiophen-3-ylmethyl)malonate S28

procedure **D** Prepared according to general using dimethyl 2-(thiophen-3ylmethylene)malonate (1.65 g, 7.7 mmol), NaBH₄ (290 mg, 7.7 mmol) and MeOH (7.7 mL) to give the title compound as an oil (1.64 g, 7.18 mmol, 51%). ¹H NMR (500 MHz, CDCl₃) δ 3.28 (d, *J* = 7.7 Hz, 2 H, CHCH₂), 3.69 (t, *J* = 7.7 Hz, 1 H, CHCH₂), 3.74 (s, 6 H, 2 × OCH₃), 6.95 (d, J = 4.9 Hz, 1 H, ArCH), 7.04 (s, 1 H, ArCH), 7.25 – 7.29 (m, 1 H, ArCH). ¹³C NMR (126 MHz, CDCl₃) § 29.4 (CHCH₂), 52.7 (OCH₃), 53.1 (CHCH₂), 122.1 (ArCH), 126.0 (ArCH), 128.2 (ArCH), 138.0 (ArC), 169.3 (C(O)O). IR v_{max} (neat/cm⁻¹): 2954, 1732, 11435, 1341, 1249, 1221, 1148, 1027, 908, 779, 650, 639. HRMS calcd for $C_{10}H_{13}O_4S$ [M + H]⁺: 229.0529, found 229.0525.

Diphenyl 2-(thiophen-3-ylmethyl)malonate S29

Prepared according to general procedure **C** using dimethyl 2-(thiophen-3-ylmethyl)malonate (1.61 g, 7.07 mmol), 2 M NaOH (9.5 mL, 19.1 mmol), oxalyl chloride (1.8 mL, 21.2 mmol), phenol (1.33 g, 14.0 mmol), DMAP (86 mg, 0. 71 mmol), Et₃N (3.0 mL, 21.2 mmol) and CH₂Cl₂ (25 mL) to give the title compound as a yellow oil (1.33 g, 5.82 mmol, 53% after 3 steps). ¹H NMR (400 MHz, CDCl₃) δ 3.56 (d, *J* = 7.8 Hz, 2 H, CHCH₂), 4.22 (t, *J* = 7.8 Hz, 1 H, CHCH₂), 7.11 (d, *J* = 8.0 Hz, 4 H, ArCH), 7.14 (dd, *J* = 5.0, 1.3 Hz, 1 H, ArCH), 7.24 (dd, *J* = 3.0, 1.2 Hz, 1 H, ArCH), 7.26 – 7.34 (m, 2 H, ArCH), 7.38 (dd, *J* = 4.9, 2.9 Hz, 1 H, ArCH), 7.43 (dd, *J* = 8.5, 7.3 Hz, 4 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 29.3 (CHCH₂), 53.3 (CHCH₂), 121.4 (ArCH), 122.8 (ArCH), 126.2 (ArCH), 126.4 (ArCH), 128.4 (ArCH), 129.7 (ArCH), 137.4 (ArC), 150.5 (ArC), 167.2 (C(O)O). IR v_{max} (neat/cm⁻¹): 3098, 1750, 1590,

1491, 1340, 1160, 1123, 913, 832, 744, 687, 639. HRMS calcd for $C_{20}H_{16}O_4SNa \ [M + Na]^+$: 375.0662, found 375.0655.

4-((tert-Butyldimethylsilyl)oxy)butan-1-ol S30

To a cold solution of 1,4-butanediol (0.98 mL, 11 mmol) in CH₂Cl₂ (22 mL) at room temperature, was added imidazole (890 g, 13 mmol) as a solution in CH₂Cl₂ (5 mL). After 30 min, a solution of TBSCl (1. 66 g, 11 mmol) in CH₂Cl₂ (5 mL) was added dropwise and the reaction was stirred at room temperature for 2 h. The reaction was quenched with a H₂O (15 mL) and the aqueous layer extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a yellow oil (0.90 g, 4.4 mmol, 40%). ¹H NMR (500 MHz, CDCl₃) δ 0.07 (s, 6 H, Si(CH₃)₂), 0.90 (s, 9 H, Si(C(CH₃)₂)), 1.64 (dq, *J* = 11.3, 6.0 Hz, 4 H, (2 × CH₂), 2.50 (s, 1 H, OH), 3.65 (dt, *J* = 12.7, 5.8 Hz, 4 H, CH₂OSi, CH₂OH) ppm. ¹³C NMR (125 MHz, CDCl₃) δ -5.3 (Si(CH₃)₂), 18.4 (SiC), 26.0 (SiC(CH₃)₃), 30.0 (CH₂), 30.4 (CH₂), 62.9 (CH₂O), 63.5 (CH₂O) ppm. Consistent with the literature.³

6-((tert-Butyldimethylsilyl)oxy)hex-1-en-3-yl 4-(trifluoromethyl)benzoate S31

To a solution of oxalyl chloride (0.43 mL, 5.1 mmol) in CH₂Cl₂ (17 mL) was added DMSO (0.56 mL, 7.9 mmol) as a solution in CH₂Cl₂ (14 mL) dropwise, at -78 °C keeping the temperature below -40 °C. After 10 min, a solution of 4-((*tert*-butyldimethylsilyl)oxy)butan-1-ol (700 mg, 3.4 mmol) in CH₂Cl₂ (3 mL) was added dropwise. Aftere 1 h, the solution was treated with Et₃N (1.43 mL, 10 mmol). Upon warming to 0 °C over 1 h and stirring at this temperature for 1 h , the reaction mixture was quenched with H₂O (15 mL). The aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL) and the combined organic layers were washed with brine (15 mL), dried over MgSO₄, filtered and concentrated *in vacuo* to give a yellow oil which was used in the next step without further purification. Crude aldehyde (500 mg, 2.5 mmol) was

³ Peña-López, M.; Martínez, M. M.; Sarandeses, L. A.; Pérez Sestelo, J. Org. Lett., 2010, 12 (4), 852–854.

dissolved in THF (2.5 mL) and the solution added dropwise to a 1.0 M solution of vinylmagnesium bromide in THF (3.09 mL, 3.1 mmol) at -78 °C. The solution was stirred for 5 min at this temperature, warmed to room temperature and stirred for 30 min. The reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL) and diluted with Et₂O (10) mL. The layers were separated, and the aqueous layer was extracted with Et₂O (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated *in vacuo* to give the expected alcohol as a yellow oil which was used in the next step without further purification.

General Procedure E. To the alcohol (400 mg, 1.74 mmol), DMAP (4.3 mg, 0.02 mmol) and Et₃N (0.48 mL, 3.47 mmol) in CH₂Cl₂ (8.7 mL) at room temperature was added 4-(trifluoromethyl)benzoyl chloride (0.39 mL, 2.61 mmol) dropwise. The solution was stirred at room temperature for 2 h, quenched with H₂O (10 mL) and diluted with CH₂Cl₂ (10 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, concentrated in vacuo and purified by column chromatography eluting with EtOAc/Hexane (2:98) to give the title compound as a colorless oil (660 mg, 1.64 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6 H, Si(CH₃)₂), 0.89 (s, 9 H, SiC(CH₃)₃), 1.54 - 1.70 (m, 2 H, CH₂CH₂OSi), 1.79 -1.91 (m, 2 H, CH₂CH₂CH₂OSi), 3.65 (t, J = 6.3 Hz, 2 H, CH₂OSi), 5.24 (dt, J = 10.5, 1.2 Hz, 1 H, 1 H from CH_2 =CH), 5.34 (dt, J = 17.2, 1.2 Hz, 1 H, 1 H from CH_2 =CH), 5.54 (q, J = 6.5Hz, 1 H, CH₂=CHCH), 5.90 (ddd, J = 17.0, 10.5, 6.3 Hz, 1 H, CH₂=CH), 7.71 (d, J = 8.2 Hz, 2 H, 2 x ArCH), 8.17 (d, J = 8.1 Hz, 2 H, 2 × ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (Si(CH₃)₂), 18.5 (SiC(CH₃)₃, 26.1 (SiC(CH₃)₃), 28.5 (CH₂CH₂OSi), 30.8 (CH₂CH₂CH₂OSi), 62.7 (CH₂OSi), 76.0 (CH₂=CHCH), 117.4 (CH₂=CH), 125.5 (ArCH), 130.1 (ArCH), 133.9 (ArC), 134.4 (ArC), 136.2 (CH₂=CHCHOAr), 164.8 (C(O)) ppm. CF₃ not observed. HRMS calcd for C₂₀H₂₉F₃O₃SiNa [M + Na]⁺: 425.1730, found 425.1710.

5-Phenylpent-1-en-3-ol S32

A solution of 3-phenylpropanal (0.66 mL, 5.00 mmol) in THF (15 mL) was added dropwise to a 1 M solution of vinylmagnesium bromide in hexanes (6 mL, 6.00 mmol) at 0 °C. The reaction mixture was allowed to warmed to room temperature, stirred for 45 min, quenched with saturated aqueous NH₄Cl (15 mL) and diluted with Et₂O (10) mL. The layers were separated,

and the aqueous layer was extracted with Et₂O (3 × 15 mL). The combined organic layers were washed with brine (15 mL), dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a colourless oil (580 g, 3.6 mmol, 72%). ¹H NMR (400 MHz, CDCl₃) δ 1.83 – 1.98 (m, 2 H, CHCH₂CH₂), 2.68 – 2.86 (m, 2 H, CHCH₂CH₂), 4.18 (q, *J* = 6.4 Hz, 1 H, CHCH=), 5.19 (dd, *J* = 10.4, 1.4 Hz, 1 H, =CH_aH_b), 5.29 (dt, *J* = 17.3, 1.5 Hz, 1 H, =CH_aCH_b) 5.95 (ddd, *J* = 16.9, 10.4, 6.2 Hz, 1 H, CH=CH₂), 7.20 – 7.28 (m, 3 H, ArCH), 7.32 (dt, *J* = 7.9, 6.3 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 31.7 (CHCH₂CH₂), 38.7 (CHCH₂CH₂), 72.5 (CHCH₂CH₂), 115.0 (=*C*H₂), 125.8 (ArCH), 128.5 (ArCH), 128.6 (ArCH), 141.1 (*C*H=CH₂), 142.2 (ArC) ppm. Consistent with the literature.⁴

5-phenylpent-1-en-3-yl 4-(trifluoromethyl)benzoate S33

Prepared according to general procedure **E** using 5-phenylpent-1-en-3-ol (41 mg, 2.53 mmol), DMAP (6 mg, 0.05 mmol), 4-(trifluoromethyl) benzoyl chloride (0.56 mL, 3.8 mmol) and Et₃N (0.71 mL, 5.1 mmol) in CH₂Cl₂ (25 mL). The reaction was quenched with H₂O (20 mL) and the aqueous layer extracted with CH₂Cl₂ (3 × 25 mL), combined organic layers were washed with brine (25 mL), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a colourless oil (0.81 g, 2.4 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 2.07 – 2.30 (m, 2 H, CHCH₂CH₂), 2.81 (t, *J* = 7.9 Hz, 2 H, CHCH₂CH₂), 5.30 – 5.47 (m, 2 H, CHCH=CH₂), 5.61 (q, *J* = 6.5 Hz, 1 H, CHCH=CH₂), 5.99 (ddd, *J* = 17.1, 10.5, 6.3 Hz, 1 H, CHCH=CH₂), 7.22 – 7.28 (m, 3 H, ArCH), 7.30 – 7.39 (m, 2 H, ArCH), 7.77 (d, *J* = 8.0 Hz, 2 H, ArCH), 8.21 (d, *J* = 8.0 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 31.6 (CHCH₂CH₂), 35.9 (CHCH₂CH₂), 7.77 (CHCH=CH₂), 125.5 (ArCH), 126.2 (CF₃), 128.5 (ArCH), 128.6 (ArCH), 130.1 (ArCH), 133.7 (ArCH), 134.4 (ArC), 134.7 (ArC), 135.9 (CHCH=CH₂), 141.2 (ArC),

⁴ Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51 (14), 3470 – 3473.

164.7 (*C*(O)O) ppm. IR ν_{max} (neat/cm⁻¹): 2945, 1722, 1411, 1323, 1268, 1167, 1065, 1016, 935, 861, 774, 698. HRMS calcd for C₁₉H₁₇F₃O₂Na [M + Na]⁺: 357.1073, found 357.1058.

2-(Benzofuran-2-yl) ethan-1-ol S34

To a stirred mixture of 2-iodophenol (500 mg, 2.27 mmol), palladium acetate (26 mg, 0.11 mmol), CuI (22 mg, 0.11 mmol) and triphenylphosphine (30 mg, 0.11 mmol) in anhydrous Et₃N (5.0 ml) was added 3-butyn-1-ol (0.19 mL, 2.5 mmol). The reaction mixture was stirred for 16 h at room temperature after which it was diluted with EtOAc (20 mL). The EtOAc layer was washed with H₂O (3 × 10 mL) and brine. The combined organic layers were dried over MgSO₄, concentrated *in vacuo* and purified by flash column chromatography eluting with EtOAc/Hexane (20:80), to give the title compound as a colorless oil (0.31 g, 1.9 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 1.72 (bs, 1 H, CH₂H₂OH), 3.09 (t, *J* = 6.2 Hz, 2 H CH₂CH₂OH), 4.04 (t, *J* = 6.2 Hz, 2 H, CH₂CH₂OH), 6.56 (s, 1 H, ArCH), 7.20 – 7.31 (m, 2 H, ArCH), 7.45 – 7.50 (m, 1 H, ArCH), 7.52 – 7.57 (m, 1 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 32.2 (CH₂CH₂OH), 60.9 (CH₂CH₂OH), 103.8 (ArCH), 111.0 (ArCH), 120.6 (ArCH), 122.8 (ArCH), 123.7 (ArCH), 128.8 (ArC), 155.0 (ArC), 156.1 (ArC) ppm. Consistent with the literature.⁵

1-(Benzofuran-2-yl)but-3-en-2-ol S35

A solution of 1-(benzofuran-2-yl)but-3-en-2-ol (180 mg, 1.1 mmol) in CH_2Cl_2 (2.5 mL) was treated with DMP reagent (494 g, 1.2 mmol) at 0 °C and stirred for 1 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and diluted with CH_2Cl_2 (5 mL). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO₄ and concentrated

⁵ Sibasish, P.; Sankha, P.; Surajit, S. Tetrahedron Lett. 2011, 52 (46), 6166-6169.

in vacuo to give the crude aldehyde as a yellow oil which was used in the next step without further purification. Crude aldehyde (200 mg, 1.25 mmol) was dissolved in THF (1.3 mL) and was added dropwise to a 1.0 M solution of vinylmagnesium bromide (1.58 mL, 1.56 mmol) in THF (1 mL) at -78 °C. The solution was stirred for 5 min at this temperature, warmed to room temperature and stirred at this temperature for 30 min. The reaction mixture was quenched with saturated aqueous NH₄Cl (5 mL) and diluted with Et₂O (5 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3×5 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO₄, concentrated in vacuo and purified by column chromatography eluting with EtOAc/Hexane (10:90), to give the title compound as a colourless oil (0.051 g, 0.27 mmol, 22%). ¹H NMR (400 MHz, CDCl₃) δ 2.20 (s, 1 H, OH), 2.98 – 3.12 (m, 2 H, OHCHCH₂), 4.60 (q, J = 6.2 Hz, 1 H, OHCHCH₂), 5.21 (d, J = 10.5 Hz, 1 H, =CH₂), 5.36 (d, J = 17.2 Hz, 1 H, =CH₂), 6.00 (ddd, J = 16.7, 10.4, 5.8 Hz, 1 H, CH=CH₂), 6.56 (s, 1 H, ArCH), 7.20 – 7.33 (m, 2 H, ArCH), 7.44 – 7.60 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) § 36.8 (CH₂), 71.3 (OHCH), 104.5 (ArCH), 111.0 (ArCH), 115.7 (CH=CH₂), 120.6 (ArCH), 122.8 (ArCH), 123.7 (ArC), 128.8 (ArCH), 139.6 (CH=CH₂), 155.00 (ArC), 155.3 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3395, 2921, 1603, 1454, 1423, 1253, 1029, 928, 750. HRMS calcd for C₁₂H₁₂O₂ [M]⁺: 188.0832, found 188.0823.

1-(Benzofuran-2-yl)but-3-en-2-yl 4-(trifluoromethyl)benzoate S36

Prepared according to general procedure **E** using 2-(benzofuran-2-yl)ethan-1-ol (50 mg, 2.7 mmol), DMAP (7 mg, 0.006 mmol), 4-(trifluoromethyl)benzoyl chloride (0.06 mL, 0.4 mmol) and Et₃N (0.074 mL, 0.53 mmol) in CH₂Cl₂ (7 mL) to give the title compound as a yellow oil (0.07 g, 0.19 mmol, 72%). ¹H NMR (400 MHz, CDCl₃) δ 3.22 – 3.34 (m, 2 H, CHC*H*₂), 5.29 (dt, *J* = 10.4, 1.1 Hz, 1 H, =C*H*₂), 5.41 (dt, *J* = 17.1, 1.1 Hz, 1 H, =C*H*₂), 5.87 – 5.94 (m, 1 H, CHCH₂), 6.00 (ddd, *J* = 16.9, 10.4, 6.3 Hz, 1 H, CH=CH₂), 6.51 (d, *J* = 1.0 Hz, 1 H, ArC*H*), 7.15 – 7.25 (m, 2 H, ArC*H*), 7.37 – 7.42 (m, 1 H, ArC*H*), 7.45 – 7.51 (m, 1 H, ArC*H*), 7.70 (d, *J* = 8.2 Hz, 2 H, ArC*H*), 8.11 – 8.19 (m, 2 H, ArC*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 33.9 (CH₂), 73.9 (CHCH₂), 104.6 (ArCH), 111.0 (ArCH), 118.3 (=CH₂), 120.7 (ArCH), 122.4 (ArCH), 124.1 (ArCH), 125.3 (ArCH), 128.7 (ArC), 130.2 (ArCH), 133.6 (ArC), 134.5 (ArC), 135.0 (CH=CH₂), 153.9 (ArC), 155.0 (ArC), 164.5 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 2970,

1727, 1455, 1412, 1325, 1272, 1170, 1133, 1101, 1066, 1018, 775, 733. HRMS calcd for C₂₀H₁₅F₃O₃ [M]⁺: 360.0968, found 360.0969.

Diethyl 2-isopropyl-2-(3-oxooct-7-en-1-yl)malonate S37

General procedure **F**. In an oven dried flask diethyl 2-isopropylmalonate (404 mg, 2.00 mmol) and t-BuOK (22 mg, 0.20 mmol) were dissolved in Et₂O (5 mL)/t-BuOH (15 mL) and the solution stirred for 15 min under nitrogen atmosphere at room temperature. Octa-1,7-dien-3one (273 mg, 2.2 mmol) was added dropwise in Et₂O (1 mL)/t-BuOH (1 mL) over 1 h and the reaction was continued for another 1 h before being quenched with saturated NH₄Cl (20 mL). The aqueous layer was then extracted with $Et_2O(3 \times 30 \text{ mL})$, the combined organic layers were washed with brine (20 mL), dried over MgSO₄, concentrated in vacuo. Purification by column chromatography, first column eluting with EtOAc/Toluene (2:98), second column eluting with CH₂Cl₂/Hex (2:1) to (3:1) gave the title compound as a colourless oil (405 mg, 1.24 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) δ 0.99 (d, J = 6.8 Hz, 6 H, CH(CH₃)₂), 1.27 (t, J = 7.1 Hz, 6 H, $2 \times \text{OCH}_2\text{CH}_3$), 1.67 (p, J = 7.5 Hz, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{C}(\text{O})$), 2.01 – 2.09 (m, 2 H, $CH_2CH_2CH_2C(O)$), 2.10 – 2.17 (m, 2 H, C(O)CH_2CH_2C), 2.30 (hept, J = 6.8 Hz, 1 H, CH(CH₃)₂), 2.40 (t, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.43 – 2.50 (m, 2 H, C(O)CH₂CH₂C), 4.14 - 4.25 (m, 4 H, 2 × OCH₂CH₃), 4.94 - 5.06 (m, 2 H, CH₂=CH), 5.70 - 5.82 (m, 1 H, CH₂=CH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (OCH₂CH₃), 18.5 (CH(CH₃)₂), 22.8 (CH₂CH₂CH₂C(O)), 27.0 (C(O)CH₂CH₂C), 33.0 (CH(CH₃)₂), 33.1 (CH₂CH₂CH₂C(O)), 38.5 (C(O)CH₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 60.9 (OCH₂CH₃), 61.0 (C(O)CH₂CH₂C), 115.2 $(CH_2=CHCH_2)$, 138.0 (CH₂=CHCH₂), 170.9 (C(O)O), 209.8 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2976, 2359, 1720, 1446, 1416, 1391, 1368, 1248, 1194, 1126, 1094, 1026, 1094, 1026, 912, 859. HRMS calcd for C₁₈H₃₁O₅ [M + H]⁺: 327.2166, found 327.2151.

Diphenyl 2-cyclopentyl-2-(3-oxooct-7-en-1-yl)malonate S38

Prepared according to general procedure **F** using diphenyl 2-cyclopentylmalonate (1.30 g, 4.00 mmol), *t*-BuOK (44 mg, 0.40 mmol), octa-1,7-dien-3-one (546 mg, 4.40 mmol) and Et₂O (10

mL)/*t*-BuOH (30 mL) to give the title compound as a colourless oil (458 mg, 1.02 mmol, 25%). ¹H NMR (400 MHz, CDCl₃) δ 1.57 – 1.81 (m, 8 H, 6 H from 3 × CH₂, 2 H from CH₂CH₂CH₂C(O)), 1.94 – 2.11 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.39 – 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.65 – 2.80 (m, 3 H, 1 H from CH(CH₂)₂, 2 H from C(O)CH₂CH₂C), 4.94 – 5.06 (m, 2 H, CH₂=CHCH₂), 5.76 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.07 – 7.17 (m, 4 H, ArCH), 7.23 – 7.32 (m, 2 H, ArCH), 7.36 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 25.7 (CH₂), 28.0 (C(O)CH₂CH₂C), 28.3 (CH₂), 33.1 (CH₂CH₂CH₂C(O)), 38.4 (C(O)CH₂CH₂C), 42.1 (CH₂CH₂CH₂C(O)), 44.5 (CH(CH₂)₂), 60.3 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.4 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 137.9 (CH₂=CHCH₂), 150.5 (ArC), 169.7 (C(O)O), 209.4 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2950, 2870, 2360, 2342, 1744, 1713, 1591, 1492, 1456, 1369, 1291, 1186, 1161, 1069, 1024, 999, 913, 833, 742, 687. HRMS calcd for C₂₈H₃₂O₅K [M + K]⁺: 487.1881, found 487.1885.

Diphenyl 2-cyclohexyl-2-(3-oxooct-7-en-1-yl)malonate S39

Prepared according to general procedure F using diphenyl 2-cyclohexylmalonate (1.35 g, 4.00 mmol), t-BuOK (44 mg, 0.40 mmol), octa-1,7-dien-3-one (546 mg, 4.40 mmol) and Et₂O (10 mL)/t-BuOH (30 mL) to give the title compound as a colourless oil (408 mg, 0.88 mmol, 22%). ¹H NMR (400 MHz, CDCl₃) δ 1.16 – 1.31 (m, 1 H, CH₂), 1.32 – 1.45 (m, 4 H, 2 × CH₂), 1.65 - 1.80 (m, 3 H, 1 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 1.83 - 1.93 (m, 2 H, CH₂), 1.99 -2.10 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.16 – 2.29 (m, 1 H, CH(CH₂)₂), 2.41 – 2.49 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.63 – 2.70 (m, 2 H, C(O)CH₂CH₂C), 4.94 – 5.05 (m, 2 H, CH₂=CHCH₂), 5.75 (ddt, J = 16.9, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.09 – 7.17 (m, 4 H, ArCH), 7.23 – 7.32 (m, 2 H, ArCH), 7.37 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 26.4 (CH₂), 26.9 (C(O)CH₂CH₂C), 27.0 (CH₂), 28.8 (CH₂), 33.1 (CH₂CH₂CH₂C(O)), 38.4 (C(O)CH₂CH₂C), 42.1 (CH₂CH₂CH₂C(O)), 43.7 (CH(CH₂)₂), 61.3 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 137.9 (CH2=CHCH2), 150.4 (ArC), 169.3 (C(O)O), 209.4 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2930, 2853, 1744, 1714, 1591, 1492, 1451, 1185, 1161, 1136, 1069, 1024, 999, 912, 744, 687. HRMS calcd for C₂₉H₃₄O₅K [M + K]⁺: 501.2038, found 501.2041.

Diphenyl 2-cycloheptyl-2-(3-oxooct-7-en-1-yl)malonate S40

Prepared according to general procedure F using 2-cycloheptylmalonate (704 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (408 mg, 0.86 mmol, 43%). ¹H NMR (400 MHz, CDCl₃) δ 1.51 – 1.73 (m, 10 H, 8 H from 4 × CH₂, 2 H from CH₂CH₂CH₂C(O)), 1.75 – 1.91 (m, 2 H, CH₂), 1.95 – 2.10 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.34 – 2.48 (m, 5 H, 1 H from CH(CH₂)₂, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.68 – 2.76 (m, 2 H, C(O)CH₂CH₂C), 4.92 – 5.05 (m, 2 H, CH₂=CHCH₂), 5.75 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.08 – 7.17 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.37 – 7.47 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 27.5 (C(O)CH₂CH₂C), 27.7 (CH₂), 27.9 (CH₂), 30.5 (CH₂), 33.1 (CH₂CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.4 (ArCH), 126.2 (ArCH), 129.6 (ArCH), 137.9 (CH₂=CHCH₂), 150.4 (ArC), 169.7 (C(O)O), 209.6 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2922, 2856, 1744, 1713, 1591, 1491, 1456, 1292, 1186, 1160, 1069, 1023, 1000, 912, 831, 743, 687. HRMS calcd for C₃₀H₃₆O₅K [M + K]⁺: 515.2194, found 515.2201.

Diphenyl 2-(3-oxooct-7-en-1-yl)-2-(tetrahydro-2H-pyran-4-yl)malonate S41

Prepared according to general procedure **F** using diphenyl 2-(tetrahydro-2H-pyran-4-yl)malonate (68 mg, 2.00 mmol), *t*-BuOK (22 mg, 20 mmol), octa-1,7-dien-3-one (27 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (0.16 g, 3.3 mmol, 15%). ¹H NMR (400 MHz, CDCl₃) δ 1.67 (pd, J = 7.6, 1.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.72 – 1.91 (m, 4 H, CH₂CHCH₂), 1.98 – 2.09 (m, 2 H, CH₂CH₂CH₂C(O)), 2.43 (m, 5 H, CH₂CH₂CH₂C(O), C(O)CH₂CH₂C_{quat}, CH₂CHCH₂), 2.65 (dd, J = 9.1, 6.3 Hz, 2 H, C(O)CH₂CH₂C_{quat}), 3.40 – 4.14 (m, 4 H, CH₂OCH₂), 4.91 – 5.04 (m, 2 H, CH₂=CH), 5.73 (ddtd, J = 17.0, 10.3, 6.7, 1.3 Hz, 1 H, CH₂=CHCH₂), 7.08 – 7.14 (m, 4 H, ArCH), 7.22 – 7.30 (m, 2 H, ArCH), 7.40 (td, J = 7.9, 1.5 Hz, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ

22.9 (CH₂CH₂CH₂C(O)), 26.6 (C(O)CH₂CH₂C_{quat}), 28.9 (CH₂CHCH₂), 33.2 (CH₂CH₂CH₂C(O)), 38.2 (C(O)CH₂CH₂C_{quat}), 40.8 (CH₂CH₂CH₂C(O)), 42.2 (CH), 60.6 (C(O)CH₂CH₂C_{quat}), 68.4 (CH₂OCH₂), 115.5 (CH₂=CH), 121.4 (ArCH), 126.5 (ArCH), 129.8 (ArCH), 138.0 (CH₂=CH), 150.4 (ArC), 169.0 (C(O)O), 209.2 (C(O)) ppm. IR ν_{max} (neat/cm⁻¹): 29523, 2845, 1744, 1715, 1592, 1492, 1371, 1187, 1162, 1122, 1091, 1024, 913, 744, 688. HRMS calcd for C₂₈H₃₃O₆ [M + H]⁺: 465.2272, found 465.2265.

Diphenyl 2-methyl-2-(3-oxooct-7-en-1-yl)malonate S42

Prepared according to general procedure **F** using diphenyl 2-methylmalonate (540 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (270 mg, 0.68 mmol, 34%). ¹H NMR (400 MHz, CDCl₃) δ 1.67 – 1.73 (m, 2 H, CH₂CH₂CH₂C(O)), 1.72 (s, 3 H, CH₃), 2.03 – 2.10 (m, 2 H, CH₂CH₂CH₂C(O)), 2.40 – 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.64 – 2.72 (m, 2 H, C(O)CH₂CH₂C), 4.95 – 5.06 (m, 2 H, CH₂=CHCH₂), 5.76 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.09 – 7.17 (m, 4 H, ArCH), 7.23 – 7.31 (m, 2 H, ArCH), 7.36 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 20.6 (CH₃), 22.8 (CH₂CH₂CH₂C(O)), 29.4 (C(O)CH₂CH₂C), 33.1 (CH₂CH₂CH₂C(O)), 37.8 (C(O)CH₂CH₂C), 42.1 (CH₂CH₂CH₂C(O)), 53.4 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.2 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 137.9 (CH₂=CHCH₂), 150.5 (ArC), 170.3 (C(O)O), 209.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2941, 1749, 1713, 1640, 1591, 1492, 1456, 1414, 1380, 1292, 1187, 1161, 1086, 1023, 1004, 917, 830, 744. HRMS calcd for C₂₄H₂₆O₅Na [M + Na]⁺: 417.1672, found 417.1678.

Diphenyl 2-ethyl-2-(3-oxooct-7-en-1-yl)malonate S43

Prepared according to general procedure **F** using diphenyl 2-ethylmalonate (568 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (203 mg, 0.50 mmol, 25%). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 1.70 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.01 – 2.11 (m, 2 H, CH₂CH₂CH₂C(O)), 2.22 (q, J = 7.5 Hz, 2 H, CH₂CH₃), 2.40 – 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.57 – 2.66 (m, 2 H, C(O)CH₂CH₂C), 4.94 – 5.06 (m, 2 H, CH₂=CHCH₂), 5.76 (ddt, J = 16.9, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.09 – 7.16 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.37 – 7.46 (m, 4 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 8.7 (CH₂CH₃), 22.8 (CH₂CH₂CH₂CH₂C(O)), 26.0 (CH₂CH₃), 26.7 (C(O)CH₂CH₂C), 33.1 (CH₂CH₂CH₂C(O)), 37.6 (C(O)CH₂CH₂C), 42.1 (CH₂CH₂CH₂C(O)), 57.7 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.3 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 137.9 (CH₂=CHCH₂), 150.5 (ArC), 169.8 (C(O)O), 209.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2942, 2360, 1747, 1714, 1640, 1591, 1492, 1457, 1371, 1293, 1184, 1161, 1104, 1023, 998, 910, 833, 743, 687. HRMS calcd for C₂₅H₂₈O₅K [M + K]⁺: 447.1568, found 447.1567.

Diphenyl 2-(3-oxooct-7-en-1-yl)-2-phenylmalonate S44

Prepared according to general procedure **F** using diphenyl 2-phenylmalonate (644 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (575 mg, 1.26 mmol, 63%). ¹H NMR (400 MHz, CDCl₃) δ 1.66 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.99 – 2.07 (m, 2 H, CH₂CH₂CH₂C(O)), 2.34 – 2.41 (m, 2 H, CH₂CH₂CH₂C(O)), 2.57 – 2.64 (m, 2 H, C(O)CH₂CH₂C), 2.88 – 2.95 (m, 2 H, C(O)CH₂CH₂C), 4.93 – 5.02 (m, 2 H, CH₂=CHCH₂), 5.74 (ddt, J = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.07 – 7.16 (m, 4 H, ArCH), 7.24 – 7.30 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 29.4 (C(O)CH₂CH₂C), 33.0 (CH₂CH₂CH₂C(O)), 38.1 (C(O)CH₂CH₂C), 42.0 (CH₂CH₂CH₂C(O)), 62.1 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.2 (ArCH), 126.4 (ArCH), 128.0 (ArCH), 128.3 (ArCH), 128.7 (ArCH), 129.6 (ArCH), 135.6 (ArC), 137.9 (CH₂=CHCH₂), 150.5 (ArC-O), 168.9 (C(O)O), 209.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2932, 1747, 1713, 1639, 1591, 1491, 1456, 1447, 1414, 1372, 1292, 1183, 1160, 1069, 1023, 1002, 912, 832, 793, 744, 687. HRMS calcd for C₂₉H₂₈O₅Na [M + Na]⁺: 479.1829, found 479.1825.

Diphenyl 2-benzyl-2-(3-oxooct-7-en-1-yl)malonate S45

Prepared according to general procedure **F** using diphenyl 2-benzylmalonate (692 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (461 mg, 0.98 mmol, 49%). ¹H NMR (400 MHz, CDCl₃) δ 1.69 (p, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.00 – 2.10 (m, 2 H, CH₂CH₂CH₂C(O)), 2.37 – 2.49 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.65 – 2.73 (m, 2 H, C(O)CH₂CH₂C), 3.51 (s, 2 H, CH₂Ph), 4.94 – 5.04 (m, 2 H, CH₂=CHCH₂), 5.75 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.06 – 7.11 (m, 4 H, ArCH), 7.25 – 7.38 (m, 7 H, ArCH), 7.38 – 7.44 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C), 33.0 (CH₂CH₂CH₂C(O)), 37.8 (C(O)CH₂CH₂C), 39.6 (CH₂Ph), 42.0 (CH₂CH₂CH₂C(O)), 58.6 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.2 (ArCH), 126.3 (ArCH), 127.5 (ArCH), 128.6 (ArCH), 129.6 (ArCH), 130.3 (ArCH), 135.1 (ArC), 137.9 (CH₂=CHCH₂), 150.4 (ArC-O), 169.3 (C(O)O), 208.9 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 3062, 2941, 1747, 1714, 1640, 1590, 1492, 1455, 1413, 1371, 1292, 1185, 1161, 1080, 1024, 1002, 914, 834, 736, 701, 688. HRMS calcd for C₃₀H₃₀O₅Na [M + Na]⁺: 493.1985, found 493.1990.

Diphenyl 2-(4-chlorobenzyl)-2-(3-oxooct-7-en-1-yl)malonate S46

Prepared according to general procedure **F** using diphenyl 2-(4-chlorobenzyl)malonate (762 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (349 mg, 0.69 mmol, 35%). ¹H NMR (400 MHz, CDCl₃) δ 1.68 (p, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.00 – 2.07 (m, 2 H, CH₂CH₂CH₂C(O)), 2.35 – 2.47 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.64 – 2.71 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.46 (s, 2 H, CH₂Ph), 4.94 – 5.03 (m, 2 H, CH₂=CHCH₂), 5.68 – 5.80 (m, 1 H, CH₂=CHCH₂), 7.04 – 7.09 (m, 4 H, ArCH), 7.21

-7.33 (m, 6 H, ArC*H*), 7.37 – 7.44 (m, 4 H, ArC*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 27.1 (C(O)CH₂CH₂C_{quat}), 33.2 (CH₂CH₂CH₂C(O)), 37.9 (C(O)CH₂CH₂C_{quat}), 39.3 (CH₂Ph), 42.2 (CH₂CH₂CH₂C(O)), 58.6 (C(O)CH₂CH₂C_{quat}), 115.5 (CH₂=CHCH₂), 121.3 (ArCH), 126.5 (ArCH), 128.9 (ArCH), 129.8 (ArCH), 131.8 (ArCH), 133.7 (ArC), 133.8 (ArC), 138.0 (CH₂=CHCH₂), 150.5 (ArC-O), 169.3 (C(O)O), 209.0 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2924, 2363, 1749, 1492, 1196, 720, 684, 668, 649. HRMS calcd for C₃₀H₂₉ClO₅K [M+K]⁺: 543.1340, found 543.1340.

Diphenyl 2-(4-fluorobenzyl)-2-(3-oxooct-7-en-1-yl)malonate S47

Prepared according to general procedure F using diphenyl 2-(4-fluorobenzyl)malonate (729 mg, 2.00 mmol), t-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/t-BuOH (15 mL) to give the title compound as a colourless oil (408 mg, 0.84 mmol, 42%). ¹H NMR (400 MHz, CDCl₃) δ 1.68 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.01 - 2.08 (m, 2 H, CH₂CH₂CH₂C(O)), 2.35 - 2.46 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.65 – 2.71 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.46 (s, 2 H, CH₂Ph), 4.94 – 5.03 (m, 2 H, CH₂=CHCH₂), 5.68 – 5.80 (m, 1 H, CH₂=CHCH₂), 6.99 – 7.11 (m, 6 H, ArCH), 7.23 -7.31 (m, 4 H, ArCH), 7.37 - 7.44 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.9 27.2 $(C(O)CH_2CH_2C_{quat}),$ 33.2 $(CH_2CH_2CH_2C(O)),$ $(CH_2CH_2CH_2C(O)),$ 37.9 (C(O)CH₂CH₂C_{quat}), 39.1 (CH₂Ph), 42.2 (CH₂CH₂CH₂C(O)), 58.7 (C(O)CH₂CH₂CH₂C_{quat}), 115.5 (CH₂=CHCH₂), 115.6 (d, J = 21.3 Hz, ArCH), 121.3 (ArCH), 126.5 (ArCH), 129.8 (ArCH), 131.0 (d, J = 3.4 Hz, ArC), 132.0 (d, J = 8.0 Hz, ArCH), 138.0 (CH₂=CHCH₂), 150.5 (ArC-O), 162.40 (d, J = 246.2 Hz, ArC), 169.3 (C(O)O), 209.0 (C(O)) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.95 ppm. IR v_{max} (neat/cm⁻¹): 2927, 1749, 1715, 1591, 1510, 1492, 1456, 1223, 1195, 1160, 1100, 1070, 1024, 913, 843, 746, 688, 668. HRMS calcd for C₃₀H₂₉FO₅K [M+K]⁺: 527.1636, found 527.1634.

Diphenyl 2-(3,5-dimethylbenzyl)-2-(3-oxooct-7-en-1-yl)malonate S48

Prepared according to general procedure F using diphenyl 2-(3,5-dimethylbenzyl)malonate (749 mg, 2.00 mmol), *t*-BuOK (22 mg, 0.20 mmol), octa-1,7-dien-3-one (273 mg, 2.20 mmol) and Et₂O (5 mL)/t-BuOH (15 mL) to give the title compound as a colourless oil (423 mg, 0.85 mmol, 42%). ¹H NMR (400 MHz, CDCl₃) δ 1.68 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.00 -2.08 (m, 2 H, CH₂CH₂CH₂C(O)), 2.29 (s, 6 H, 2 × ArC-CH₃), 2.36 - 2.47 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.65 – 2.70 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.43 (s, 2 H, CH₂Ph), 4.94 – 5.03 (m, 2 H, CH₂=CHCH₂), 5.68 – 5.80 (m, 1 H, CH₂=CHCH₂), 6.90 (s, 2 H, ArCH), 6.93 (s, 1 H, ArCH), 7.06 – 7.11 (m, 4 H, ArCH), 7.24 – 7.29 (m, 2 H, ArCH), 7.37 - 7.43 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (ArC-CH₃), 22.9 $(CH_2CH_2CH_2C(O)),$ 26.9 $(C(O)CH_2CH_2C_{quat}),$ 33.2 $(CH_2CH_2CH_2C(O)),$ 38.0 (C(O)CH₂CH₂C_{quat}), 39.6 (CH₂Ph), 42.2 (CH₂CH₂CH₂C(O)), 58.7 (C(O)CH₂CH₂CH₂C_{quat}), 115.5 (CH2=CHCH2), 121.4 (ArCH), 126.4 (ArCH), 128.3 (ArCH), 129.3 (ArCH), 129.7 (ArCH), 135.0 (ArC), 138.0 (ArC), 138.1 (CH₂=CHCH₂), 150.6 (ArC-O), 169.5 (C(O)O), 209.2 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2923, 2362, 1750, 1716, 1591, 1492, 1456, 1195, 1162, 1070, 744, 688, 668, 649. HRMS calcd for $C_{32}H_{34}O_5Na$ [M+Na]⁺: 521.2303, found 521.2303.

Diphenyl 2-(4-methoxybenzyl)-2-(3-oxooct-7-en-1-yl)malonate S49

Prepared according to general procedure **F** using diphenyl 2-(4-methoxybenzyl)malonate (0.53 g, 1.43 mmol), *t*-BuOK (15.7 mg, 0.10 mmol), octa-1,7-dien-3-one (0.19 g, 1.54 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (0.29 g, 0.58 mmol, 41%). ¹H NMR (500 MHz, CDCl₃) δ 1.60 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.96 (q, *J* = 7.2 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.30 (t, *J* = 7.7 Hz, 2 H, CH₂CH₂CH₂C(O), 2.36 (t, *J* = 7.4 Hz, 2 H, C(O)CH₂CH₂C), 2.60 (t, *J* = 7.7 Hz, 2 H, C(O)CH₂CH₂C), 3.37 (s, 2 H, CH₂Ar), 3.73

(s, 4 H, ArOCH₃), 4.86 – 4.95 (m, 2 H, CH₂=CHCH₂), 5.66 (ddt, J = 16.9, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 6.79 (d, J = 8.2 Hz, 2 H, ArCH), 7.01 (d, J = 8.0 Hz, 4 H, ArCH), 7.14 (d, J = 8.2 Hz, 2 H, ArCH), 7.19 (t, J = 7.5 Hz, 2 H, ArCH), 7.32 (t, J = 7.7 Hz, 4 H, ArCH). ¹³C NMR (126 MHz, CDCl₃) δ 22.9 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C₄c₄u₄), 33.1 (CH₂CH₂CH₂C(O)), 38.0 (C(O)CH₂CH₂C₂C), 39.0 (CH₂Ar), 42.1 (CH₂CH₂CH₂C(O)), 55.4 (ArOCH₃), 58.7 (C(O)CH₂CH₂C), 114.1 (ArCH), 115.4 (CH₂=CHCH₂), 121.4 (ArCH), 126.4 (ArCH), 127.1 (ArC), 129.7 (ArCH), 131.4 (ArCH), 138.0 (CH₂=CHCH₂), 150.6 (ArC-O) , 159.1 (ArC-OCH₃), 169.5 (C(O)O), 209.1 (C(O)). IR v_{max} (neat/cm⁻¹): 2935, 1746, 1714, 1591, 1513, 1492, 1248, 1177, 1161, 1032, 910, 837, 730, 688. HRMS calcd for C₃₁H₃₃O₆ [M + H]⁺: 501.2272, found 501.2268.

Diphenyl 2-(3-oxooct-7-en-1-yl)-2-(thiophen-3-ylmethyl)malonate S50

Prepared according to general procedure **F** using diphenyl 2-(thiophen-3-ylmethyl)malonate (0.70 g, 2.00 mmol), *t*-BuOK (0.22 mg, 0.20 mmol), octa-1,7-dien-3-one (0.27 mg, 2.20 mmol) and Et₂O (5 mL)/*t*-BuOH (15 mL) to give the title compound as a colourless oil (0.31 mg, 0.66 mmol, 33%). ¹H NMR (500 MHz, CDCl₃) δ 1.71 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.07 (q, *J* = 7.2 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.46 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.70 (t, *J* = 7.7 Hz, 2 H, C(O)CH₂CH₂C), 3.55 (s, 2 H, CH₂Ar), 4.96 – 5.06 (m, 2 H, CH₂=CHCH₂), 5.77 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.06 (d, *J* = 4.9 Hz, 1 H, ArCH), 7.10 (d, *J* = 8.0 Hz, 4 H, ArCH), 7.20 (s, 1 H, ArCH), 7.29 (t, *J* = 7.5 Hz, 2 H, ArCH), 7.33 (t, *J* = 4.0 Hz, 1 H, ArCH), 7.43 (t, *J* = 7.7 Hz, 4 H, ArCH). ¹³C NMR (126 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C), 42.1 (CH₂CH₂CH₂C(O)), 58.3 (C(O)CH₂CH₂C), 115.4 (CH₂=CHCH₂), 121.3 (ArCH), 124.3 (ArCH), 126.0 (ArCH), 126.5 (ArCH), 129.3 (ArCH), 129.8 (ArCH), 135.3 (ArC), 138.0 (CH₂=CHCH₂), 150.5 (ArC-O), 169.5 (C(O)O), 209.1 (C(O)). IR v_{max} (neat/cm⁻¹): 2936, 1747, 1714, 1591, 1492, 1155, 1161, 909, 834, 730, 687, 642. HRMS calcd for C₂₈H₂₈O₅SNa [M + Na]⁺: 477.1730, found 477.1722.

Diphenyl 2-(3-oxooct-7-en-1-yl)-2-(propan-2-yl-2-d)malonate S51

Prepared according to general procedure **F** using diphenyl 2-(propan-2-yl-2-d)malonate (1.20 g, 4.00 mmol), *t*-BuOK (44 mg, 0.20 mmol), octa-1,7-dien-3-one (546 mg, 4.40 mmol) and Et₂O (10 mL)/*t*-BuOH (30 mL) to give the title compound as a colourless oil (440 mg, 1.04 mmol, 26%). ¹H NMR (400 MHz, CDCl₃) δ 1.24 (s, 6 H, CD(CH₃)₂), 1.69 (p, *J* = 7.5 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.01 – 2.10 (m, 2 H, CH₂CH₂CH₂C(O)), 2.40 – 2.48 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.66 – 2.74 (m, 2 H, C(O)CH₂CH₂C), 4.95 – 5.04 (m, 2 H, CH₂=CHCH₂), 5.75 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1 H, CH₂=CHCH₂), 7.10 – 7.17 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.38 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.6 (CD(CH₃)₂), 22.8 (CH₂CH₂CH₂C(O)), 27.0 (C(O)CH₂CH₂C), 33.1 (CH₂CH₂CH₂C(O)), 61.3 (C(O)CH₂CH₂C), 115.3 (CH₂=CHCH₂), 121.4 (ArCH), 126.3 (ArCH), 129.6 (ArCH), 137.9 (CH₂=CHCH₂), 150.4 (ArC), 169.4 (C(O)O), 209.4 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2940, 1744, 1714, 1640, 1591, 1492, 1456, 1393, 1372, 1292, 1226, 1184, 1161, 1069, 1024, 998, 914, 831, 742, 687. HRMS calcd for C₂₆H₂₉DO₅K [M + K]⁺: 462.1788, found 462.1784.

Ethyl (E)-11-bromo-5-oxoundec-9-enoate 6a'

General procedure **G**. To ethyl 5-oxodec-9-enoate (212 mg, 1.00 mmol) in CH₂Cl₂ (1 mL) was added allyl bromide (432 μ L, 5.00 mmol) and Hoveyda-Grubbs 2nd generation catalyst (13 mg, 0.020 mmol) in CH₂Cl₂ (1 mL). The reaction was carried out under nitrogen at 40 °C for 4 h after which another portion of HG-II catalyst was added (13 mg, 0.02 mmol) in CH₂Cl₂ (1 mL) and the reaction continued for another 14 h. Volatiles were removed *in vacuo* to give a black oil which was purified by column chromatography eluting with Et₂O/pentane (7:93) to give a yellow oil, which was dissolved in Et₂O, stirred with activated carbon, filtered through a pad of celite and concentrated *in vacuo* to give the title compound as colourless oil and as a mixture of (83:17) E/Z isomers (253 mg, 0.83 mmol, 83%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.68 (p, *J* = 7.4 Hz, 2 H,

CH=CHCH₂CH₂CH₂), 1.85 – 1.94 (m, 2 H, CH₂CH₂CH₂C(O)OEt), 2.03 – 2.11 (m, 2 H, CH=CHCH₂CH₂CH₂CH₂), 2.32 (t, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)OEt), 2.41 (t, J = 7.3 Hz, 2 H, CH=CHCH₂CH₂CH₂CH₂CH₂CH₂), 2.48 (t, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)OEt), 3.93 – 3.96 (m, 2 H, BrCH₂CH=CH), 4.13 (q, J = 7.2 Hz, 2 H, OCH₂CH₃), 5.63 – 5.79 (m, 2 H, BrCH₂CH=CH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.3 (OCH₂CH₃), 18.9 (CH₂CH₂CH₂C(O)OEt), 22.7 (CH=CHCH₂CH₂CH₂CH₂), 31.4 (CH=CHCH₂CH₂CH₂), 33.2 (BrCH₂CH=CH), 33.3 (CH₂CH₂CH₂C(O)OEt), 41.7 (CH=CHCH₂CH₂CH₂), 41.8 (CH₂CH₂CH₂C(O)OEt), 60.4 (OCH₂CH₃), 127.3 (BrCH₂CH=CH), 135.4 (BrCH₂CH=CH), 173.2 (C(O)OEt), 209.8 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2939, 1729, 1711, 1659, 1446, 1412, 1373, 1311, 1203, 1178, 1097, 1030, 965, 858, 754. HRMS calcd for C₁₃H₂₂BrO₃ [M + H]⁺: 305.0752, found: 305.0750.

(E)-1-((tert-Butyldimethylsilyl)oxy)-10,14-dioxo-14-phenoxytetradec-5-en-4-yl4-(trifluoromethyl)benzoate 6b'

Prepared according to general procedure **G** using diphenyl phenyl 5-oxodec-9-enoate (261 mg, 1.00 mmol), 6-((*tert*-butyldimethylsilyl)oxy)hex-1-en-3-yl 4-(trifluoromethyl)benzoate (1.2 g, 3.00 mmol), Hoveyda-Grubbs 2nd generation catalyst (13 mg, 0.020 mmol) added in two portions and CH₂Cl₂ (5 mL) and purified by column chromatography eluting with EtOAc/Hexane (10:90) to give the title compound as a colourless oil (450 mg, 0.70 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6 H, Si(CH₃)₂), 0.89 (s, 9 H, SiC(CH₃)₃), 1.59 (d, *J* = 8.5 Hz, 2 H, OCH₂CH₂CH₂D, 1.68 (p, *J* = 7.5 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.73 – 1.89 (m, 2 H, OCH₂CH₂CH₂), 1.94 – 2.11 (m, 4 H, CH₂CH₂CH₂C(O)OPh, CH=CHCH₂CH₂CH₂CH₂), 2.41 (t, *J* = 7.4 Hz, 2 H, CH₂=CHCH₂CH₂CH₂CH₂), 2.55 (dt, *J* = 15.6, 7.2 Hz, 4 H, CH₂CH₂CH₂C(O)OPh, CH₂CH₂CH₂CH₂CH₂CH₂CO)OPh, CH₂CH₂CH₂D, 5.43 – 5.57 (m, 2 H, CHCH=CH, CHCH=CH), 5.76 (dt, *J* = 14.6, 6.7 Hz, 1 H, CHCH=CH), 7.03 – 7.09 (m, 2H, ArCH), 7.18 – 7.25 (m, 1 H, ArCH), 7.37 (dd, *J* = 8.4, 7.4 Hz, 2 H, ArCH), 7.65 – 7.73 (m, 2 H, ArCH), 8.10 – 8.18 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (Si(CH₃)₂), 18.5 (C(O)CH₂CH₂CH₂C₁), 18.9 (SiC(CH₃)₃), 23.0 (OCH₂CH₂CH₂), 26.1 (SiC(CH₃)₃), 28.6 (CH₂CH₂CH₂C(O)), 31.2 (OCH₂CH₂CH₂), 31.6 (CH₂CH₂C₁(O)), 33.4

(C(O)*C*H₂CH₂CH₂), 41.5 (C(O)CH₂CH₂*C*H₂), 42.1 (CH₂CH₂*C*H₂C(O)), 62.8 (O*C*H₂CH₂CH₂), 76.1 (*C*HCH=CH), 121.6 (Ar*C*H), 125.5 (Ar*C*H), 125.9 (Ar*C*H), 129.0 (CH*C*H=CH), 129.5, (Ar*C*H), 130.1 (Ar*C*H), 133.9 (CHCH=CH), 134.1 (*C*F₃), 134.3 (Ar*C*), 134.6 (Ar*C*) 150.7 (Ar*C*), 164.9 (*C*(O)OAr), 171.8 (*C*(O)OPh), 209.8 (*C*(O)) ppm. IR ν_{max} (neat/cm⁻¹): 2952, 2179, 1721, 1365, 1325, 1200, 1133, 1165, 1101, 909, 733, 616. HRMS calcd for C₃₄H₄₅F₃O₆Na [M + Na]⁺: 657.2830, found 657.2800.

(E)-9,13-dioxo-13-phenoxy-1-phenyltridec-4-en-3-yl 4-(trifluoromethyl)benzoate 6c'

Prepared according to general procedure G using phenyl 5-oxodec-9-enoate (0.100 g, 0.38 mmol), 5-phenylpent-1-en-3-yl 4-(trifluoromethyl)benzoate (390 mg, 1.15 mmol), Hoveyda-Grubbs 2nd generation catalyst (5 mg, 0.0076 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil (100 mg, 0.18 mmol, 48%). ¹H NMR (400 MHz, CDCl₃) δ 1.69 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.94 – 2.21 (m, 6 H, $C(O)CH_2CH_2CH_2$, $CH_2CH_2CH_2C(O)$, O-CHCH_2CH_2), 2.41 (t, J = 7.3 Hz, 2 H, $CH_2CH_2CH_2C(O)$), 2.49 – 2.61 (m, 4 H, C(O) $CH_2CH_2CH_2$, O-CHCH₂CH₂), 2.71 (t, J = 7.9) Hz, 2 H, C(O)CH₂CH₂CH₂), 5.44 – 5.59 (m, 2 H, CHCH₂CH₂, CHCH=CH), 5.78 (dt, *J* = 15.1, 6.7 Hz, 1 H, CHCH=CH), 7.04 – 7.09 (m, 2 H, ArCH), 7.14 – 7.21 (m, 3 H, ArCH), 7.23 – 7.30 (m, 3 H, ArCH), 7.37 (dd, J = 8.6, 7.3 Hz, 2 H, ArCH), 7.70 (d, J = 8.4 Hz, 2 H, ArCH), 8.12 (d, J = 8.0 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.9 (C(O)CH₂CH₂CH₂), 23.0 (CH₂CH₂CH₂C(O)), 31.7 (CH₂CH₂CH₂C(O)), 31.7 (C(O)CH₂CH₂CH₂), 33.4 (CHCH₂CH₂), 36.3 (CHCH₂CH₂), 41.5 (C(O)CH₂CH₂CH₂), 42.1 (CH₂CH₂CH₂C(O)), 75.8 (CHCH₂CH₂), 121.6 (ArCH), 125.5 (ArCH), 126.0 (ArCH), 126.2 (ArCH), 128.5 (ArCH), 128.6 (CHCH=CH), 128.7 (ArCH), 129.6 (ArCH), 130.1 (ArCH), 134.0 (ArC), 134.3 (CHCH=CH), 134.7 (ArC), 141.3 (ArC), 150.7 (ArC), 164.8 (C(O)OAr), 171.8 (C(O)OPh), 209.8 (*C*(O)) ppm. *C*F₃ not observed. IR v_{max} (neat/cm⁻¹): 2970, 2170, 1739, 1365, 1325, 1273, 1217, 1132, 909, 732 610. HRMS calcd for C₃₃H₃₃F₃O5Cl [M + Cl]⁻: 601.1974, found 601.1984.

(trifluoromethyl)benzoate 6d'

Prepared according to general procedure G using phenyl phenyl 5-oxodec-9-enoate (14 mg, 0.054 mmol), 1-(benzofuran-2-yl)but-3-en-2-yl 4-(trifluoromethyl)benzoate (0.7 mg, 0.0016 mmol), Hoveyda-Grubbs 2nd generation catalyst (5 mg, 0.0076 mmol; added in two portions) and CH₂Cl₂ (0.5 mL), to give the title compound as a colourless oil (17 mg, 0.029 mmol, 55%). ¹H NMR (400 MHz, CDCl₃) δ 1.64 (p, J = 8.4, 7.9 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.91 – 2.09 (m, 4 H, C(O)CH₂CH₂CH₂, CH₂CH₂CH₂C(O)), 2.24 – 2.36 (m, 2 H, C(O)C H_2 C H_2 C H_2), 2.45 (t, J = 7.1 Hz, 2 H, C H_2 C H_2 C H_2 C(O)), 2.56 (t, J = 7.2 Hz, 2 H, C(O)CH₂CH₂CH₂), 3.22 (dd, *J* = 15.2, 6.0 Hz, 1H, CHCH₂), 3.29 (dd, *J* = 15.1, 7.0 Hz, 1H, CHC H_2), 5.50 – 5.67 (m, 1 H, CHCH=CH), 5.83 (dq, J = 18.3, 6.7 Hz, 2 H, CH, CHCH=CH), 6.49 (s, 1 H, ArCH), 7.03 – 7.11 (m, 2 H, ArCH), 7.14 – 7.27 (m, 3 H, ArCH), 7.38 (td, J = 8.0, 6.4 Hz, 3 H, ArCH), 7.48 (dd, J = 7.5, 1.6 Hz, 1 H, ArCH), 7.69 (d, J = 8.2 Hz, 2 H, ArCH), 8.14 (d, J = 8.1 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.9 22.8 $(CH_2CH_2CH_2C(O)),$ 31.6 $(C(O)CH_2CH_2CH_2),$ $(CH_2CH_2CH_2C(O)),$ 33.4 (C(O)CH₂CH₂CH₂), 34.2 (CHCH₂), 41.4 (C(O)CH₂CH₂CH₂), 41.8 (CH₂CH₂CH₂C(O)), 74.0 (CHCH₂), 104.5 (ArCH), 111.0 (ArCH), 120.6 (ArCH), 121.6 (ArCH), 122.4 (ArC), 122.8 (ArCH), 123.8 (ArCH), 125.5 (ArCH), 126.0 (ArCH), 127.8 (CHCH=CH), 128.7 (ArC), 129.6 (ArCH), 130.2 (ArCH), 134.4 (ArC), 135.0 (CHCH=CH), 150.7 (ArC), 154.2 (ArC), 154.9 (ArC), 164.6 (C(O)OAr), 171.8 (C(O)OPh), 209.8 (C(O)) ppm CF₃ not observed. IR v_{max} $(neat/cm^{-1})$: 2970, 1739, 1365, 1217, 688, 571. $C_{34}H_{31}F_{3}O_{6}Na [M + Na]^{+}$: 615.1965, found 615.1968.
Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-phenylmalonate 6a

Prepared according to general procedure G using diphenyl 2-(3-oxooct-7-en-1-yl)-2phenylmalonate (200 mg, 0.44 mmol), allyl bromide (194 µL, 2.20 mmol), Hoveyda-Grubbs 2nd generation catalyst (18 mg, 0.02 mmol; added in two portions) and CH₂Cl₂ (2 mL) to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (156 mg, 0.28 mmol, 65%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.65 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.99 - 2.08 (m, 2 H, CH₂CH₂CH₂C(O)), 2.33 - 2.42 (m, 2 H, CH₂CH₂CH₂C(O)), 2.55 - 2.63 (m, 2 H, C(O)CH₂CH₂C), 2.86 - 2.94 (m, 2 H, C(O)CH₂CH₂C), 3.92 – 3.95 (m, 2 H, BrCH₂), 5.62 – 5.73 (m, 2 H, CH=CH), 7.07 – 7.15 (m, 4 H, ArCH), 7.23 – 7.30 (m, 2 H, ArCH), 7.36 – 7.49 (m, 7 H, ArCH), 7.58 – 7.64 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 29.4 (C(O)CH₂CH₂C), 31.3 (CH₂CH₂CH₂C(O)), 33.2 (BrCH₂), 38.1 (C(O)CH₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 62.1 (C(O)CH₂CH₂C), 121.2 (ArCH), 126.4 (ArCH), 127.3 (BrCH₂CH=CH), 128.0 (ArCH), 128.3 (ArCH), 128.7 (ArCH), 129.6 (ArCH), 135.3 (BrCH₂CH=CH), 135.6 (ArC), 150.5 (ArC-O), 168.9 (C(O)O), 208.8 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 3062, 2935, 1748, 1713, 1640, 1591, 1491, 1456, 1447, 1414, 1371, 1292, 1182, 1160, 1069, 1023, 1002, 911, 832, 794, 744, 686. HRMS calcd for $C_{30}H_{29}BrO_5Na \ [M + Na]^+: 571.1091$, found 571.1085

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-ethylmalonate 6b

Prepared according to general procedure **G** using diphenyl 2-ethyl-2-(3-oxooct-7-en-1-yl)malonate (195 mg, 0.48 mmol), allyl bromide (206 μ L, 2.40 mmol), Hoveyda-Grubbs 2nd generation catalyst (18 mg, 0.020 mmol; added in two portions) and CH₂Cl₂ (2 mL) to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (146 mg, 0.29 mmol, 61%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.09 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 1.70 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.04 – 2.11 (m, 2 H, CH₂CH₂CH₂C(O)), 2.22 (q, *J* = 7.5 Hz, 2 H, CH₂CH₃), 2.39 – 2.52 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.58 – 2.68 (m, 2 H, C(O)CH₂CH₂C), 3.91 – 3.95 (m, 2 H, BrCH₂), 5.64 – 5.77 (m, 2 H, CH=CH), 7.09 – 7.16 (m, 4 H, ArCH), 7.24 – 7.31

(m, 2 H, ArC*H*), 7.37 – 7.45 (m, 4 H, ArC*H*). ¹³C NMR (100 MHz, CDCl₃) δ 8.7 (CH₂CH₃), 22.7 (CH₂CH₂CH₂C(O)), 26.1 (CH₂CH₃), 26.7 (C(O)CH₂CH₂C), 31.3 (CH₂CH₂CH₂C(O)), 33.2 (BrCH₂), 37.7 (C(O)CH₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 57.7 (C(O)CH₂CH₂C), 121.3 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.3 (BrCH₂CH=CH), 150.5 (ArC), 169.8 (C(O)O), 208.8 (C(O)) ppm. IR ν_{max} (neat/cm⁻¹): 2943, 1746, 1713, 1590, 1492, 1456, 1372, 1293, 1183, 1161, 1097, 1069, 1023, 965, 926, 831, 743, 687. HRMS calcd for C₂₆H₂₉BrO₅K [M + K]⁺: 539.0830, found 539.0832.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-methylmalonate 6c

Prepared according to general procedure **G** using diphenyl 2-methyl-2-(3-oxooct-7-en-1yl)malonate (255 mg, 0.65 mmol), allyl bromide (279 µL, 3.24 mmol), Hoveyda-Grubbs 2nd generation catalyst (16 mg, 0.030 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (206 mg, 0.42 mmol, 65%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.69 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.72 (s, 3 H, CH₃), 2.05 – 2.11 (m, 2 H, CH₂CH₂CH₂CCQO)), 2.40 – 2.51 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.64 – 2.71 (m, 2 H, C(O)CH₂CH₂C), 3.92 – 3.95 (m, 2 H, BrCH₂), 5.65 – 5.77 (m, 2 H, CH=CH), 7.10 – 7.16 (m, 4 H, ArCH), 7.25 – 7.30 (m, 2 H, ArCH), 7.37 – 7.45 (m, 4 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 20.7 (CH₃), 22.7 (CH₂CH₂CH₂CQO)), 29.4 (C(O)CH₂CH₂C), 31.3 (CH₂CH₂CH₂C), 121.2 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.3 (BrCH₂CH=CH), 150.5 (ArC), 170.3 (C(O)O), 208.8 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2941, 1748, 1713, 1590, 1492, 1456, 1412, 1380, 1292, 1185, 1160, 1085, 1069, 1023, 1005, 966, 923, 830, 744, 687. HRMS calcd for C₂₅H₂₇BrO₅K [M + K]⁺: 525.0673, found 525.0680.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-isopropylmalonate 6d

Prepared according to general procedure **G** using diphenyl 2-isopropyl-2-(3-oxooct-7-en-1-yl)malonate (410 mg, 0.97 mmol), allyl bromide (432 μ L, 5.00 mmol), Hoveyda-Grubbs 2nd

generation catalyst (26 mg, 0.040 mmol; added in two portions) and CH₂Cl₂ (3 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (333 mg, 0.65 mmol, 67%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, J = 6.8 Hz, 6 H, CH(CH₃)₂), 1.69 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.02 – 2.10 (m, 2 H, CH₂CH₂CH₂C(O)), 2.39 – 2.49 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.60 (hept, J = 6.9 Hz, 1 H, CH(CH₃)₂), 2.67 – 2.74 (m, 2 H, C(O)CH₂CH₂C), 3.90 – 3.95 (m, 2 H, BrCH₂), 5.64 – 5.73 (m, 2 H, CH=CH), 7.10 – 7.17 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.38 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.7 (CH(CH₃)₂), 22.7 (CH₂CH₂CH₂C(O)), 27.0 (C(O)CH₂CH₂C), 31.3 (CH₂CH₂CH₂C(O)), 61.4 (C(O)CH₂CH₂C), 121.4 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.4 (BrCH₂CH=CH), 150.4 (ArC), 169.4 (C(O)O), 209.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2941, 1743, 1713, 1591, 1491, 1456, 1392, 1372, 1291, 1184, 1160, 1111, 1069, 1023, 965, 916, 831, 741, 687. HRMS calcd for C₂₇H₃₁BrO₅K [M + K]⁺: 553.0986, found 553.0990.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cyclopentylmalonate 6e

Prepared according to general procedure **G** using diphenyl 2-cyclopentyl-2-(3-oxooct-7-en-1yl)malonate (405 mg, 0.91 mmol), allyl bromide (400 μ L, 4.54 mmol), Hoveyda-Grubbs 2nd generation catalyst (25 mg, 0.04 mmol; added in two portions) and CH₂Cl₂ (3 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (356 mg, 0.66 mmol, 72%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.59 – 1.79 (m, 8 H, 6 H from 3 × CH₂, 2 H from CH₂CH₂CH₂C(O)), 1.95 – 2.11 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.38 – 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.66 – 2.78 (m, 3 H, 1 H from CH(CH₂)₂, 2 H from C(O)CH₂CH₂C), 3.90 – 3.95 (m, 2 H, CH₂Br), 5.63 – 5.77 (m, 2 H, CH=CH), 7.09 – 7.17 (m, 4 H, ArCH), 7.23 – 7.31 (m, 2 H, ArCH), 7.36 – 7.45 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 25.7 (CH₂), 27.9 (C(O)CH₂CH₂C), 28.3 (CH₂), 31.3 (CH₂CH₂CH₂C(O)), 33.2 (BrCH₂), 38.4 (C(O)CH₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 44.5 (CH(CH₂)₂), 60.2 (C(O)CH₂CH₂C), 121.4 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.4 (BrCH₂CH=CH), 150.4 (ArC), 169.6 (C(O)O), 209.2 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2952, 1744, 1713, 1591, 1491, 1456, 1291, 1187, 1161, 1069, 1024, 966, 743, 688. HRMS calcd for C₂₉H₃₃BrO₅Na [M + Na]⁺: 563.1404, found 563.1411.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cyclohexylmalonate 6f

Prepared according to general procedure G using diphenyl 2-cyclohexyl-2-(3-oxooct-7-en-1yl)malonate (300 mg, 0.65 mmol), allyl bromide (287 µL, 3.25 mmol), Hoveyda-Grubbs 2nd generation catalyst (16 mg, 0.03 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (219 mg, 0.39 mmol, 61%). Spectroscopic data for major (E) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.15 – 1.33 (m, 1 H, CH₂), 1.33 - 1.45 (m, 4 H, $2 \times CH_2$), 1.63 - 1.79 (m, 3 H, 1 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 1.82 – 1.92 (m, 2 H, CH₂), 1.98 – 2.10 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.16 - 2.28 (m, 1 H, CH(CH₂)₂), 2.40 - 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.64 - 2.71 (m, 2 H, C(O)CH₂CH₂C), 3.90 -3.95 (m, 2 H, BrCH₂), 5.62 – 5.77 (m, 2 H, CH=CH), 7.09 – 7.17 (m, 4 H, ArCH), 7.24 – 7.31 (m, 2 H, ArCH), 7.38 - 7.46 (m, 4 H, ArCH). ¹³C NMR (100 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 26.4 (CH₂), 26.9 (C(O)CH₂CH₂C), 27.0 (CH₂), 28.8 (CH₂), 31.3 (CH₂CH₂CH₂C(O)), 33.2 (BrCH₂), 38.4 (C(O)CH₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 43.8 (CH(CH₂)₂), 61.3 (C(O)CH₂CH₂C), 121.4 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.4 (BrCH₂CH=CH), 150.4 (ArC), 169.3 (C(O)O), 209.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2930, 2853, 1743, 1714, 1591, 1491, 1450, 1184, 1160, 1135, 1069, 1023, 1003, 965, 831, 744, 687. HRMS calcd for C₃₀H₃₅BrO₅K [M + K]⁺: 593.1299, found 593.1308.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cycloheptylmalonate 6g

Prepared according to general procedure **G** using diphenyl 2-cycloheptyl-2-(3-oxooct-7-en-1-yl)malonate (400 mg, 0.84 mmol), allyl bromide (371 μ L, 4.20 mmol), Hoveyda-Grubbs 2nd generation catalyst (26 mg, 0.040 mmol; added in two portions) and CH₂Cl₂ (3 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (352 mg, 0.62 mmol, 74%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.52 –

1.72 (m, 10 H, 8 H from $4 \times CH_2$, 2 H from $CH_2CH_2CH_2C(O)$), 1.76 – 1.90 (m, 2 H, CH_2), 1.95 – 2.11 (m, 4 H, 2 H from CH₂, 2 H from CH₂CH₂CH₂C(O)), 2.34 – 2.51 (m, 5 H, 1 H from CH(CH₂)₂, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.67 - 2.76 (m, 2 H, C(O)CH₂CH₂C), 3.90 – 3.95 (m, 2 H, BrCH₂), 5.63 – 5.77 (m, 2 H, CH=CH), 7.09 – 7.16 (m, 4 H, ArCH), 7.23 – 7.31 (m, 2 H, ArCH), 7.37 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 27.4 (C(O)CH₂CH₂C), 27.7 (CH₂), 27.9 (CH₂), 30.5 $(CH_2CH_2CH_2C(O)),$ 33.2 38.6 (CH_2) . 31.3 $(BrCH_2),$ $(C(O)CH_2CH_2C),$ 41.9 (CH₂CH₂CH₂C(O)), 44.7 (CH(CH₂)₂), 62.7 (C(O)CH₂CH₂C), 121.4 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.4 (BrCH₂CH=CH), 150.4 (ArC), 169.7 (C(O)O), 209.3 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2921, 2854, 1743, 1713, 1591, 1491, 1456, 1292, 1186, 1160, 1068, 1023, 965, 918, 830, 743, 687. HRMS calcd for C₃₁H₃₇BrO₅K [M + K]⁺: 607.1456, found 607.1465.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(tetrahydro-2H-pyran-4-yl)malonate 6h

Prepared according to general procedure G using diphenyl 2-cyclohexyl-2-(3-oxooct-7-en-1vl)malonate (0.13 g, 2.67 mmol), allyl bromide (0.12 mL, 1.34 mmol), Hoveyda-Grubbs 2nd generation catalyst (0.003 g, 0.02 mmol) added in two portions and CH₂Cl₂ (1.34 mL) to give the title compound as a colourless oil and as a mixture of (79:21) E/Z isomers (0.072 g, 1.29 mmol, 48%). Spectroscopic data for major (*E*) isomer: ¹H NMR (500 MHz, CDCl₃) δ 1.69 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.75 – 1.91 (m, 4 H, CH₂CHCH₂), 2.07 (q, J = 6.7 Hz, 2 H, $CH_2CH_2CH_2C(O)$), 2.41 – 2.51 (m, 5 H, $CH_2CH_2CH_2C(O)$, $C(O)CH_2CH_2C_{quat}$, CH₂CHCH₂), 2.68 (t, J = 7.5 Hz, 2 H, C(O)CH₂CH₂C_{quat}), 3.50 (t, J = 11.5 Hz, 2 H, CH₂O), 3.93 (d, J = 5.6 Hz, 2 H, CH₂Br), 4.09 (dd, J = 11.7, 4.1 Hz, 2 H, CH₂O), 5.50 - 5.80 (m, 2 H, CH=CH), 7.13 (d, J = 7.9 Hz, 4 H, ArCH), 7.25 – 7.31 (m, 2 H, ArCH), 7.42 (t, J = 7.7 Hz, 4 H, ArCH) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 26.6 (C(O)CH₂CH₂C_{quat}), 28.9 (CH₂CHCH₂), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (CH₂Br), 38.2 (C(O)CH₂CH₂C_{quat}), 40.9 (CH₂CH₂CH₂C(O)), 42.0 (CH₂CHCH₂), 60.7 (C(O)CH₂CH₂C_{quat}), 68.4 (CH₂OCH₂), 121.4 (ArCH), 126.5 (ArCH), 127.5 (CH=CH), 129.8 (ArCH), 135.4 (CH=CH), 150.4 (ArC), 169.0 (C(O)O), 208.9 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2969, 1743, 1366, 1200, 688, 616. HRMS calcd for C₂₉H₃₄BrO₆ [M + H]⁺: 557.1533, found 557.1521.

Diphenyl (*E*)-2-isopropyl-2-(3-oxo-11-phenyl-9-((4-(trifluoromethyl)benzoyl)oxy)undec-7-en-1-yl)malonate 6i

Prepared according to general procedure G using diphenyl 2-isopropyl-2-(3-oxooct-7-en-1yl)malonate (16 mg, 0.38 mmol), 5-phenylpent-1-en-3-yl 4-(trifluoromethyl)benzoate (390 mg, 1.15 mmol), Hoveyda-Grubbs 2nd generation catalyst (5 mg, 0.02 mmol) and CH₂Cl₂ (2 mL) to give the title compound as a colourless oil (170 mg, 0.24 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) 1.21 (d, *J* = 6.9 Hz, 6 H, CH(CH₃)₂), 1.66 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.95 - 2.18 (m, 4 H, CH₂CH₂CH₂C(O), O-CHCH₂CH₂), 2.36 - 2.45 (m, 4 H, $C(O)CH_2CH_2C_{quat}, CH_2CH_2CH_2C(O)), 2.56 (p, J = 6.9 Hz, 1 H, CH(CH_3)_2), 2.62 - 2.73 (m, 4)$ H, C(O)CH₂CH₂CH₂C_{auat}, CHCH₂CH₂), 5.42 - 5.55 (m, 2 H, CHCH₂CH₂, CHCH=CH), 5.75 (dt, *J* = 14.9, 6.7 Hz, 1 H, CHCH=CH), 7.07 – 7.12 (m, 4 H, ArCH), 7.13 – 7.19 (m, 3 H, ArCH), 7.24 (qt, J = 6.9, 1.1 Hz, 4 H, ArCH), 7.33 – 7.41 (m, 4 H, ArCH), 7.66 (d, J = 8.2 Hz, 2 H, ArCH), 8.07 – 8.13 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.7 (CH(CH₃)₂), 23.0 (CH₂CH₂CH₂C(O)), 27.0 (C(O)CH₂CH₂C_{quat}), 31.6 (C(O)CH₂CH₂C_{quat}), 31.7 (CH₂CH₂CH₂C(O)), 33.4 (CH(CH₃)₂, 36.2 (CHCH₂CH₂), 38.4 (CHCH₂CH₂), 42.1 (CH₂CH₂CH₂C(O)), 61.4 (C(O)CH₂CH₂C_{quat}), 75.7 (CHCH₂CH₂), 121.5 (ArCH), 125.1 (CF₃), 125.4 (ArCH), 126.1 (ArCH), 126.3 (ArCH), 128.4 (ArCH), 128.6 (CHCH=CH), 128.7 (ArCH), 129.7 (ArCH), 130.1 (ArCH), 133.9 (ArC), 134.2 (CHCH=CH), 134.5 (ArC), 141.2 (ArC) 150.5 (ArC), 164.7 (C(O)OAr), 169.4 (C(O)OPh), 209.2 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2941, 1745, 1716, 1592, 1411, 1324, 1271, 1184, 1162, 1113, 1065, 1017, 909, 86, 737, 688. HRMS calcd for C₄₃H₄₃F₃O₇K [M + K]⁺: 767.2592, found 767.2563.

(E)-2-(12-((tert-butyldimethylsilyl)oxy)-3-oxo-9-((4-

(trifluoromethyl)benzoyl)oxy)dodec-7-en-1-yl)-2-isopropylmalonate 6j

Diphenyl

Prepared according to general procedure G using diphenyl 2-isopropyl-2-(3-oxooct-7-en-1yl)malonate (100 mg, 0.24 mmol), 6-((tert-butyldimethylsilyl)oxy)hex-1-en-3-yl 4-(trifluoromethyl)benzoate (290 mg, 0.71 mmol), Hoveyda-Grubbs 2nd generation catalyst (3 mg, 0.02 mmol) and CH₂Cl₂ (1.2 mL) to give the title compound as a colourless oil (58 mg, 0.07 mmol, 31%). ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6 H, Si(CH₃)₂), 0.88 (s, 9 H, SiC(CH₃)₃), 1.22 (d, J = 6.9 Hz, 6 H, (CH₃)₂), 1.54 - 1.71 (m, 4 H, OCH₂CH₂CH₂, $CH_2CH_2CH_2C(O)$), 1.71 – 1.88 (m, 2 H, $OCH_2CH_2CH_2$), 2.03 (q, J = 7.2 Hz, 2 H, $CH_2CH_2CH_2C(O)$, 2.37 – 2.44 (m, 4 H, $CH_2CH_2CH_2C(O)$, $C(O)CH_2CH_2C_{quat}$), 2.57 (p, J =6.9 Hz, 1 H, CH(CH₃)₂), 2.66 (dd, J = 8.9, 6.7 Hz, 2 H, C(O)CH₂CH₂C_{quat}), 3.63 (t, J = 6.3 Hz, 2 H, OCH₂CH₂CH₂), 5.42 – 5.54 (m, 2 H, CHCH=CH, CHCH=CH), 5.74 (dt, J = 14.1, 6.7 Hz, 1 H, CHCH=CH), 7.08 – 7.14 (m, 4 H, ArCH), 7.23 – 7.29 (m, 2 H, ArCH), 7.39 (dd, J = 8.4, 7.4 Hz, 4 H, ArCH), 7.68 (d, J = 8.2 Hz, 2 H, ArCH), 8.11 – 8.17 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.1 (Si(CH₃)₂), 18.5 (SiC(CH₃)₃), 18.8 (CH(CH₃)₂), 23.0 (CH₂CH₂CH₂C(O)), 26.1 (SiC(CH₃)₃), 27.1 (C(O)CH₂CH₂C_{quat}), 28.6 (OCH₂CH₂CH₂), 31.2 (OCH₂CH₂CH₂), 31.7 (CH₂CH₂CH₂C(O)), 33.4 (CH(CH₃)₂), 38.4 (C(O)CH₂CH₂CH₂C_{quat}), 42.2 (CH₂CH₂CH₂C(O)), 61.4 (C(O)CH₂CH₂C_{quat}), 62.8 (OCH₂CH₂CH₂CH₂), 76.1 (CHCH=CH), 121.5 (ArCH), 125.4 (CF₃), 125.5 (ArCH), 125.5 (ArCH), 126.4 (ArCH), 128.9 (O-CHCH=CH), 129.7 (ArCH), 130.1 (ArC), 133.9 (CHCH=CH), 146.5 (ArC), 150.5 (ArC), 164.8 (*C*(O)OAr), 169.0 (*C*(O)OPh), 209.3 (*C*(O)) ppm *C*F₃ not observed. IR v_{max} (neat/cm⁻¹): 2929, 1747, 1720, 1493, 1325, 1272, 1198, 1187, 1164, 1132, 1101, 1066, 2028, 835, 776, 688. HRMS calcd for C₄₄H₅₅F₃O₈SiNa [M + Na]⁺: 819.3511, found 819.3475.

Diphenyl (E)-2-benzyl-2-(9-bromo-3-oxonon-7-en-1-yl)malonate 6k

Prepared according to general procedure G using diphenyl 2-benzyl-2-(3-oxooct-7-en-1yl)malonate (443 mg, 0.94 mmol), allyl bromide (406 µL, 4.70 mmol), Hoveyda-Grubbs 2nd generation catalyst (26 mg, 0.040 mmol; added in two portions) and CH₂Cl₂ (3 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (396 mg, 0.70 mmol, 75%). Spectroscopic data for major (E) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.69 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.02 - 2.11 (m, 2 H, CH₂CH₂CH₂C(O)), 2.38 - 2.51 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.67 - 2.74 (m, 2 H, C(O)CH₂CH₂C), 3.53 (s, 2 H, CH₂Ar), 3.90 – 3.95 (m, 2 H, BrCH₂), 5.63 – 5.79 (m, 2 H, CH=CH), 7.06 – 7.12 (m, 4 H, ArCH), 7.24 – 7.37 (m, 7 H, ArCH), 7.39 – 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.6 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C), 31.3 33.2 $(BrCH_2)$, 37.9 $(C(O)CH_2CH_2C)$, $(CH_2CH_2CH_2C(O)),$ 39.7 $(CH_2Ar),$ 41.9 (CH₂CH₂CH₂C(O)), 58.5 (C(O)CH₂CH₂C), 121.2 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 127.5 (ArCH), 128.6 (ArCH), 129.6 (ArCH), 130.3 (ArCH), 135.1 (ArC), 135.3 (BrCH₂CH=CH), 150.4 (ArC-O), 169.3 (C(O)O), 208.7 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2942, 2360, 1747, 1713, 1590, 1491, 1455, 1411, 1372, 1292, 1192, 1161, 1082, 1069, 1024, 1002, 965, 917, 831, 736, 701, 688. HRMS calcd for C₃₁H₃₁BrO₅K [M + K]⁺: 601.0986, found 601.0993.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-chlorobenzyl)malonate 6l

Prepared according to general procedure **G** using diphenyl 2-(4-chlorobenzyl)-2-(3-oxooct-7en-1-yl)malonate (334 mg, 0.660 mmol), allyl bromide (285 μ L, 3.3 mmol), Hoveyda-Grubbs 2nd generation catalyst (16 mg, 0.026 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (284 mg, 0.475 mmol, 73%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.67 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.02 – 2.09 (m, 2 H, CH₂CH₂CH₂C(O)), 2.35 – 2.48 (m, 4 H, 2 H from CH₂CH₂C₄C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.65 – 2.71 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.46 (s, 2 H, CH₂Ar), 3.90 – 3.94 (m, 2 H, BrCH₂), 5.63 – 5.77 (m, 2 H, CH=CH), 7.04 – 7.10 (m, 4 H, ArCH), 7.22 – 7.34 (m, 6 H, ArCH), 7.37 – 7.44 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 27.2 (C(O)CH₂CH₂C_{quat}), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (BrCH₂), 37.9 (C(O)CH₂CH₂C_{quat}), 39.4 (CH₂Ar), 42.0 (CH₂CH₂CH₂C(O)), 58.6 (C(O)CH₂CH₂C_{quat}), 121.3 (ArCH), 126.5 (ArCH), 127.5 (BrCH₂CH=CH), 128.9 (ArCH), 129.8 (ArCH), 131.8 (ArCH), 133.7 (ArC), 133.8 (ArC), 135.4 (BrCH₂CH=CH), 150.5 (ArC-O), 169.3 (C(O)O), 208.7 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2933, 1746, 1714, 1591, 1492, 1456, 1409, 1373, 1192, 1161, 1094, 1069, 1024, 1016, 965, 914, 847, 831, 743, 715, 686, 668, 657. HRMS calcd for C₃₁H₃₀BrClO₅K [M+K]⁺: 635.0602.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-fluorobenzyl)malonate 6m

Prepared according to general procedure **G** using diphenyl 2-(4-fluorobenzyl)-2-(3-oxooct-7en-1-yl)malonate (395 mg, 0.810 mmol), allyl bromide (345 μ L, 4.05 mmol), Hoveyda-Grubbs 2nd generation catalyst (20 mg, 0.032 mmol; added in two portions) and CH₂Cl₂ (2 mL) to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (329 mg, 0.566 mmol, 70%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.67 (p, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.02 – 2.08 (m, 2 H, CH₂CH₂CH₂C(O)), 2.35 – 2.49 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.65 – 2.72 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.47 (s, 2 H, CH₂Ar), 3.89 – 3.94 (m, 2 H, BrCH₂), 5.63 – 5.79 (m, 2 H, CH=CH), 6.99 – 7.10 (m, 6 H, ArCH), 7.25 – 7.31 (m, 4 H, ArCH), 7.37 – 7.44 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 27.2 (C(O)CH₂CH₂Cq_{quat}), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (BrCH₂), 38.0 (C(O)CH₂CH₂C_{quat}), 39.2 (CH₂Ar), 42.0 (CH₂CH₂CH₂C(O)), 58.7 (C(O)CH₂CH₂Cq_{quat}), 115.6 (d, *J* = 21.2 Hz, ArCH), 121.3 (ArCH), 126.5 (ArCH), 127.5 (BrCH₂CH=CH), 129.8 (ArCH), 131.0 (d, *J* = 3.5 Hz, ArC), 132.0 (d, *J* = 8.0 Hz, ArCH), 135.4 (BrCH₂CH=CH), 150.5 (ArC-O), 162.4 (d, *J* = 246.2 Hz, ArC), 169.3 (C(O)O), 208.7 (C(O)) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.92 ppm. IR v_{max} (neat/cm⁻¹): 2934, 1746, 1715, 1590, 1510, 1492, 1456, 1418, 1372, 1222, 1186, 1159, 1098, 1069, 1024, 1000, 966, 915, 842, 745, 688, 668, 658, 602. HRMS calcd for $C_{31}H_{30}BrFO_5K$ [M+K]⁺: 619.0897, found 619.0897.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-methoxybenzyl)malonate 6n

Prepared according to general procedure G using diphenyl 2-(4-methoxybenzyl)-2-(3-oxooct-7-en-1-yl)malonate (0.26g, 0.52 mmol), allyl bromide (0.23 mL, 2.62 mmol), Hoveyda-Grubbs 2nd generation catalyst (6.6 mg, 0.01 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (0.17 g, 0.28 mmol, 54%). ¹H NMR (500 MHz, CDCl₃) δ 1.60 (p, J = 7.2 Hz, 2 H, CH₂CH₂CH₂C(O)), $1.98 (q, J = 6.7 Hz, 2 H, CH_2CH_2CH_2C(O)), 2.26 - 2.40 (m, 4 H, 2 H from CH_2CH_2CH_2C(O)),$ 2 H from C(O)CH₂CH₂C), 2.60 (t, J = 7.6 Hz, 2 H, C(O)CH₂CH₂C), 3.38 (s, 2 H, CH₂Ar), 3.73 (s, 3 H, ArOCH₃), 3.86 (m, 2 H, BrCH₂), 5.41 – 5.71 (m, 2 H, CH=CH), 6.79 (d, J = 8.1 Hz, 2 H, ArCH), 7.02 (d, J = 7.9 Hz, 4H, ArCH), 7.14 (d, J = 8.2 Hz, 2 H, ArCH), 7.17 – 7.22 (m, 2 H, ArCH), 7.33 (t, J = 7.7 Hz, 4 H, ArCH). ¹³C NMR (126 MHz, CDCl₃) δ 22.8 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (BrCH₂), 38.0 (C(O)CH₂CH₂C), 39.0 (CH₂Ar), 42.0 (CH₂CH₂CH₂C(O)), 55.4 (ArOCH₃), 58.7 (C(O)CH₂CH₂C), 114.1 (ArCH), 121.4 (ArCH), 126.4 (ArCH), 127.1 (BrCH₂CH=CH), 127.4 (ArC), 129.8 (ArCH), 131.4 (ArCH), 135.4 (BrCH₂CH=CH), 150.6 (ArC-O), 159.1 (ArC-OCH₃), 169.5 (C(O)O), 208.9 (C(O)). IR v_{max} (neat/cm⁻¹): 2936, 1746, 1714, 1513, 1492, 1248, 1160, 1032, 909, 837, 606. HRMS calcd for $C_{32}H_{34}O_6Br [M + H]^+$: 593.1533, found 593.1531.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(3,5-dimethylbenzyl)malonate 60

Prepared according to general procedure **G** using diphenyl 2-(3,5-dimethylbenzyl)-2-(3oxooct-7-en-1-yl)malonate (416 mg, 0.830 mmol), allyl bromide (360 μ L, 4.17 mmol), Hoveyda-Grubbs 2nd generation catalyst (20 mg, 0.032 mmol; added in two portions) and CH_2Cl_2 (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (302 mg, 0.51 mmol, 61%). Spectroscopic data for major (E) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.67 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.01 - 2.09 (m, 2 H, CH₂CH₂CH₂C(O)), 2.30 (s, 6 H, 2 × ArC-CH₃), 2.35– 2.49 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C_{quat}), 2.65 – 2.72 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.43 (s, 2 H, CH₂Ar), 3.89 – 3.94 (m, 2 H, BrCH₂), 5.63 – 5.79 (m, 2 H, CH=CH), 6.90 (s, 2 H, ArCH), 6.93 (s, 1 H, ArCH), 7.07 – 7.11 (m, 4 H, ArCH), 7.24 – 7.29 (m, 2 H, ArCH), 7.37 – 7.43 (m, 4 H, ArCH) ppm.¹³C NMR (100 MHz, CDCl₃) δ 21.5 (ArC-CH₃), 22.8 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C_{quat}), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (BrCH₂), 38.1 (C(O)CH₂CH₂C_{quat}), 39.6 (CH₂Ar), 42.0 (CH₂CH₂CH₂C(O)), 58.6 (C(O)CH₂CH₂CH₂C_{quat}), 121.4 (ArCH), 126.4 (ArCH), 127.5 (BrCH₂CH=CH), 128.3 (ArCH), 129.3 (ArCH), 129.7 (ArCH), 135.0 (ArC), 135.4 (BrCH₂CH=CH), 138.1 (ArC), 150.6 (ArC-O), 169.5 (C(O)O), 208.9 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2933, 1750, 1716, 1591, 1492, 1456, 1375, 1195, 1162, 1069, 1026, 966, 853, 745, 688, 668, 657. HRMS calcd for C₃₃H₃₅BrO₅K [M+K]⁺: 629.1305, found 629.1303.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(thiophen-3-ylmethyl)malonate 6p

Prepared according to general procedure **G** using diphenyl 2-(3-oxooct-7-en-1-yl)-2-(thiophen-3-ylmethyl)malonate (0.28 g, 0.59 mmol), allyl bromide (0.26 mL, 3.00 mmol), Hoveyda-Grubbs 2nd generation catalyst (7.4 mg, 0.01 mmol; added in two portions) and CH₂Cl₂ (2 mL), to give the title compound as a colourless oil and as a mixture of (83:17) *E/Z* isomers (0.19 mg, 0.33 mmol, 56%). ¹H NMR (400 MHz, CDCl₃) δ 1.65 (p, *J* = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.03 (tdd, *J* = 6.4, 4.9, 2.1 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.40 (td, *J* = 7.2, 3.3 Hz, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C)), 2.65 (dd, *J* = 8.7, 6.7 Hz, 2 H, C(O)CH₂CH₂C), 3.50 (s, 2 H, CH₂Ar), 3.89 (d, *J* = 6.0 Hz, 2 H, BrCH₂), 5.44 – 5.81 (m, 2 H, CH=CH), 7.01 (dd, *J* = 4.9, 1.4 Hz, 1 H, ArCH), 7.03 – 7.09 (m, 4 H, ArCH), 7.14 (dd, *J* = 3.0, 1.3 Hz, 1 H, ArCH), 7.23 (t, *J* = 3.7 Hz, 2 H, ArCH), 7.28 (dd, *J* = 4.9, 2.9 Hz, 1 H, ArCH), 7.38 (dd, *J* = 8.7, 7.1 Hz, 4 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 22.7 (CH₂CH₂CH₂C(O)), 27.2 (C(O)CH₂CH₂C), 31.4 (CH₂CH₂CH₂C(O)), 33.3 (BrCH₂), 34.4 (CH₂Ar), 37.9 (C(O)*C*H₂CH₂C), 41.9 (CH₂CH₂CH₂C(O)), 58.3 (C(O)CH₂CH₂C), 121.3 (Ar*C*H), 124.3 (Ar*C*H), 126.0 (Ar*C*H), 126.5 (Ar*C*H), 127.5 (BrCH₂CH=CH), 129.3 (Ar*C*H), 129.8 (Ar*C*H), 135.3 (Ar*C*), 135.4 (BrCH₂CH=CH), 150.5 (Ar*C*-O), 169.5 (*C*(O)O), 208.8 (*C*(O))). IR ν_{max} (neat/cm⁻¹): 2935, 1748, 1715, 1591, 1492, 1194, 1162, 905, 680, 688, 648. HRMS calcd for C₂₉H₂₉O₅BrSNa [M + Na]⁺: 591.0811, found 591.0813.

Diphenyl-(*E*)-2-benzyl-2-(12-((*tert*-butyldimethylsilyl)oxy)-3-oxo-9-((4-(trifluoromethyl) benzoyl)oxy)dodec-7-en-1-yl)malonate 6q

Prepared according to general procedure G using diphenyl 2-benzyl-2-(3-oxooct-7-en-1vl)malonate (211 mg, 0.45 mmol), 6-((*tert*-butyldimethylsilyl)oxy)hex-1-en-3-yl 4-(trifluoromethyl)benzoate (543 mg, 1.35 mmol), Hoveyda-Grubbs 2nd generation catalyst (8 mg, 0.013 mmol) and CH₂Cl₂ (1 mL) to give the title compound a colourless oil (183 mg, 0.22 mmol, 48%). ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 6 H, 2 × Si-CH₃), 0.88 (s, 9 H, 3 × Si- $C(CH_3)$), 1.52 – 1.62 (m, 2 H, OCH₂CH₂CH₂), 1.66 (p, J = 7.3 Hz, 2 H, CH₂CH₂CH₂C(O)), 1.71 – 1.89 (m, 2 H, OCH₂CH₂CH₂), 1.99 – 2.07 (m, 2 H, CH₂CH₂CH₂C(O)), 2.35 – 2.44 (m, 4 H, CH₂CH₂CH₂C(O), C(O)CH₂CH₂C_{quat}), 2.63 – 2.69 (m, 2 H, C(O)CH₂CH₂C_{quat}), 3.49 (s, 2 H, CH₂Ph), 3.63 (t, J = 6.5 Hz, 2 H, OCH₂CH₂CH₂), 5.43 – 5.53 (m, 2 H, CHCH=CH, 1 H, CHCH=CH), 5.70 – 5.78 (m, 1 H, CHCH=CH), 7.07 (d, J = 7.8 Hz, 4 H, ArCH), 7.22 – 7.36 (m, 7 H, ArCH), 7.39 (t, J = 7.8 Hz, 4 H, ArCH), 7.68 (d, J = 7.9 Hz, 2 H, ArCH), 8.14 (d, J = 7.9 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (Si-CH₃), 18.5 (Si-C(CH₃)₃), 23.0 (CH₂CH₂CH₂C(O)), 26.1 (Si-C(CH₃)₃), 27.0 (C(O)CH₂CH₂CH₂C_{quat}), 28.6 (OCH₂CH₂CH₂), 31.2 (OCH₂CH₂CH₂), 31.6 (CH₂CH₂CH₂C(O)), 37.9 (C(O)CH₂CH₂C_{quat}), 39.8 (CH₂Ph), 42.2 (CH₂CH₂CH₂C(O)), 58.6 (C(O)CH₂CH₂C_{quat}), 62.8 (OCH₂CH₂CH₂CH₂), 76.1 (CHCH=CH), 121.4 (Ar*C*H), 123.8 (d, *J* = 272.6 Hz, Ar-*C*F₃), 125.5 (q, *J* = 3.6 Hz, Ar*C*H), 126.4 (Ar*C*H), 127.6 (ArCH), 128.8 (ArCH), 129.0 (CHCH=CH), 129.8 (ArCH), 130.1 (ArCH), 130.4 (Ar*C*H), 133.9 (CHCH=*C*H), 134.1 (Ar*C*), 134.4 (q, *J* = 32.7 Hz, Ar*C*), 135.2 (Ar*C*), 150.6 (ArC), 164.8 (C(O)OAr), 169.4 (C(O)OPh), 208.9 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2929, 1750, 1719, 1493, 1325, 1272, 1165, 1132, 1100, 1065, 1017, 835, 776, 737, 703, 688, 668, 657. HRMS calcd for C₄₈H₅₅F₃O₈SiNa [M+Na]⁺: 867.3516, found 867.3510.

Diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(propan-2-yl-2-d)malonate D-6e

Prepared according to general procedure G using diphenyl 2-(3-oxooct-7-en-1-yl)-2-(propan-2-yl-2-d)malonate (310 mg, 0.73 mmol), allyl bromide (323 µL, 3.66 mmol), Hoveyda-Grubbs 2nd generation catalyst (26 mg, 0.040 mmol; added in two portions) and CH₂Cl₂ (3 mL), to give the title compound as a colourless oil and as a mixture of (83:17) E/Z isomers (278 mg, 0.54 mmol, 74%). Spectroscopic data for major (*E*) isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.23 (s, 6 H, CD(CH₃)₂), 1.68 (p, J = 7.4 Hz, 2 H, CH₂CH₂CH₂C(O)), 2.03 - 2.10 (m, 2 H, CH₂CH₂CH₂C(O)), 2.38 – 2.50 (m, 4 H, 2 H from CH₂CH₂CH₂C(O), 2 H from C(O)CH₂CH₂C), 2.66 – 2.73 (m, 2 H, C(O)CH₂CH₂C), 3.92 – 3.95 (m, 2 H, CH₂Br), 5.65 – 5.74 (m, 2 H, CH=CH), 7.09 - 7.16 (m, 4 H, ArCH), 7.25 - 7.31 (m, 2 H, ArCH), 7.37 - 7.46 (m, 4 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.6 (CD(CH₃)₂), 22.7 (CH₂CH₂CH₂C(O)), 26.9 (C(O)CH₂CH₂C), 31.3 (CH₂CH₂CH₂C(O)), 33.2 (CH₂Br), 33.4 $(1:1:1 \text{ t}, J = 20.1 \text{ Hz}, CD(CH_3)_2), 38.4 (C(O)CH_2CH_2C), 41.9 (CH_2CH_2CH_2C(O)), 61.3$ (C(O)CH₂CH₂C), 121.4 (ArCH), 126.3 (ArCH), 127.3 (BrCH₂CH=CH), 129.6 (ArCH), 135.4 (BrCH₂CH=*C*H), 150.4 (Ar*C*), 169.4 (*C*(O)O), 209.1 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2940, 1742, 1713, 1591, 1491, 1456, 1392, 1372, 1292, 1225, 1183, 1160, 1069, 1023, 999, 965, 917, 831, 741, 687. HRMS calcd for C₂₇H₃₀DBrO₅K [M + K]⁺: 554.1049, found 554.1055.

Preparation of SmI₂

An oven-dried $(140 \,^{\circ}\text{C})$ round bottom flask, equipped with a stirrer bar, was cooled down under a positive strong flow of nitrogen for 30 minutes and loaded with samarium metal (-40 mesh, 1.4 equiv.) and washed (sodium thiosulfate) diiodoethane (1 equiv.). The flask was flushed for another 30 minutes under a positive flow of nitrogen, after which, freshly distilled THF (0.1 M) was added. The mixture was then stirred vigorously under a positive pressure of nitrogen for 16 hours at room temperature. The solid residues were allowed to settle for one hour and the mixture was titrated before use.⁶

⁶ Szostak, M.; Spain, M.; Procter, D. J. Nat. Protoc. 2012, 7 (5), 970–977.

General procedure H. To a solution of SmI₂ (9.00 mL, 0.90 mmol, 0.1 M in THF), under nitrogen, ethyl (E)-11-bromo-5-oxoundec-9-enoate (34.0 mg, 0.11 mmol) in THF (0.70 mL) was added dropwise and the reaction mixture stirred for 14 h at room temperature. After that time, degassed H₂O (2.20 mL, 122 mmol) was added and reaction was continued at the same temperature for 24 h before being quenched with air, followed by saturated aqueous Rochelle's salt (10 mL) and a few drops of saturated aqueous sodium thiosulfate. The aqueous layer was extracted with Et_2O (3 × 15 mL) and the combined organic layers were washed with brine (15 mL), dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/Hexane (5:95), to give title compound as a white solid (12 mg, 0.065 mmol, 59%). ¹H NMR (400 MHz, CDCl₃) δ 1.00 (d, J = 6.8 Hz, 3 H, CHCH₃), 1.05 (bs, 1 H, COH), 1.39 (bs, 1 H, CHOH), 1.44–1.82 (m, 10 H, CHCH₂CH₂CH₂COH + CH(OH)CH₂CH₂CH₂COH + $CH(OH)CH_{a}H_{b}CH_{2}CH_{2}COH + CHCH_{a}H_{b}CH_{2}COH + CHCH_{2}CH_{2}CH_{a}H_{b}COH +$ $CH(OH)CH_2CH_2CH_2COH + CHCOH)$, 1.84–2.02 (m, 4 H, $CH(OH)CH_aH_bCH_2CH_2COH +$ $CHCH_{a}H_{b}CH_{2}CH_{2}COH + CHCH_{3} + CHCH_{2}CH_{2}CH_{a}H_{b}COH), 4.00-4.08 (m, 1 H, CHOH)$ ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.0 (CHCH₃), 20.3 (CHCH₂CH₂CH₂COH), 20.7 (CH(OH)CH₂CH₂CH₂COH), 30.8 (CH(OH)CH₂CH₂CH₂COH), 33.9 (CHCH₂CH₂CH₂COH), 37.5 (CHCH₃), 40.6 (CHCH₂CH₂CH₂COH), 43.8 (CH(OH)CH₂CH₂CH₂COH), 48.9 (CHCOH), 74.4 (CHOH), 82.1 (COH) ppm. M.p. (CH₂Cl₂) 118–121 °C. IR v_{max} (neat/cm⁻¹): 3329 (O-H), 2934, 1035. HRMS calcd for C₁₁H₁₉O [M–OH]⁺: 167.1430, found 167.1430.

(3a*S*,7*S*,8*R*,8a*R*)-8-(4-((*tert*-Butyldimethylsilyl)oxy)butyl)octahydroazulene-3a,7(1H)diol 7b'

Prepared according to general procedure **H** using SmI₂ (10.0 mL, 0.1 mmol, 0.1 M in THF), (*E*)-1-((*tert*-butyldimethylsilyl)oxy)-10,14-dioxo-14-phenoxytetradec-5-en-4-yl 4(trifluoromethyl)benzoate (45 mg, 0.07 mmol) and H₂O (1.8 mL, 100 mmol) to give the title compound as a colourless oil (14.1 mg, 0.039 mmol, 55%). ¹H NMR (400 MHz, CDCl₃) δ 0.05 (s, 6 H, Si(CH₃)₂), 0.89 (s, 9 H, SiC(CH₃)₃), 1.21 - 1.41 (m, 6 H, OCH₂CH₂CH₂CH₂CH₂CH, OCH₂CH₂CH₂CH₂CH, CHCH₂CH₂CH₂COH), 1.42 – 1.64 (m, 10 H, 1 H from $CHCH_2CH_aH_bCH_2COH$ CH(OH)CH₂CH₂CH₂COH +1 Η from +CH(OH)CH_aH_bCH₂CH₂COH +1 Η from CHCH₂CH₂CH_aH_bCOH +4 H, 1 H from CHCH₂CH_aH_bCH₂COH, 1 H from CH(OH)CH_aH_bCH₂CH₂COH, 1 H from CHCH₂CH₂CH_a*H*_bCOH, C*HC*-OH), 1.91 – 2.08 (m, 2 H, CO*H*, CHO*H*), 3.62 (t, *J* = 6.3 Hz, 2 H, OCH₂CH₂CH₂CH₂CH₂CH), 4.08 – 4.15 (m, 1 H, CHOH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.1 (Si(CH₃)₂), 18.5 (CHCH₂CH₂CH₂COH), 19.3 (CH(OH)CH₂CH₂CH₂COH), 20.7 (CHCH₂CH₂CH₂COH), 24.3 (OCH₂CH₂CH₂CH₂CH), 26.1 (SiC(CH₃)₃), 30.1 (SiC(CH₃)₃), 30.2 $(OCH_2CH_2CH_2CH_2CH),$ 33.3 $(OCH_2CH_2CH_2CH_2CH),$ 34.8 (CH(OH)CH2CH2CH2COH), 40.5 (OCH2CH2CH2CH2CH2CH), 41.8 (CHCH2CH2CH2COH), 43.5 (CH(OH)CH₂CH₂CH₂COH), 47.7 (CHCH₂CH₂CH₂COH), 63.2 (OCH₂CH₂CH₂CH₂CH), 70.9 (CH(OH)), 82.1 (CHCH₂CH₂CH₂COH) ppm. IR v_{max} (neat/cm⁻¹): 3432, 2928, 2857, 1738, 1462, 1386, 1361, 1254, 1098, 908, 834, 774, 733, 662. HRMS calcd for C₂₀H₄₀O₃SiNa [M + Na]⁺: 379.2626, found 379.2634.

(3aS,7S,8R,8aR)-8-(3-Phenylpropyl)octahydroazulene-3a,7(1H)-diol 7c'

Prepared according to general procedure H using SmI₂ (14.0 mL, 1.4 mmol, 0.1 M in THF), (E)-9,13-dioxo-13-phenoxy-1-phenyltridec-4-en-3-yl 4-(trifluoromethyl)benzoate (57.0 mg, 0.1 mmol) and H_2O (2.52 mL, 140 mmol) to give the title compound as a colourless oil (12.7 mg, 0.044 mmol, 44%). ¹H NMR (400 MHz, CDCl₃) δ 1.42 (bs, 2 H, COH, CHOH), 1.46 – 2.08 15 H, $CHCH_2CH_2CH_2COH$, $CH_2CH_2CH_2Ph$, CH₂CH₂CH₂Ph, (m, CH(OH)CH₂CH₂CH₂OH, CH(OH)CH₂CH₂CH₂COH, CHCOH, CHCH₂CH₂CH₂Ph, 1 H from $CH(OH)CH_aH_bCH_2CH_2COH$, 1 Η from CH_aCH_bCH₂CH₂COH, Η from 1 CHCH₂CH₂CH_aCH_bCOH), 2.18 – 2.74 (m, 5 H, 1 H from CH(OH)CH_aH_bCH₂CH₂COH, 1 H from CHCH_a*H*_bCH₂CH₂COH, 1 H from CHCH₂CH₂CH_a*H*_bCOH, CH₂CH₂CH₂Ph), 4.12 (ddd, J = 7.8, 3.5, 2.9 Hz, 1 H, CHOH), 7.11 (ddd, J = 9.7, 5.9, 3.7 Hz, 2 H, ArCH), 7.17 – 7.23 (m, 3 H, ArCH). ppm. ¹³C NMR (100 MHz, CDCl₃) δ 19.3 (CHCH₂CH₂CH₂CH₂COH), 20.7 (CH(OH)CH₂CH₂CH₂COH), 22.8 (CH₂CH₂CH₂Ph), 29.9 (CH₂CH₂CH₂Ph), 30.2 (CH(OH)CH₂CH₂CH₂COH), 34.9 (CHCH₂CH₂CH₂COH), 36.6 (CHCH₂CH₂CH₂CH₂Ph), 40.5 (CH(OH)CH₂CH₂CH₂COH), 41.8 (CHCH₂CH₂CH₂Ph), 43.6 (CHCH₂CH₂CH₂COH), 47.7 (CHCOH), 71.0 (CHOH), 82.1 (COH), 125.8 (ArCH), 128.4 (ArCH), 128.5 (ArCH), 142.8 (ArC) ppm. IR ν_{max} (neat/cm⁻¹): 3452, 2925, 1738, 1454, 1365, 1217, 908, 668, 615. HRMS calcd for C₁₉H₂₈O₂Na [M + Na]⁺: 311.1982, found 311.1973.

(6a'*R*,9a'*S*,9b'*S*)-1',5',6',7',8',9',9a',9b'-Octahydro-3H-spiro[benzofuran-2,3'cyclopenta[e]azulene]-3a',6a'(2'H,4'H)-diol S45 and 7d'

Prepared according to general procedure **H** using SmI₂ (3.54 mL, 0.35 mmol, 0.1 M in THF), diphenyl (*E*)-1-(benzofuran-2-yl)-8,12-dioxo-12-phenoxydodec-3-en-2-yl 4-(trifluoromethyl)benzoate (15.0 mg, 0.026 mmol) and H₂O (0.63 mL, 35.4 mmol) to give **7d'** as a yellow solid (2.5 mg, 0.008 mmol, 32%) and **S45** as colourless oil (3.3 mg, 0.010 mmol, 41%).

Spectroscopic data for major diastereoisomer S45: ¹H NMR (500 MHz, CDCl₃) δ 1.37 – 1.69 (m, 7 H, 1 H from CHCH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH_aH_bCH₂C_{quat}-OHC_{quat}-OAr, 1H from CHCH_aH_bCH₂CH₂C-OH, 1 H from CH_aH_bCH₂C_{quat}-OAr, 1 H from $CH_2CH_2CH_aH_bC_{quat}-OHC_{quat}-OAr, 1$ H from $CH_2CH_aH_bC_{quat}$ -OAr, 1 Η from CHCH₂CH₂CH_aH_bC-OH), 1.71 – 2.10 (m, 11 H, 1 H from CHCH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH_a*H*_bCH₂C_{quat}-OHC_{quat}-OAr, 1H from CHCH_a*H*_bCH₂CH₂C-OH, 1 H from CH_aH_bCH₂C_{quat}-OAr, 1 H from CH₂CH₂CH_aH_bC_{quat}-OHC_{quat}-OAr, 1 H from CH₂CH_aH_bC_{quat}-OAr, 1 H from CHCH2CH2CHaHbC-OH, CH2CH2CH2CH2Cquat-OHCquat-OAr, CHCH2CH2Cquat-OAr, CHCH₂CH₂CH₂C-OH), 2.92 (d, J = 16.5 Hz, 1 H, 1 H from CH_aH_b-Ar), 3.15 (s, 1 H, CHC-OH), 3.42 – 3.50 (m, 1 H, CH_aH_b-Ar), 3.65 (s, 1 H, C_{quat}-OH), 6.70 (d, J = 7.9 Hz, 1 H, ArCH), 6.80 (td, J = 7.4, 1.0 Hz, 1 H, ArCH), 7.04 – 7.10 (m, 1 H, ArCH), 7.14 (dd, J = 7.4,

1.3 Hz, 1 H, ArC*H*) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 17.5 (CHCH₂CH₂CH₂CH₂C-OH), 22.3 (CH₂CH₂CH₂CQ_{quat}-OHC_{quat}-OAr), 28.7 (CHCH₂CH₂CH₂C-OH), 31.5 (CH₂CH₂CQ_{quat}-OAr), 32.1 (CH₂CH₂CH₂CQ_{quat}-OHC_{quat}-OAr), 34.7 (C_{quat}CH₂Ar), 37.3 (CH₂CH₂CQ_{quat}-OAr), 42.4 (CHCH₂CH₂CH₂C-OH), 43.8 (CH₂CH₂CH₂CQ_{quat}-OHC_{quat}-OAr), 52.0 (CHCH₂CH₂CH₂CQ_{quat}-OAr), 52.6 (CHCH₂CH₂CH₂C-OH), 82.4 (CHCH₂CH₂CH₂C-OH), 83.8 (C_{quat}CH₂Ar), 100.0 (C_{quat}-OHCquat-OAr), 109.1 (ArCH), 120.0 (ArCH), 125.0 (ArCH), 127.2 (ArCH), 127.8 (ArC), 159.2 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3349, 2923, 1531, 1480, 1391, 1307, 1151, 1033, 799. HRMS calcd for C₂₀H₂₆O₃Na [M + Na]⁺: 337.1774, found 337.1760.

Spectroscopic data for minor diastereoisomer 7d': ¹H NMR (400 MHz, CDCl₃) δ 1.38 – 1.45 (m, 2 H, CH₂CH₂Cquat-OAr), 1.60 – 1.95 (m, 8 H, CHCH₂CH₂CH₂C-OH, CH₂CH₂CH₂CH₂Cquat-OHC_{quat}-OAr, 1 H from CH₂CH₂CH_aH_bC_{quat}-OHC_{quat}-OAr, 1 H from CHCH₂CH₂CH_aH_bC-OH, CH₂CH₂CH₂C_{quat}-OHC_{quat}-OAr), 2.01 – 2.36 (m, 7 H, 1 H from CHCH₂CH₂CH₂C-OH, 1 H from CHCH₂CH₂CH_aH_bC-OH, CHCOH, 1 H from CH_aH_bC_{quat}-OAr, 1 H from CH₂CH₂CH_a H_b C_{quat}-OHC_{quat}-OAr, CHCH₂CH₂C_{quat}C-OAr), 2.50 (dt, J = 10.7, 7.6 Hz, 1 H, $CH_aH_bC_{quat}$ -OAr), 2.79 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 2.95 (bs, 1 H, COH), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_aH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_bH_b -Ar), 3.32 (d, J = 15.6 Hz, 1 H, CH_b 15.6 Hz, 1 H, CH_aH_b-Ar), 6.76 – 6.89 (m, 2 H, ArCH), 7.09 – 7.17 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.4 (CHCH₂CH₂CH₂C-OH) 23.1 (CH₂CH₂CH₂CH₂C_{quat}OH-C-OAr), 28.2 (CHCH2CH2CH2C-OH), 29.8 (CH2CH2Cquat-OAr), 31.0 (CH2CH2Cquat-OAr), 33.6 $(CH_2CH_2CH_2C_{quat}OH-C-OAr),$ 34.0 (*C*H₂-Ar), 42.4 $(CHCH_2CH_2CH_2C-OH),$ 42.7 (CH₂CH₂CH₂CH₂C_{auat}OH-C-OAr), 50.2 (CHCH₂CH₂CH₂C_{auat}-OAr), 55.8 (CHCH₂CH₂CH₂C-OH), 82.3 (CHCH₂CH₂CH₂C-OH), 82.5 (C_{quat}-OH-C_{quat}-OAr), 101.6 (C_{quat}-OAr), 110.2 (ArCH), 121.0 (ArCH), 125.0 (ArCH), 127.2 (ArCH), 128.1 (ArC), 157.8 (ArC) ppm. IR v_{max} $(neat/cm^{-1})$: 3399, 2928, 1741, 1613, 1480, 1461, 1280, 1100, 949, 880, 748. M.p. (CHCl₃) = 85 - 88 °C HRMS calcd for C₂₀H₂₆O₃Na [M + Na]⁺: 337.1747, found 337.1762.

rac-(3a*R*,6*R*,7*S*,8*S*,8a*S*)-7-Hydroxy-8-methyl-6-phenyloctahydro-1*H*-3a,6-(epoxymethano)azulen-9-one 7a

Prepared according to general procedure **H** using SmI_2 (9.00 mL, 0.90 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-phenylmalonate (54.8 mg, 0.10 mmol) and H₂O (1.62 mL, 90 mmol) to give the title compound as a white solid (11.2 mg, 0.039 mmol,

39%). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (d, J = 6.6 Hz, 3 H, CHCH₃), 1.46 – 1.68 (m, 2 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH₂CH_aH_bC-O), 1.74 – 1.83 (m, 1 H, CHCH₃), 1.85 – 1.94 (m, 3 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH_aH_bCH₂C, 1 H from CH₂CHC-O), 1.96 – 2.09 (m, 3 H, 1 H from CH₂CH₂CH₂CH_aH_bC-O, 1 H from CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂C-O), 2.13 – 2.31 (m, 2 H, 1 H from CH_aH_bCH₂C, 1 H from CH_aH_bCH₂CH₂C-O), 2.79 – 2.89 (m, 1 H, CH₂CH_aH_bC), 4.25 – 4.29 (m, 1 H, CHOH), 7.24 – 7.30 (m, 1 H, ArCH), 7.31 – 7.42 (m, 2 H, ArCH), 7.48 (dd, J = 7.4, 1.7 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.7 (CHCH₃), 22.9 (CH₂CH₂CH₂C-O), 24.6 (CH₂CH₂C), 32.1 (CH₂CH₂CH₂C-O), 32.6 (CH₂CH₂CH₂C-O), 39.1 (CHCH₃), 41.9 (CH₂CH₂C), 49.1 (CH₂CH₂CHO-O), 55.1 (CH₂CH₂C), 77.7 (CHOH), 90.7 (CH₂CH₂CH₂C-O), 126.9 (ArCH), 127.9 (ArCH), 128.1 (ArCH), 143.2 (ArC), 174.5 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3442, 2958, 2359, 2342, 1711, 1496, 1445, 1345, 1231, 1192, 1176, 1138, 1122, 1075, 1054, 1013, 964, 937, 757, 731, 699. M.p. (CHCl₃) = 82 – 84 °C. HRMS calcd for C₁₈H₂₂O₃K [M + K]⁺: 325.1201, found 325.1198.

rac-(3a*R*,6*S*,7*S*,8*S*,8a*S*)-6-Ethyl-7-hydroxy-8-methyloctahydro-1*H*-3a,6-(epoxymethano)azulen-9-one 7b

Prepared according to general procedure **H** using SmI₂ (9.00 mL, 0.90 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-ethylmalonate (50.0 mg, 0.1 mmol) and H₂O (1.62 mL, 90 mmol) to give the title compound as a white solid (7.1 mg, 0.030 mmol, 30%). ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.4 Hz, 3 H, CCH₂CH₃), 1.04 (d, *J* = 6.8 Hz, 3 H, CHCH₃), 1.37 – 1.56 (m, 4 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH₂CH_aH_bC-O, 1 H from CH₂CH_aH_bC, 1 H from CHCH₃), 1.65 – 1.90 (m, 6 H, 1 H from CH₂CH_aH_bCH₂C-O, 2 H from CH₂CH₂CH₃), 1.92 – 2.01 (m, 1 H, CH₂CH₂CH_aH_bC-O), 2.03 – 2.14 (m, 2 H, 1 H from CH_aH_bCH₂CH₂C-O, 1 H from CH_aH_bCH₂C-O, 1 H from CH_aH_bCH₂CH₂C-O, 2 H from CH_aH_bCH₂CH₂C-O, 1 H from CH_aH_bCH₂CH₂C-O, 3.55 Hz, 1 H, CH₂CH_aH_bC), 3.59 – 3.65 (m, 1 H, CHOH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 9.1 (CCH₂CH₂CH₂C-O), 32.5 (CH₂CH₂CH₂C-O), 38.9 (CHCH₃), 41.7 (CH₂CH₂CH₂C), 49.0 (CH₂CH₂CH₂C-O), 50.3 (CH₂CH₂C), 76.8 (CHOH), 90.3 (CH₂CH₂CH₂C-O), 176.2 (C(O)O) ppm.

IR v_{max} (neat/cm⁻¹): 3457, 2961, 2877, 1709, 1460, 1352, 1232, 1180, 1155, 1125, 1093, 1032, 1001, 961. M.p. (CHCl₃) = 65 - 66 °C. HRMS calcd for C₁₄H₂₂O₃Na [M + Na]⁺: 261.1461, found 261.1452.

rac-(3a*R*,6*S*,7*S*,8*S*,8a*S*)-7-Hydroxy-6,8-dimethyloctahydro-1*H*-3a,6-(epoxymethano)azulen-9-one 7c

Prepared according to general procedure **H** using SmI₂ (9.00 mL, 0.90 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-methylmalonate (48.6 mg, 0.10 mmol) and H₂O (1.62 mL, 90 mmol) to give the title compound as a white solid (10.1 mg, 0.045 mmol, 45%). ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, *J* = 6.7 Hz, 3 H, CHCH₃), 1.18 – 1.58 (m, 7 H, 3 H from CCH₃, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH_aH_bC-O, 1 H from CH₂CH_aH_bC-O, 1 H from CH₂CH_aH_bC-O, 1 H from CH₂CH_aH_bC-O, 1 H from CH₂CH₂CH_aH_bC-O, 1 H from CH₂CH₂CH_aH_bC-O, 2.01 (m, 1 H, CH₂CH₂CH_aH_bC-O), 2.01 – 2.14 (m, 2 H, 1 H from CH_aH_bCH₂CH₂C-O, 1 H from CH_aH_bCH₂C), 2.50 (ddd, *J* = 13.8, 10.6, 6.0 Hz, 1 H, CH₂CH_aH_bC), 3.58 – 3.63 (m, 1 H, CHOH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.1 (CHCH₃), 23.1 (CH₂CH₂CH₂C-O), 24.0 (CH₂CH₂C), 46.8 (CH₂CH₂C), 48.4 (CH₂CHC-O), 77.2 (CHOH), 90.7 (CH₂CH₂CH₂C-O), 177.1 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3459, 2963, 2359, 2343, 1710, 1457, 1381, 1350, 1234, 1181, 1156, 1121, 1092, 1008, 959, 938, 911, 731. M.p. (CHCl₃) = 65 – 67 °C. HRMS calcd for C₁₃H₂₀O₃K [M + K]⁺: 263.1044, found 263.1043.

rac-(5a*R*,8a*S*,9*S*)-5a-Hydroxy-3,3,9-trimethyl-4,5,5a,6,7,8,8a,9-octahydroazuleno[5,6-b]furan-2(3*H*)-one 7d

Prepared according to general procedure **H** using SmI_2 (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-isopropylmalonate (51.4 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound as a white solid (15.1 mg, 0.060 mmol,

60%). ¹H NMR (400 MHz, CDCl₃) δ 1.22 (d, J = 7.6 Hz, 3 H, CHCH₃), 1.23 (s, 3 H, C=C-C(CH₃)_a(CH₃)_b), 1.25 (s, 3 H, C(CH₃)_a(CH₃)_b), 1.49 – 1.68 (m, 4 H, 1 H from CHC-OH, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH_aH_bCH₂C=C-O), 1.72 – 1.84 (m, 3 H, 1 H from CH₂CH_aH_bCH₂C-OH, 2 H from CH₂CH₂CH₂C-OH), 2.00 (dt, J = 16.5, 4.1 Hz, 1 H, CH₂CH_aH_bC=C-O), 2.03 – 2.14 (m, 2 H, 1 H from CH_aH_bCH₂CH₂C-OH, 1 H from CH_aH_bCH₂C=C-O), 2.33 (ddt, J = 16.5, 12.4, 4.1 Hz, 1 H, CH₂CH_aH_bC=C-O), 2.56 – 2.66 (m, 1 H, CHCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.7 (CHCH₃), 18.0 (CH₂CH₂C=C-O), 20.0 (CH₂CH₂CH₂C-OH), 22.6 (C(CH₃)_a(CH₃)_b), 23.1 (C(CH₃)_a(CH₃)_b), 30.8 (CH₂CH₂CH₂C-OH), 33.1 (CHCH₃), 37.6 (CH₂CH₂C=C-O), 149.3 (C=C-O), 182.6 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3499, 2964, 2930, 2360, 2342, 1789, 1463, 1380, 1280, 1098, 1066, 1021, 996, 933. M.p. (CHCl₃) = 65 – 67 °C. HRMS calcd for C₁₅H₂₃O₃ [M + H]⁺: 251.1642, found 251.1638.

rac-(5a*R*,8a*S*,9*S*)-5a-Hydroxy-9-methyl-4,5,5a,6,7,8,8a,9-octahydro-2*H*-spiro[azuleno[5,6-b]furan-3,1'-cyclopentan]-2-one 7e

Prepared according to general procedure **H** using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cyclopentylmalonate (54.0 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound as a white solid (15.4 mg, 0.056 mmol, 56%). ¹H NMR (500 MHz, CDCl₃) δ 1.21 (d, *J* = 7.0 Hz, 3 H, CHC*H*₃), 1.47 – 1.67 (m, 4 H, 1 H from C*H*_aH_bCH₂C=C-O, 1 H from C*H*C-OH, 1 H from C*H*_aH_bCH₂CH₂C-OH, 1 H from CH₂C*H*_aH_bCH₂C-OH), 1.70 – 1.83 (m, 7 H, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH_aH_bCH₂C, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from CH₂CH₂CH_aH_bCH₂C, 2 H from CH₂CH₂CH₂C-OH), 1.86 – 2.01 (m, 5 H, 1 H from CH₂CH₂CH_aH_bCH₂C, 1 H from CH₂CH_aH_bCH₂CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂CH₂CH₂C, 1 H from CH₂CH_aH_bCH₂CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂CH₂CH₂C, 1 H from CH₂CH_aH_bCH₂CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂CH₂CH₂C, 1 H from CH₂CH_aH_bCH₂CH₂CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂CH₂CH₂CH₂C, 1 H from CH₂CH₂CH₂CH₂CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂CH₂CH₂CH₂C, 1 H from CH₂CH₂CH₂C-O), 2.30 – 2.41 (m, 2 H, 1 H from CH_aH_bC=C-O), 2.59 (dqd, *J* = 9.6, 7.0, 3.0 Hz, 1 H, CHCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 16.7 (CH₂CH₂CH₂CH₂C), 30.7 (CH₂CH₂CH₂C-OH), 33.1 (CHCH₃), 35.4 (CH₂CH₂CH₂CH₂CH₂C), 27.0

35.9 (CH₂CH₂CH₂CH₂C), 37.7 (*C*H₂CH₂C=C-O), 43.4 (CH₂CH₂CH₂C-OH), 52.3 (*C*HC-OH), 55.9 (CH₂CH₂CH₂CH₂C), 80.9 (*C*-OH), 120.0 (*C*=C-O), 149.4 (C=*C*-O), 184.2 (*C*(O)O) ppm. IR ν_{max} (neat/cm⁻¹): 3496, 2956, 2870, 2359, 2342, 1763, 1683, 1447, 1379, 1323, 1292, 1263, 1223, 1162, 1120, 1064, 1011, 991, 937, 853, 748. M.p. (CHCl₃) = 78 - 80 °C. HRMS calcd for C₁₇H₂₄O₃Na [M + Na]⁺: 299.1618, found 299.1607.

rac-(5a*R*,8a*S*,9*S*)-5a-Hydroxy-9-methyl-4,5,5a,6,7,8,8a,9-octahydro-2*H*-spiro[azuleno[5,6-b]furan-3,1'-cyclohexan]-2-one 7f

Prepared according to general procedure **H** using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cyclohexylmalonate (55.4 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound as a white solid (14.8 mg, 0.051 mmol, 51%). ¹H NMR (400 MHz, CDCl₃) δ 1.14 – 1.19 (m, 1 H, CH₂CH₂CH_aH_bCH₂CH₂C), 1.20 (d, J = 7.1 Hz, 3 H, CHCH₃), 1.46 – 1.66 (m, 10 H, 2 H from CH₂CH₂CH₂CH₂CH₂C, 2 H $CH_2CH_2CH_2CH_2CH_2C$, 1 H from $CH_2CH_aH_bCH_2CH_2CH_2C$, 1 from Η from CH₂CH₂CH₂CH_aH_bCH₂C, 1 H from CH_aH_bCH₂CH₂C-OH, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from CH_aH_bCH₂C=C-O, 1 H from CHC-OH), 1.71 – 1.83 (m, 4 H, 1 H from CH₂CH₂CH_aH_bCH₂CH₂C, 1 H from CH₂CH_aH_bCH₂C-OH, 2 H from CH₂CH₂CH₂C-OH), 1.93 - 2.12 (m, 5 H, 1 H from CH₂CH_aH_bCH₂CH₂CH₂CH₂C, 1 H from CH₂CH₂CH₂CH_aH_bCH₂C, 1 H from CH_aH_bCH₂CH₂C-OH, 1 H from CH_aH_bCH₂C=C-O, 1 H from CH₂CH_aH_bC=C-O), 2.19 -2.31 (m, 1 H, CH₂CH_a H_b C=C-O), 2.61 (dqd, J = 9.9, 7.1, 2.7 Hz, 1 H, CHCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.5 (CHCH₃), 17.7 (CH₂CH₂C=C-O), 19.8 (CH₂CH₂CH₂C-OH), 20.0 (CH₂CH₂CH₂CH₂CH₂CH₂C), 20.1 (CH₂CH₂CH₂CH₂CH₂CH₂C), 25.0 (CH₂CH₂CH₂CH₂CH₂CH₂C), 30.5 (CH₂CH₂CH₂C-OH), 30.5 (CH₂CH₂CH₂CH₂CH₂CH₂C), 31.0 (CH₂CH₂CH₂CH₂CH₂C), 32.9 (CHCH₃), 37.9 (CH₂CH₂C=C-O), 43.4 (CH₂CH₂CH₂C-OH), 49.0 (CH₂CH₂CH₂CH₂CH₂CH₂C), 52.1 (CHC-OH), 80.9 (C-OH), 121.3 (C=C-O), 149.8 (C=C-O), 180.5 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3489, 2929, 2851, 2358, 2343, 1778, 1764, 1683, 1448, 1380, 1357, 1312, 1263, 1209, 1120, 1065, 1019, 993, 976, 953, 930, 877, 850, 753. M.p. (CHCl₃) = 79 - 82 °C. HRMS calcd for $C_{18}H_{26}O_3Na [M + Na]^+$: 313.1774, found 313.1765.

*r*ac-(5a*R*,8a*S*,9*S*)-5a-Hydroxy-9-methyl-4,5,5a,6,7,8,8a,9-octahydro-2*H*-spiro[azuleno[5,6-b]furan-3,1'-cycloheptan]-2-one 7g

Prepared according to general procedure **H** using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cycloheptylmalonate (56.8 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound as a colourless oil (12.8 mg, 0.042 mmol, 42%). ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, J = 7.0 Hz, 3 H, CHCH₃), 1.46 – 1.71 (m, CHC-OH, 1 H from CH_aH_bCH₂CH₂C-OH, 1 H from CH₂CH_aH_bCH₂C-OH, 1 H from $CH_2CH_2CH_aH_bCH_2CH_2CH_2C$, $CH_{a}H_{b}CH_{2}C=C-O,$ 1 Η from 1 Η from $CH_2CH_2CH_2CH_aH_bCH_2CH_2C)$, 1.72 – 1.84 (m, 7 H, 1 H from $CH_2CH_aH_bCH_2C$ -OH, 2 H from OH), 1.85 – 2.00 (m, 2 H, 1 H from CH₂CH₂CH_aH_bCH₂CH₂CH₂CH₂C, 1 H from CH₂CH₂CH₂CH_a*H*_bCH₂CH₂C), 2.01 – 2.19 (m, 3 H, 1 H from CH_a*H*_bCH₂CH₂C-OH, 1 H from $CH_aH_bCH_2C=C-O$, 1 H from $CH_2CH_aH_bC=C-O$), 2.31 – 2.43 (m, 1 H, $CH_2CH_aH_bC=C-O$), 2.51 – 2.63 (m, 1 H, CHCH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.8 (CHCH₃), 18.4 31.3 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂C), 33.1 (CHCH₃), 35.3 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂C), 35.5 (CH₂CH₂CH₂CH₂CH₂CH₂C), 37.9 (CH₂CH₂C=C-O), 43.4 (CH₂CH₂CH₂C-OH), 52.2 (CHC-OH), 56.5 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂C), 81.0 (C-OH), 123.2 (C=C-O), 148.6 (C=C-O), 182.9 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3499, 2924, 2856, 2359, 2342, 1761, 1457, 1293, 1260, 1218, 1169, 1066, 1018, 993, 945. HRMS calcd for $C_{19}H_{28}O_3K$ [M + K]⁺: 343.1670, found 343.1671.

(5a*R*,8a*S*,9*S*)-5a-Hydroxy-9-methyl-2',3',4,5,5a,5',6,6',7,8,8a,9-dodecahydro-2Hspiro[azuleno[5,6-b]furan-3,4'-pyran]-2-one 7h

Prepared according to general procedure **H** using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-cyclohexylmalonate (55.7 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound as a white solid (15.1 mg, 0.051 mmol, 51%). ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, *J* = 7.0 Hz, 3 H, CHC*H*₃), 1.38 – 1.65 (m, 5 H, C*H*CH₃, C*H*₂CH₂-O, C*H*₂CH₂-O), 1.69 – 1.83 (m, 4 H, CH₂C*H*₂CH₂CH₂C-OH, CH₂CH₂CH₂C-OH), 1.81 – 2.14 (m, 6 H, CH₂C*H*₂C=, C*H*₂CH₂C=C, C*H*₂CH₂CH₂C-OH), 2.64 (pd, *J* = 7.2, 3.6 Hz, 1 H, C*H*C-OH), 3.81 (ddd, *J* = 11.9, 5.6, 2.5 Hz, 2 H, CH₂C*H*₂-O), 4.16 (tt, *J* = 12.3, 2.3 Hz, 2 H, CH₂C*H*₂C-OH), 29.7 (CH₂CH₂CH₂C-OH), 30.3 (CH₂CH₂-O), 30.6 (CH₂CH₂-O), 33.0 (CHCH₃), 37.8 (CH₂CH₂C=C), 43.7 (CH₂CH₂CH₂C-OH), 46.6 (*C*), 52.1 (CHC-OH), 62.0 (CH₂CH₂-O), 62.2 (CH₂CH₂-O), 80.9 (C-OH), 120.1 (*C*=C-O), 150.8 (C=*C*-O), 180.4 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3465, 2948, 1775, 1217, 1099, 1020. M.p. (CHCl₃) = 149 – 151 °C. HRMS calcd for C₁₇H₂₅O4 [M + H]⁺: 293.1747, found 293.1739.

(5a*R*,8a*S*,9*S*)-5a-Hydroxy-3,3-dimethyl-9-(3-phenylpropyl)-4,5,5a,6,7,8,8a,9octahydroazuleno[5,6-b]furan-2(3H)-one 7i

Prepared according to general procedure **H** using SmI₂ (12.00 mL, 1.20 mmol, 0.1 M in THF), diphenyl (*E*)-2-isopropyl-2-(3-oxo-11-phenyl-9-((4-(trifluoromethyl)benzoyl)oxy)undec-7en-1-yl)malonate (72.8 mg, 0.1 mmol) and H₂O (2.16 mL, 120 mmol) to give the title compound as a colourless oil (19.8 mg, 0.055 mmol, 56%). ¹H NMR (400 MHz, CDCl₃) δ 1.22 (s, 3 H, C=C-C(CH₃)_a(CH₃)_b), 1.23 (s, 3 H, C=C-C(CH₃)_a(CH₃)_b), 1.46 – 1.65 (m, 7 H, 1 H from CH₂CH_aH_bCH₂C-OH, CH₂CH₂CH₂Ph, CH₂CH₂CH₂Ph, CH₂CH₂CH₂C-OH), 1.66 – 1.81 (m, 4 H, CHC-OH CH₂CH_aH_bCH₂C-OH, CH₂CH₂C=C), 1.86 – 2.14 (m, 4 H, CH₂CH₂CH₂C- OH, 1 H from CH₂CH_aH_bC=C, CHC-OH), 2.25 (dddd, J = 16.6, 12.0, 4.7, 3.0 Hz, 1 H, CH₂CH_aH_bC=C), 2.46 – 2.60 (m, 1 H, 1 H from CHCH₂CH₂CH₂Ph), 2.60 – 2.74 (m, 2 H, CH₂CH₂CH₂Ph), 7.14 – 7.20 (m, 2 H, ArCH), 7.27 (d, J = 5.7 Hz, 3 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 18.3 (CH₂CH₂C=C), 20.3 (CH₂CH₂CH₂C-OH), 22.6 (C(CH₃)₂), 23.5 (C(CH₃)₂), 27.2 (CH₂CH₂CH₂CH₂Ph), 29.3 (CH₂CH₂CH₂C-OH), 29.9 (CH₂CH₂C=C), 30.6 (CH₂CH₂CH₂CH₂Ph), 36.5 (CHCH₂CH₂CH₂Ph), 37.9 (CH₂CH₂CH₂Ph), 43.6 (CH₂CH₂CH₂C+COH), 46.8 (C(CH₃)₂), 48.4 (CHC-OH), 81.2 (C-OH), 123.0 (C=C-O), 125.9 (ArCH), 128.4 (ArCH), 128.5 (ArCH), 142.7 (C=C-O), 148.2 (ArC), 182.8 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3496, 2929, 1787, 1453, 1279, 1074, 699. HRMS calcd for C₂₃H₃₁O₃ [M + H]⁺: 355.2195, found 355.2190.

(5a*R*,8a*S*,9*S*)-9-(4-((*tert*-Butyldimethylsilyl)oxy)butyl)-5a-hydroxy-3,3-dimethyl-4,5,5a,6,7,8,8a,9-octahydroazuleno[5,6-b]furan-2(3H)-one 7j

Prepared according to general procedure H using SmI₂ (6.02 mL, 0.60 mmol, 0.1 M in THF), diphenyl (E)-2-(12-((tert-butyldimethylsilyl)oxy)-3-oxo-9-((4-(trifluoromethyl)benzoyl)oxy)dodec-7-en-1-yl)-2-isopropylmalonate (40.0 mg, 0.05 mmol) and H₂O (1.08 mL, 60.0 mmol) to give the title compound as a colourless oil (11.6 mg, 0.027 mmol, 55%). ¹H NMR (400 MHz, CDCl₃) δ -0.02 – 0.10 (m, 6 H, Si(CH₃)₂), 0.81 – 0.96 (m, 9 H, SiC(CH₃)₃), 1.22 (s, 3 H, C=C-C(CH₃)_a(CH₃)_b), 1.24 (s, 3 H, C=C-C(CH₃)_a(CH₃)_b), 1.33 -1.67 (m, 9 H, CH₂CH₂CH₂CH₂O-Si, CH₂CH₂CH₂CH₂O-Si, CH₂CH₂CH₂CH₂CH₂O-Si, CH₂CH₂CH₂C-OH, 1 H from CH₂CH_aH_bCH₂C-OH), 1.68 – 1.97 (m, 5 H, CHC-OH, $CH_2CH_2C=C$, 1 H from $CH_2CH_aH_bCH_2C$ -OH, 1 H from $CH_2CH_2CH_aH_bC$ -OH), 1.98 – 2.52 (m, 4 H, 1 H from $CH_2CH_2CH_aH_bC$ -OH, $CH_2CH_2C=C$, CHC-OH), 2.63 (m, 1 H, CHCH₂CH₂CH₂CH₂O-Si), 3.55 – 3.68 (m, 2 H, CH₂CH₂CH₂CH₂O-Si) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.1 (Si-CH₃), 18.3(CH₂CH₂C=C), 18.5 (SiC(CH₃)₃), 20.4 (CH₂CH₂CH₂C-OH), 21.2 (CH₂CH₂CH₂CH₂O-Si), 22.6 (C(CH₃)₂), 23.5 (C(CH₃)₂), 26.1 (SiC(CH₃)₃) 29.3 (CH₂CH₂CH₂C-OH), 30.8 (CH₂CH₂CH₂CH₂O-Si), 33.4 (CH₂CH₂CH₂CH₂O-Si), 38.0 (CHCH₂CH₂CH₂CH₂O-Si), 38.0 (CH₂CH₂C=C) 43.6 (CH₂CH₂CH₂C-OH), 46.8 (C(CH₃)₂), 48.4 (CHC-OH), 63.2 (CH₂CH₂CH₂CH₂O-Si), 81.3 (C-OH), 122.8 (C=C-O), 148.3 (C=C-O), 182.7 (*C*(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3481, 2928, 1790, 1693, 1462, 1279, 1256, 1098, 836, 775, 668. . HRMS calcd for C₂₄H₄₂O₄SiNa [M + Na]⁺: 445.2745, found 445.2748.

rac-(3a*R*,7*S*,8*R*,9*S*,9a*S*)-6-((*E*)-Benzylidene)-9-methyloctahydro-3a,8epoxycyclopenta[8]annulene-7,8(1*H*)-diol 7k

General procedure I. To a solution of SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-benzyl-2-(9-bromo-3-oxonon-7-en-1-yl)malonate (56.2 mg, 0.10 mmol) in THF (0.70 mL) was added dropwise under nitrogen and stirred for 14 h at room temperature. After that time degassed MeOH (340 µL, 8.4 mmol) was added and the reaction was continued at the same temperature for 48 h before being quenched with air followed by saturated aqueous Rochelle salt (10 mL) and a few drops of saturated aqueous sodium thiosulfate. The aqueous layer was extracted with Et₂O (3×15 mL) and the combined organic layers were washed with brine (15 mL), dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography eluting with Et₂O/Pentane (20:80) gave the title compound as a white solid (13.2 mg, 0.044 mmol, 44%). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (d, J = 7.1 Hz, 3 H, CHCH₃), 1.35 (td, J = 13.3, 6.5 Hz, 1 H, CH₂CH₂CH₂CH_aH_bC-O), 1.52 – 1.59 (m, 2 H, CH₂CH₂CH₂C-O), 1.60 – 1.68 (m, 1 H, CH₂CH_aH_bCH₂C-O), 1.69 – 1.81 (m, 2 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from $CH_{a}H_{b}CH_{2}C=CH$), 1.90 (dq, J = 10.1, 7.2 Hz, 1 H, $CHCH_{3}$), 1.99 – 2.07 (m, 2 H, 1 H from $CH_2CH_2CH_aH_bC-O$, 1 H from CHC-O), 2.21 (ddd, J = 13.6, 7.9, 1.4 Hz, 1 H from CH_a*H*_bCH₂C=CH), 2.49 (d, *J* = 7.0 Hz, 1 H, CHO*H*), 2.47 – 2.54 (m, 1 H, CH₂C*H*_aH_bC=CH), 2.60 (ddd, J = 13.8, 11.3, 7.9 Hz, 1 H, CH₂CH_aH_bC=CH), 4.20 (s, 1 H, OCOH), 4.27 (d, J =6.9 Hz, 1 H, CHOH), 6.68 (s, 1 H, CH₂CH₂C=CH), 7.29 – 7.34 (m, 3 H, ArCH), 7.35 – 7.42 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.3 (CHCH₃), 21.0 (CH₂CH₂C=CH), 23.0 (CH₂CH₂CH₂C-O), 31.9 (CH₂CH₂CH₂C-O), 39.5 (CH₂CH₂C=CH), 41.3 (CH₂CH₂CH₂C-C-C) O), 47.2 (CHCH₃), 55.0 (CHC-O), 79.4 (CHOH), 89.8 (C-O), 106.3 (OCO), 127.3 (ArCH), 128.4 (ArCH), 128.5 (ArCH), 132.6 (CH₂CH₂C=CH), 136.6 (ArC), 138.7 (CH₂CH₂C=CH) ppm. IR v_{max} (neat/cm⁻¹): 3456, 2935, 2369, 1265, 1494, 1457, 1338, 1261, 1261, 1155, 1096, 1060, 1040, 1018, 966, 952, 876, 750. M.p. (CHCl₃) = 80 - 82 °C. HRMS calcd for C₁₉H₂₄O₃Na $[M + Na]^+$: 323.1618, found 323.1610.

rac-(3a*R*,7*S*,8*R*,9*S*,9a*S*)-6-((*E*)-4-Chlorobenzylidene)-9-methyloctahydro-3a,8epoxycyclopenta[8]annulene-7,8(1*H*)-diol 7l

Prepared according to general procedure I using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-chlorobenzyl)malonate (60 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as a white solid (14.0 mg, 0.042 mmol, 42%). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (d, J = 6.8 Hz, 3 H, CHCH₃), 1.24 -1.38 (m, 1 H, CH₂CH₂CH_aH_bC-O), 1.51 – 1.57 (m, 2 H, CH₂CH₂CH₂C-O), 1.59 – 1.65 (m, 1 H, CH₂CH_aH_bCH₂C-O), 1.65 – 1.79 (m, 2 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH_aH_bCH₂C=CH), 1.88 (dq, J = 10.1, 7.2 Hz, 1 H, CHCH₃), 1.94 – 2.05 (m, 2 H, 1 H from CH₂CH₂CH_aH_bC-O, 1 H from CHC-O), 2.16 – 2.23 (m, 1 H, CH_aH_bCH₂C=CH), 2.38 – 2.45 (m, 1 H, CH₂CH_aH_bC=CH), 2.57 (d, J = 6.8 Hz, 1 H, CHOH), 2.58 – 2.66 (m, 1 H, $CH_2CH_aH_bC=CH$), 4.18 (s, 1 H, OCOH), 4.24 (d, J = 6.8 Hz, 1 H, CHOH), 6.60 (s, 1 H, CH₂CH₂C=CH), 7.21 (d, J = 8.5 Hz, 2 H, ArCH), 7.33 (d, J = 8.5 Hz, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.5 (CHCH₃), 21.1 (CH₂CH₂C=CH), 23.1 (CH₂CH₂CH₂C-O), 32.1 (CH₂CH₂CH₂C-O), 39.6 (CH₂CH₂C=CH), 41.4 (CH₂CH₂CH₂C-O), 47.4 (CHCH₃), 55.2 (CHC-O), 79.4 (CHOH), 89.9 (C-O), 106.4 (OCO), 128.8 (ArCH), 129.9 (ArCH), 131.4 (CH₂CH₂C=*C*H), 133.3 (Ar*C*), 135.2 (Ar*C*), 139.7 (CH₂CH₂C=*C*H) ppm. IR v_{max} (neat/cm⁻¹): 3402, 2933, 1489, 1457, 1392, 1338, 1259, 1155, 1118, 1095, 1061, 1040, 1014, 967, 953, 940, 926, 908, 876, 820, 790, 732, 668. M.p. (CHCl₃) = 87 – 89 °C. HRMS calcd for C₁₉H₂₃ClO₃Na [M + Na]⁺: 357.1233, found 357.1229.

rac-(3a*R*,7*S*,8*R*,9*S*,9a*S*)-6-((*E*)-4-Fluorobenzylidene)-9-methyloctahydro-3a,8epoxycyclopenta[8]annulene-7,8(1*H*)-diol 7m

Prepared according to general procedure I using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-fluorobenzyl)malonate (58 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as a white solid (13.8 mg, 0.043 mmol, 43%). ¹H NMR (400 MHz, CDCl₃) δ 1.10 (d, J = 7.1 Hz, 3 H, CHCH₃), 1.24 – 1.38 (m, 1 H, CH₂CH₂CH₂CH_aH_bC-O), 1.51 – 1.66 (m, 3 H, 2 H from CH₂CH₂CH₂C-O, 1 H from $CH_2CH_aH_bCH_2C-O)$, 1.66 – 1.80 (m, 2 H, 1 H from $CH_2CH_aH_bCH_2C-O$, 1 H from $CH_{a}H_{b}CH_{2}C=CH$), 1.88 (dq, J = 10.1, 7.0 Hz, 1 H, $CHCH_{3}$), 1.94 – 2.06 (m, 2 H, 1 H from $CH_2CH_2CH_aH_bC-O$, 1 H from CHC-O), 2.15 – 2.24 (m, 1 H, $CH_aH_bCH_2C=CH$), 2.43 (dd, J =13.8, 7.0 Hz, 1 H, CH₂CH_aH_bC=CH), 2.50 (d, J = 6.9 Hz, 1 H, CHOH), 2.60 (ddd, J = 13.7, 11.5, 8.0 Hz, 1 H, CH₂CH_aH_bC=CH), 4.16 (s, 1 H, OCOH), 4.24 (d, J = 6.8 Hz, 1 H, CHOH), 6.62 (s, 1 H, CH₂CH₂C=CH), 7.03 – 7.09 (m, 2 H, ArCH), 7.23 – 7.29 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.5 (CHCH₃), 21.1 (CH₂CH₂C=CH), 23.1 (CH₂CH₂CH₂C-O), 32.1 (CH₂CH₂CH₂C-O), 39.6 (CH₂CH₂C=CH), 41.4 (CH₂CH₂CH₂C-O), 47.4 (CHCH₃), 55.2 (CHC-O), 79.4 (CHOH), 89.9 (C-O), 106.4 (OCO), 115.5 (d, J = 21.4 Hz, ArCH), 130.3 (d, J = 8.0 Hz, Ar*C*H), 131.6 (CH₂CH₂C=*C*H), 132.8 (d, *J* = 3.3 Hz, Ar*C*), 138.84 (d, *J* = 1.3 Hz, CH₂CH₂C=CH), 162.10 (d, J = 247.3 Hz, ArC) ppm. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.37 ppm. IR v_{max} (neat/cm⁻¹): 3415, 2936, 2363, 1600, 1508, 1456, 1393, 1225, 1154, 1095, 1041, 1018, 953, 872, 829, 720, 679, 668, 649, 618, 589. M.p. (CHCl₃) = 102 – 103 °C. HRMS calcd for C₁₉H₂₂FO₃ [M - H]⁻: 317.1553, found 317.1552.

rac-(3a*S*,7*R*,8*S*,9*R*,9a*R*)-6-((*E*)-4-Methoxybenzylidene)-9-methyloctahydro-3a,8epoxycyclopenta[8]annulene-7,8(1H)-diol 7n

Prepared according to general procedure I using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(4-methoxybenzyl)malonate (59 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as an oil (12.9 mg, 0.039 mmol, 39%). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (d, J = 7.1 Hz, 3 H, CHCH₃), 1.33 (td, J = 12.8, 12.4, 6.0 Hz, 1 H, CH₂CH₂CH₂H_bC-O), 1.48 – 1.56 (m, 2 H, CH₂CH₂CH₂C-O), 1.62 (dd, J = 6.1, 3.2 Hz, 1 H, CH₂CH_aH_bCH₂C-O), 1.67 – 1.79 (m, 2 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from $CH_{a}H_{b}CH_{2}C=CH$), 1.88 (dq, J = 10.0, 7.1 Hz, 1 H, $CHCH_{3}$), 1.94 – 2.07 (m, 2 H, 1 H from $CH_2CH_2CH_aH_bC-O$, 1 H from CHC-O), 2.20 (ddd, J = 13.6, 7.8, 1.3 Hz, 1 H, $CH_aH_bCH_2C=CH$), 2.49 (q, J = 6.9, 6.4 Hz, 2 H, 1H from CHOH, 1 H from $CH_2CH_aH_bC=CH$), 2.59 (ddd, J = 13.9, 11.4, 7.8 Hz, 1 H, CH₂CH_aH_bC=CH), 3.82 (s, 3 H, O-CH₃), 4.23 (d, J =7.6 Hz, 2 H, 1 H from OCOH, 1 H from CHOH), 6.59 (s, 1 H, CH₂CH₂C=CH), 6.87 – 6.93 (m, 2 H, ArCH), 7.20 – 7.29 (m, 2 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 12.4 (CHCH₃), 21.1 $(CH_2CH_2C=CH),$ 23.1 $(CH_2CH_2CH_2C-O),$ 32.0 $(CH_2CH_2CH_2C-O),$ 39.6 (CH₂CH₂C=CH), 41.4 (CH₂CH₂C-O), 47.3 (CHCH₃), 55.1 (CHC-O), 55.4 (O-CH₃), 79.6 (CHOH), 89.9 (C-O), 106.5 (OCO), 114.0 (ArCH), 129.3 (ArCH), 130.0 (ArC), 132.2 (CH₂CH₂C=*C*H), 137.0 (CH₂CH₂*C*=CH), 159.0 (Ar*C*-OCH₃). IR v_{max} (neat/cm⁻¹): 3411, 2935, 1749, 1606, 1190, 1154, 1059, 951, 869, 729, 647. HRMS calcd for C₂₀H₂₆O₄Na [M + Na]⁺: 353.1723, found 353.1716.

rac-(3a*R*,7*S*,8*R*,9*S*,9a*S*)-6-((*E*)-3,5-Dimethylbenzylidene)-9-methyloctahydro-3a,8epoxycyclopenta[8]annulene-7,8(1*H*)-diol 70

Prepared according to general procedure I using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(3,5-dimethylbenzyl)malonate (59 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as a white solid (11.4 mg, 0.035 mmol, 35%). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (d, J = 7.3 Hz, 3 H, CHCH₃), 1.25 – 1.35 (m, 1 H, CH₂CH₂CH_aH_bC-O), 1.43 – 1.58 (m, 3 H, 1 H from CH₂CH_aH_bCH₂C-O, 2 H from CH₂CH₂CH₂C-O), 1.59 – 1.74 (m, 2 H, 1 H from CH_aH_bCH₂C=CH, 1 H from $CH_2CH_aH_bCH_2C-O$, 1.88 (dq, J = 10.1, 7.2 Hz, 1 H, $CHCH_3$), 1.90 – 1.99 (m, 2 H, 1 H from $CH_2CH_2CH_aH_bC-O$, 1 H from CHC-O), 2.08 – 2.16 (m, 1 H, $CH_aH_bCH_2C=CH$), 2.33 (s, 6 H, 2x ArC-CH₃), 2.39 – 2.55 (m, 2 H, CH₂CH₂C=CH), 4.17 – 4.26 (m, 2 H, 1 H from OCOH, 1 H from CHOH), 6.60 (s, 1 H, CH₂CH₂C=CH), 6.91 (s, 2 H, ArCH), 6.93 (s, 1 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.3 (CHCH₃), 21.2 (CH₂CH₂C=CH), 21.6 (ArC-CH₃), 23.1 (CH₂CH₂CH₂C-O), 32.1 (CH₂CH₂CH₂C-O), 39.7 (CH₂CH₂C=CH), 41.4 (CH₂CH₂CH₂C-O), 47.3 (CHCH₃), 55.1 (CHC-O), 79.6 (CHOH), 89.9 (C-O), 106.5 (OCO), 126.4 (ArCH), 129.2 (ArCH), 133.0 (CH₂CH₂C=CH), 136.7 (ArC), 138.0 (ArC), 138.3 (CH₂CH₂C=CH) ppm. IR v_{max} (neat/cm⁻¹): 3445, 2924, 2853, 1749, 1598, 1493, 1455, 1393, 1258, 1195, 1157, 1098, 1048, 967, 948, 927, 903, 845, 821, 742, 720, 679, 668, 649. M.p. (CHCl₃) = 106 - 107 °C. HRMS calcd for $C_{21}H_{28}O_3K [M + K]^+$: 367.1675, found 367.1672.

rac-(3a*S*,7*R*,8*S*,9*R*,9a*R*,*E*)-9-Methyl-6-(thiophen-3-ylmethylene)octahydro-3a,8epoxycyclopenta[8]annulene-7,8(1H)-diol 7p

Prepared according to general procedure I using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(thiophen-3-ylmethyl)malonate (57 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as an oil (10.9 mg, 0.036 mmol, 36%). ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, J = 6.9 Hz, 3 H, CHCH₃), 1.32 (td, J =13.3, 6.6 Hz, 2 H, CH₂CH₂CH₂C-O), 1.44 – 1.54 (m, 2 H, CH₂CH₂CH₂C-O), 1.65 – 1.79 (m, 2 H, CH₂CH₂CH₂C-O), 1.81 – 1.96 (m, 2 H, 1 H from CH_aH_bCH₂C=CH, 1 H from CHCH₃), 2.01 (dd, J = 13.6, 6.1 Hz, 1 H, CHC-O), 2.18 (ddd, J = 13.5, 7.5, 1.6 Hz, 1 H, CH_aH_bCH₂C=CH), 2.49 – 2.73 (m, 3 H, CHOH, CH₂CH₂C=CH), 4.17 – 4.28 (m, 2 H, CHOH, OCOH), 6.59 (s, 1 H, CH₂CH₂C=CH), 7.12 (dd, J = 5.0, 1.3 Hz, 1 H, ArCH), 7.23 (d, J = 2.9 Hz, 1 H, ArCH), 7.33 (dd, J = 5.0, 2.9 Hz, 1 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 12.5 (CHCH₃), 21.5 (CH₂CH₂C=CH), 23.1 (CH₂CH₂CH₂C-O), 32.0 (CH₂CH₂CH₂C-O), 39.0 (CH₂CH₂C=CH), 41.4 (CH₂CH₂CH₂C-O), 47.4 (CHCH₃), 55.3 (CHC-O), 79.2 (CHOH), 89.9 (C-O), 106.5 (OCO), 123.5 (ArCH), 125.8 (ArCH), 126.4 (CH₂CH₂C=CH), 128.5 (ArCH), 137.8 (ArC), 138.0 (CH₂CH₂C=CH). IR v_{max} (neat/cm⁻¹): 3439, 2927, 1738, 1455, 1392, 1258, 1147, 906, 729, 647, 592. HRMS calcd for $C_{17}H_{22}O_3SNa [M + Na]^+$: 329.1182, found 329.1179.

rac-(3a*R*,7*S*,8*R*,9*S*,9a*S*)-6-((*E*)-Benzylidene)-9-(3-((*tert*-butyldimethylsilyl)oxy)propyl) octahydro-3a,8-epoxycyclopenta[8]annulene-7,8(1*H*)-diol 7q

Prepared according to general procedure I using SmI₂ (12.0 mL, 1.20 mmol, 0.1 M in THF), diphenyl (*E*)-2-benzyl-2-(12 -((*tert*-butyldimethylsilyl)oxy)-3 -oxo-9 -((4 -(trifluoromethyl) benzoyl)oxy)dodec-7-en-1-yl)malonate (84 mg, 0.10 mmol) and MeOH (340 µL, 8.4 mmol) to give the title compound as a colourless oil (15.9 mg, 0.035 mmol, 34%). ¹H NMR (400 MHz, CDCl₃) δ 0.02 (s, 3 H, Si-CH₃), 0.03 (s, 3 H, Si-CH₃), 0.87 (s, 9 H, 3 × Si-C(CH₃)), 1.31 – 1.38 Si, CH₂CH₂CH₂CH₂O-Si, CH₂CH₂CH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O), 1.70 – 1.85 (m, 3 H, CHCOO, 1 H from CH_aH_bCH₂C=CH, 1 H from CH₂CH_aH_bCH₂C-O), 1.97 – 2.05 (m, 2) H, 1 H from CH₂CH₂CH_aH_bC-O, CHC-O), 2.16 – 2.23 (m, 1 H from CH_aH_bCH₂C=CH), 2.44 - 2.51 (m, 2 H, 1 H from CH₂CH_aH_bC=CH, 1 H from CHOH), 2.54 - 2.62 (m, 1 H, CH₂CH_a*H*_bC=CH), 3.59 (t, *J* = 6.3 Hz, 2 H, CH₂CH₂CH₂CH₂O-Si), 4.17 (s, 1 H, OCO*H*), 4.24 (d, J = 6.9 Hz, 1 H, CHOH), 6.66 (s, 1 H, CH₂CH₂C=CH), 7.28 – 7.31 (m, 3 H, ArCH), 7.35 – 7.40 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ -5.1 (Si-CH₃), -5.1 (SiCH₃), 18.5 (Si-C(CH₃)₃), 21.1 (CH₂CH₂C=CH), 23.1 (CH₂CH₂CH₂C-O), 24.7 (CH₂CH₂CH₂CH₂O-Si), 28.8 (CH₂CH₂CH₂C-O), 33.3 (CH₂CH₂CH₂CH₂O-Si), 26.1 $(Si-C(CH_3)_3),$ 33.3 (CH₂CH₂CH₂CH₂O-Si), 39.9 (CH₂CH₂C=CH), 41.6 (CH₂CH₂CH₂C-O), 52.3 (CHCOO), 54.6 (CHC-O), 63.1 (CH₂CH₂CH₂CH₂O-Si), 79.6 (CHOH), 90.1 (C-O), 106.5 (OCO), 127.5 (ArCH), 128.6 (ArCH), 128.7 (ArCH), 133.0 (CH₂CH₂C=CH), 136.8 (ArC), 139.0 (C=CH) ppm. IR v_{max} (neat/cm⁻¹): 2927, 2857, 2361, 1253, 1101, 835, 720, 679, 668, 649. HRMS calcd for C₂₈H₄₄O₄SiNa [M + Na]⁺: 495.2907, found 495.2903.

rac-(3a*R*,6*R*,8*S*,8a*S*)-8-(Methyl-d)-6-phenylhexahydro-1*H-*3a,6-(epoxymethano)azulene-7,9(4*H*)-dione D₂-7a

Prepared according to general procedure H using SmI₂ (9.00 mL, 0.90 mmol, 0.1 M in THF), diphenyl (E)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-phenylmalonate (54.8 mg, 0.10 mmol) and D₂O (1.80 mL, 90.0 mmol) to give the title compound as a white solid (7.2 mg, 0.025 mmol, 25%). ¹H NMR (400 MHz, CDCl₃) δ 1.10 (dt, J = 6.7, 1.8 Hz, 2 H, CHCH₂D), 1.45 – 1.65 (m, 2 H, 1 H from CH_aH_bCH₂CH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O), 1.71 – 1.82 (m, 1 H, CHCH₂D), 1.83 – 1.95 (m, 3 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CHC-O, 1 H from CH₂CH₂CH_aH_bC-O), 1.96 – 2.09 (m, 3 H, 1 H from CH_aH_bCH₂CH₂C-O, 1 H from $CH_2CH_aH_bC$, 1 H from $CH_aH_bCH_2C$), 2.13 – 2.31 (m, 2 H, 1 H from $CH_2CH_2CH_aH_bC$ -O, 1 H from CH_aH_bCH₂C), 2.78 – 2.89 (m, 1 H, CH₂CH_aH_bC), 7.25 – 7.30 (m, 1 H, ArCH), 7.34 – 7.43 (m, 2 H, ArCH), 7.47 – 7.50 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 22.9 (CH₂CH₂CH₂C-O), 24.5 (CH₂CH₂C), 32.1 (CH₂CH₂C), 32.6 (CH₂CH₂CH₂C-O), 38.9 (CHCH₂D), 41.9 (CH₂CH₂CH₂C-O), 49.1 (CHC-O), 55.0 (CH₂CH₂C), 90.7 (CHC-O), 126.9 (ArCH), 128.9 (ArCH), 128.1 (ArCH), 143.2 (ArC), 174.4 (C(O)O) ppm. Signals for CHCH₂D and CDOH are not visible. IR v_{max} (neat/cm⁻¹): 2929, 1817, 1713, 1496, 1445, 1339, 1262, 1195, 1141, 1069, 1022, 960, 756, 699. M.p. (CHCl₃) = 82 - 84 °C. HRMS calcd for $C_{18}H_{20}D_2O_3Na [M + Na]^+$: 311.1587, found 311.1587.

rac-Phenyl (3a*R*,6*R*,7*R*,8*S*,8a*S*)-7-hydroxy-8-methyl-6-(propan-2-yl-2-d)octahydro-1*H*-3a,7-epoxyazulene-6-carboxylate 7p and *rac*-(3a*R*,6*R*,7*S*,8*S*,8a*S*)-7-Hydroxy-8-methyl-6-(propan-2-yl-2-d)octahydro-1*H*-3a,6-(epoxymethano)azulen-9-one 7q

Prepared according to general procedure **H** using SmI₂ (7.00 mL, 0.70 mmol, 0.1 M in THF), diphenyl (*E*)-2-(9-bromo-3-oxonon-7-en-1-yl)-2-(propan-2-yl-2-*d*)malonate (51.5 mg, 0.10 mmol) and H₂O (1.26 mL, 70.0 mmol) to give the title compound **7p** as a colourless oil (5.9 mg, 0.017 mmol, 17%) and **7q** as a white solid (3.0 mg, 0.012 mmol, 12%).

Spectroscopic data for **7p**. ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, J = 7.5 Hz, 3 H, CHCH₃), 1.08 (s, 3 H, (CD(CH₃)_a(CH₃)_b), 1.14 (s, 3 H, (CD(CH₃)_a(CH₃)_b), 1.46 – 1.55 (m, 2 H, 1 H from CH₂CH₂CH_aH_bC-O, 1 H from CH_aH_bCH₂C), 1.57 – 1.70 (m, 3 H, 2 H from CH₂CH₂CH₂CH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O), 1.72 – 1.81 (m, 1 H, CH₂CH_aH_bC), 1.83 – 1.97 (m, 2 H, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH₂CH₂CH_aH_bC-O), 2.00 – 2.12 (m, 1 H, CH_aH_bCH₂C), 2.22 – 2.33 (m, 1 H, CHC-O), 2.52 – 2.66 (m, 2 H, 1 H from CH₂CH_aH_bC, 1 H from CHCH₃), 5.99 (s, 1 H, OCOH), 7.06 – 7.16 (m, 2 H, ArCH), 7.22 – 7.30 (m, 1 H, ArCH), 7.35 – 7.46 (m, 2 H, ArCH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.2 (CHCH₃), 18.9 (CD(CH₃)_a(CH₃)_b), 20.2 (CD(CH₃)_a(CH₃)_b), 26.2 (CH₂CH₂CH₂C-O), 27.1 (CH₂CH₂C), 27.2 (CH₂CH₂CH₂C-O), 32.5 (CH₂CH₂C), 34.0 (1:1:1 t, J = 20.1 Hz, $CD(CH₃)_2$), 36.8 (CH₂CH₂CH₂C-O), 38.8 (CHCH₃), 50.6 (CHC-O), 57.4 (CH₂CH₂C), 91.3 (CH₂CH₂CH₂C-O), 108.7 (OCOH), 121.7 (ArCH), 126.3 (ArCH), 129.5 (ArCH), 150.4 (ArC), 175.2 (C(O)O) ppm. IR v_{max} (neat/cm⁻¹): 3444, 2958, 1714, 1492, 1456, 1277, 1188, 1161, 1103, 1059, 946, 739, 689. HRMS calcd for C₂₁H₂₇DO₄Na [M + Na]⁺: 368.1943, found 368.1946.

Spectroscopic data for **7q**. ¹H NMR (400 MHz, CDCl₃) δ 0.94 (s, 3 H, (CD(CH₃)_a(CH₃)_b)), 0.99 (s, 3 H, (CD(CH₃)_a(CH₃)_b), 1.04 (d, *J* = 6.7 Hz, 3 H, CHCH₃), 1.40 – 1.57 (m, 4 H, 1 H from CHCH₃, 1 H from CH₂CH_aH_bC, 1 H from CH_aH_bCH₂CH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH_aH_bCH₂C-O, 1 H from CH₂CH_aH_bC-O, 1 H from CH_aH_bCH₂C), 1.93 – 2.03 (m, 1 H, CH_aH_bCH₂CH₂C-O), 2.04 – 2.14 (m, 2 H, 1 H from CH_aH_bCH₂C, 1 H from CH₂CH₂CH_aH_bC-O), 2.14 – 2.24 (m, 1 H, CH₂CH_aH_bC), 3.69 (dd, *J* = 4.3, 2.7 Hz, 1 H, CHOH) ppm. ¹³C NMR (100 MHz,

CDCl₃) δ 16.1 (CH₂CH₂C), 17.3 (CHCH₃), 17.3 (CD(*C*H₃)_a(CH₃)_b), 19.5 (CD(CH₃)_a(*C*H₃)_b), 22.6 (CH₂CH₂CH₂C-O), 31.0 (*C*H₂CH₂C), 32.3 (*C*H₂CH₂CH₂C-O), 39.5 (*C*HCH₃), 41.7 (CH₂CH₂CH₂C-O), 50.1 (*C*HC-O), 53.2 (CH₂CH₂C), 76.1 (*C*HOH), 89.8 (CHC-O), 176.1 (*C*(O)O) ppm. Signal for *C*D(CH₃)₂ not visible. IR v_{max} (neat/cm⁻¹): 3444, 2958, 2875, 1708, 1456, 1390, 1371, 1345, 1226, 1189, 1175, 1078, 1032, 965. M.p. (CHCl₃) = 60 – 62 °C. HRMS calcd for C₁₅H₂₃DO₃ [M - H]⁻: 252.1715, found 252.1713.

Supplementary Figure 1. ¹H NMR (400 MHz, CDCl₃) spectrum of S1

Supplementary Figure 2 . ^{13}C NMR (100 MHz, CDCl_3) spectrum of S1

Supplementary Figure 3. ¹H NMR (500 MHz, CDCl₃) spectrum of S2

Supplementary Figure 4. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S2

Supplementary Figure 6. ¹³C NMR (100 MHz, CDCl₃) spectrum of S4

Supplementary Figure 8. ¹³C NMR (100 MHz, CDCl₃) spectrum of S5

Supplementary Figure 9. ¹H NMR (400 MHz, CDCl₃) spectrum of S6

Supplementary Figure 10. ¹³C NMR (100 MHz, CDCl₃) spectrum of S6

Supplementary Figure 11. ¹H NMR (400 MHz, CDCl₃) spectrum of S7

Supplementary Figure 12. ¹³C NMR (100 MHz, CDCl₃) spectrum of S7

Supplementary Figure 13. ¹H NMR (500 MHz, CDCl₃) spectrum of S8

Supplementary Figure 14. ¹³C NMR (126 MHz, CDCl₃) spectrum of S8

Supplementary Figure 15. ¹H NMR (400 MHz, CDCl₃) spectrum of S9

Supplementary Figure 16. ¹³C NMR (100 MHz, CDCl₃) spectrum of S9

Supplementary Figure 18. $^{\rm 13}\text{C}$ NMR (100 MHz, CDCl₃) spectrum of S10

Supplementary Figure 20. ¹³C NMR (125 MHz, CDCl₃) spectrum of S11

Supplementary Figure 22. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S12

Supplementary Figure 23. ¹H NMR (500 MHz, CDCl₃) spectrum of S13

Supplementary Figure 24. ¹³C NMR (125 MHz, CDCl₃) spectrum of S13

Supplementary Figure 25. ¹H NMR (500 MHz, CDCl₃) spectrum of S14

Supplementary Figure 26. ¹³C NMR (125 MHz, CDCl₃) spectrum of S14

Supplementary Figure 27. ¹H NMR (400 MHz, CDCl₃) spectrum of S15

Supplementary Figure 28. ¹³C NMR (100 MHz, CDCl₃) spectrum of S15

Supplementary Figure 29. ¹H NMR (500 MHz, CDCl₃) spectrum of S16

Supplementary Figure 30. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S16

Supplementary Figure 32. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S17

Supplementary Figure 33. ¹H NMR (500 MHz, CDCl₃) spectrum of S18

Supplementary Figure 34. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S18

Supplementary Figure 36. ¹³C NMR (100 MHz, CDCl₃) spectrum of S19

Supplementary Figure 37. ¹H NMR (400 MHz, CDCl₃) spectrum of S20

Supplementary Figure 38. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S20

Supplementary Figure 39. ¹H NMR (400 MHz, CDCl₃) spectrum of S21

Supplementary Figure 40. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S21

Supplementary Figure 42. ¹³C NMR (100 MHz, CDCl₃) spectrum of S22

Supplementary Figure 43. ¹H NMR (500 MHz, CDCl₃) spectrum of S23

Supplementary Figure 44. ¹³C NMR (125 MHz, CDCl₃) spectrum of S23

Supplementary Figure 46. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S25

Supplementary Figure 48. ¹³C NMR (100 MHz, CDCl₃) spectrum of S26

Supplementary Figure 50. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S27

Supplementary Figure 52. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S28

Supplementary Figure 53. ¹H NMR (400 MHz, CDCl₃) spectrum of S29

Supplementary Figure 54. ¹³C NMR (100 MHz, CDCl₃) spectrum of S29

Supplementary Figure 56. ¹³C NMR (100 MHz, CDCl₃) spectrum of S31

Supplementary Figure 57. ¹H NMR (400 MHz, CDCl₃) spectrum of S33

Supplementary Figure 58. ¹³C NMR (100 MHz, CDCl₃) spectrum of S33

Supplementary Figure 59. ¹H NMR (400 MHz, CDCl₃) spectrum of S35

Supplementary Figure 60. ¹³C NMR (100 MHz, CDCl₃) spectrum of S35

Supplementary Figure 61. ¹H NMR (400 MHz, CDCl₃) spectrum of S36

Supplementary Figure 62. ¹³C NMR (100 MHz, CDCl₃) spectrum of S36

Supplementary Figure 63. ¹H NMR (400 MHz, CDCl₃) spectrum of S37

Supplementary Figure 64. ¹³C NMR (100 MHz, CDCl₃) spectrum of S37

Supplementary Figure 65. ¹H NMR (400 MHz, CDCl₃) spectrum of S38

Supplementary Figure 66. ¹³C NMR (100 MHz, CDCl₃) spectrum of S38

Supplementary Figure 67. ¹H NMR (400 MHz, CDCl₃) spectrum of S39

Supplementary Figure 68. ¹³C NMR (100 MHz, CDCl₃) spectrum of S39

Supplementary Figure 69. ¹H NMR (400 MHz, CDCl₃) spectrum of S40

Supplementary Figure 70. ¹³C NMR (100 MHz, CDCl₃) spectrum of S40

Supplementary Figure 71. ¹H NMR (400 MHz, CDCl₃) spectrum of S41

Supplementary Figure 72. ¹³C NMR (100 MHz, CDCl₃) spectrum of S41

Supplementary Figure 73. ¹H NMR (400 MHz, CDCl₃) spectrum of S42

Supplementary Figure 74. ¹³C NMR (100 MHz, CDCl₃) spectrum of S42

Supplementary Figure 75. ¹H NMR (400 MHz, CDCl₃) spectrum of S43

Supplementary Figure 76. ¹³C NMR (100 MHz, CDCl₃) spectrum of S43

Supplementary Figure 77. ¹H NMR (400 MHz, CDCl₃) spectrum of S44

Supplementary Figure 78. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S44

Supplementary Figure 80. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S45

Supplementary Figure 82. ¹³C NMR (100 MHz, CDCl₃) spectrum of S46

Supplementary Figure 84. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of S47

Supplementary Figure 85. ¹H NMR (500 MHz, CDCl₃) spectrum of S48

Supplementary Figure 86. ¹³C NMR (125 MHz, CDCl₃) spectrum of S48

Supplementary Figure 88. ¹³C NMR (125 MHz, CDCl₃) spectrum of S49

Supplementary Figure 90. ¹³C NMR (125 MHz, CDCl₃) spectrum of S50

Supplementary Figure 92. ¹³C NMR (100 MHz, CDCl₃) spectrum of S51

Supplementary Figure 93. ¹H NMR (400 MHz, CDCl₃) spectrum of 6a'

Supplementary Figure 94. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6a'

Supplementary Figure 95. ¹H NMR (400 MHz, CDCl₃) spectrum of 6b'

Supplementary Figure 96. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6b'

Supplementary Figure 97. ¹H NMR (400 MHz, CDCl₃) spectrum of 6c'

Supplementary Figure 98. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6c'

Supplementary Figure 99. ¹H NMR (400 MHz, CDCl₃) spectrum of 6d'

Supplementary Figure 100. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6d'

Supplementary Figure 101. ¹H NMR (400 MHz, CDCl₃) spectrum of 6a

Supplementary Figure 102.13C NMR (100 MHz, CDCl₃) spectrum of 6a

Supplementary Figure 103. ¹H NMR (400 MHz, CDCl₃) spectrum of 6b

Supplementary Figure 104. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6b

Supplementary Figure 105. ¹H NMR (400 MHz, CDCl₃) spectrum of 6c

Supplementary Figure 106. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6c

Supplementary Figure 107. ¹H NMR (400 MHz, CDCl₃) spectrum of 6d

Supplementary Figure 108. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6d

Supplementary Figure 110. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6e

Supplementary Figure 111. ¹H NMR (400 MHz, CDCl₃) spectrum of 6f

Supplementary Figure 112. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6f

Supplementary Figure 113. ¹H NMR (400 MHz, CDCl₃) spectrum of 6g

Supplementary Figure 114. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6g

Supplementary Figure 115. ¹H NMR (400 MHz, CDCl₃) spectrum of 6h

Supplementary Figure 116. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6h

Supplementary Figure 117. ¹H NMR (400 MHz, CDCl₃) spectrum of 6i

Supplementary Figure 118. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6i

Supplementary Figure 119. ¹H NMR (400 MHz, CDCl₃) spectrum of 6j

Supplementary Figure 120. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6j

Supplementary Figure 121. ¹H NMR (400 MHz, CDCl₃) spectrum of 6k

Supplementary Figure 122. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6k

Supplementary Figure 123. ¹H NMR (500 MHz, CDCl₃) spectrum of 6I

Supplementary Figure 124. $^{\rm 13}{\rm C}$ NMR (125 MHz, CDCl₃) spectrum of 6l

Supplementary Figure 125. ¹H NMR (400 MHz, CDCl₃) spectrum of 6m

Supplementary Figure 126. ¹³C NMR (125 MHz, CDCl₃) spectrum of 6m

Supplementary Figure 127. ¹H NMR (500 MHz, CDCl₃) spectrum of 6n

Supplementary Figure 128. ¹³C NMR (125 MHz, CDCl₃) spectrum of 6n

Supplementary Figure 129. ¹H NMR (500 MHz, CDCl₃) spectrum of 60

Supplementary Figure 130. ¹³C NMR (125 MHz, CDCl₃) spectrum of 60

Supplementary Figure 131. ¹H NMR (400 MHz, CDCl₃) spectrum of 6p

Supplementary Figure 132. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6p

Supplementary Figure 133. ¹H NMR (500 MHz, CDCl₃) spectrum of 6q

Supplementary Figure 134. ¹³C NMR (125 MHz, CDCl₃) spectrum of 6q

Supplementary Figure 135. ¹H NMR (400 MHz, CDCl₃) spectrum of D-6e

Supplementary Figure 136. ¹³C NMR (100 MHz, CDCl₃) spectrum of D-6e

Supplementary Figure 137. ¹H NMR (400 MHz, CDCl₃) spectrum of 7a'

Supplementary Figure 138.¹³C NMR (100 MHz, CDCl₃) spectrum of 7a'

Supplementary Figure 140. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7b'

Supplementary Figure 142. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7c'

Supplementary Figure 144. $^{\rm 13}\text{C}$ NMR (100 MHz, CDCl_3) spectrum of 7d'

Supplementary Figure 145. ¹H NMR (400 MHz, CDCl₃) spectrum of S45

Supplementary Figure 146. $^{\rm 13}C$ NMR (100 MHz, CDCl₃) spectrum of S45

Supplementary Figure 147. ¹H NMR (400 MHz, CDCl₃) spectrum of 7a

Supplementary Figure 148. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7a

Supplementary Figure 149. ¹H NMR (400 MHz, CDCl₃) spectrum of 7b

Supplementary Figure 150. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7b

Supplementary Figure 151. ¹H NMR (500 MHz, CDCl₃) spectrum of 7c

Supplementary Figure 152. ¹³C NMR (125 MHz, CDCl₃) spectrum of 7c

Supplementary Figure 153. ¹H NMR (400 MHz, CDCl₃) spectrum of 7d

Supplementary Figure 154. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7d

Supplementary Figure 155. ¹H NMR (500 MHz, CDCl₃) spectrum of 7e

Supplementary Figure 156. ¹³C NMR (125 MHz, CDCl₃) spectrum of 7e

Supplementary Figure 157. ¹H NMR (400 MHz, CDCl₃) spectrum 7f

Supplementary Figure 158. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7f

Supplementary Figure 159. ¹H NMR (400 MHz, CDCl₃) spectrum of 7g

Supplementary Figure 160. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7g

Supplementary Figure 161. ¹H NMR (400 MHz, CDCl₃) spectrum of 7h

Supplementary Figure 162. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7h

Supplementary Figure 163. ¹H NMR (400 MHz, CDCl₃) spectrum of 7i

Supplementary Figure 164. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7i

Supplementary Figure 166. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7j

Supplementary Figure 167. ¹H NMR (400 MHz, CDCl₃) spectrum of 7k

Supplementary Figure 168. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7k

Supplementary Figure 170. $^{\rm 13}{\rm C}$ NMR (100 MHz, CDCl₃) spectrum of 7I

Supplementary Figure 171. ¹H NMR (400 MHz, CDCl₃) spectrum of 7m

Supplementary Figure 172. ¹³C NMR (125 MHz, CDCl₃) spectrum of 7m

Supplementary Figure 173. ¹H NMR (400 MHz, CDCl₃) spectrum of 7n

Supplementary Figure 174. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7n

Supplementary Figure 175. ¹H NMR (400 MHz, CDCl₃) spectrum of 70

Supplementary Figure 176. ¹³C NMR (100 MHz, CDCl₃) spectrum of 70

Supplementary Figure 177. ¹H NMR (400 MHz, CDCl₃) spectrum of 7p

Supplementary Figure 178. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7p

Supplementary Figure 179. ¹H NMR (500 MHz, CDCl₃) spectrum of 7q

Supplementary Figure 180. ¹³C NMR (125 MHz, CDCl₃) spectrum of 7q

Supplementary Figure 181. ¹H NMR (400 MHz, CDCl₃) spectrum of D₂-7a

Supplementary Figure 182. ¹³C NMR (100 MHz, CDCl₃) spectrum of D₂-7a

Supplementary Figure 184. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7p

Supplementary Figure 186. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7q

Supplementary Table 1. Crystal data and structure refinement for 7a'.

Identification code	7a'
Empirical formula	$C_{11}H_{20}O_2$
Formula weight	184.28
Temperature/K	150.0
Crystal system	monoclinic
Space group	C2/c
a/Å	19.3670(14)
b/Å	8.1742(5)
c/Å	13.0587(7)
a/°	90
β/°	95.200(6)
γ^{\prime}	90
Volume/Å ³	2058.8(2)
Z	8
$\rho_{calc}g/cm^3$	1.060
μ/mm^{-1}	0.074
F(000)	657.0
Crystal size/mm ³	$0.373 \times 0.268 \times 0.196$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	5.412 to 50.66
Index ranges	$-23 \le h \le 22, -9 \le k \le 9, -15 \le l \le 15$
Reflections collected	8467
Independent reflections	1882 [$R_{int} = 0.0420, R_{sigma} = 0.0363$]
Data/restraints/parameters	1882/0/151
Goodness-of-fit on F ²	1.092
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0668, wR_2 = 0.1559$
Final R indexes [all data]	$R_1 = 0.0821, wR_2 = 0.1654$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.26

Supplementary Table 2. Crystal data and structure refinement for 7d'.

CCDC number: 1825585

7d'
$C_{20}H_{26}O_3$
314.41
149.9(4)
triclinic
P-1
9.1071(5)
9.3085(5)
10.4389(5)
69.348(5)
82.814(4)
76.575(5)
804.54(8)
2
1.298
0.085
340.0
$0.536 \times 0.278 \times 0.118$
MoKa ($\lambda = 0.71073$)
7.324 to 50.694
$-10 \le h \le 10, -11 \le k \le 11, -12 \le l \le 12$
23445
2945 [$R_{int} = 0.0546$, $R_{sigma} = 0.0308$]
2945/0/210
1.035
$R_1 = 0.0404, wR_2 = 0.0940$
$R_1 = 0.0486, wR_2 = 0.0991$
0.29/-0.19

Supplementary Table 3. Crystal data and structure refinement for 7a.

\langle	H OH OH	
7a X-Ray of 7a CCDC number: 1825588		
Identification code	7a	
Empirical formula	$C_{18}H_{22}O_3$	
Formula weight	286.35	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	$P2_1/c$	
a/Å	8.3809(16)	
b/Å	14.066(2)	
c/Å	12.492(2)	
α/°	90	
β/°	98.533(16)	
$\gamma/^{\circ}$	90	
Volume/Å ³	1456.3(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.306	
μ/mm^{-1}	0.087	
F(000)	616.0	
Crystal size/mm ³	$0.321\times0.212\times0.121$	
Radiation	MoKa ($\lambda = 0.71073$)	
20 range for data collection/° 6.666 to 50.694		
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -15 \le l \le 15$	
Reflections collected	17239	
Independent reflections	2661 [$R_{int} = 0.0502$, $R_{sigma} = 0.0362$]	
Data/restraints/parameters	2661/0/278	
Goodness-of-fit on F ²	1.026	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0429, wR_2 = 0.0995$	
Final R indexes [all data]	$R_1 = 0.0603, wR_2 = 0.1100$	
Largest diff. peak/hole / e Å-3	3 0.22/-0.30	

Supplementary table 4. Crystal data and structure refinement for 7d.

	Me Me	
CCDC	7d X-Ray of 7d number: 1825587	
Identification code	7d	
Empirical formula	$C_{15}H_{22}O_3$	
Formula weight	250.34	
Temperature/K	150	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	8.3913(15)	
b/Å	13.460(3)	
c/Å	11.780(2)	
a/°	90	
β/°	93.941(15)	
$\gamma/^{\circ}$	90	
Volume/Å ³	1327.4(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.2526	
μ/mm^{-1}	0.085	
F(000)	544.3	
Crystal size/mm ³	$0.321\times0.212\times0.121$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
2Θ range for data collection/° 6.86 to 50.68		
Index ranges	$-11 \le h \le 10, -18 \le k \le 16, -16 \le l \le 15$	
Reflections collected	16851	
Independent reflections	2416 [$R_{int} = 0.0555$, $R_{sigma} = 0.0565$]	
Data/restraints/parameters	2416/0/167	
Goodness-of-fit on F ²	1.035	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0429, wR_2 = 0.0944$	
Final R indexes [all data]	$R_1 = 0.0596, wR_2 = 0.1024$	
Largest diff. peak/hole / e Å ⁻³ 0.28/-0.31		

Supplementary Table 5. Crystal data and structure refinement for 7f.

H	Me 7f X-Ray of 7f	
CCDC number: 1825583		
Identification code	7f	
Empirical formula	$C_{18}H_{26}O_3$	
Formula weight	290.40	
Temperature/K	150	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	8.1487(4)	
b/Å	10.3942(6)	
c/Å	36.1900(16)	
$\alpha/^{\circ}$	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	3065.3(3)	
Z	8	
$\rho_{calc}g/cm^3$	1.145	
μ/mm^{-1}	0.079	
F(000)	1057.0	
Crystal size/mm ³	$0.316\times0.143\times0.109$	
Radiation	$MoK\alpha (\lambda = 0.71073)$	
2Θ range for data collection/	^o 6.452 to 50.69	
Index ranges	$-9 \le h \le 9, -12 \le k \le 11, -43 \le l \le 43$	
Reflections collected	14758	
Independent reflections	2801 [$R_{int} = 0.0498$, $R_{sigma} = 0.0397$]	
Data/restraints/parameters	2801/0/87	
Goodness-of-fit on F ²	1.059	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0727, wR_2 = 0.1542$	
Final R indexes [all data]	$R_1 = 0.0930, wR_2 = 0.1660$	
Largest diff. peak/hole / e Å ⁻³ 0.60/-0.41		

Supplementary Table 6. Crystal data and structure refinement for 7k.

Supplementary References

¹ Qian, M.; Covey, D. F. Adv. Synth. Catal. 2010, 352 (11–12), 2057–2061.

² Liu W-B., Okamoto., N.; Alexy, E. J.; Hong, A. Y.; Tran, K., Stoltz, B. M. J. Am. Chem. Soc., **2016**, *138* (16), 5234–5237.

³ Peña-López, M.; Martínez, M. M.; Sarandeses, L. A.; Pérez Sestelo, J. Org. Lett., **2010**, *12* (4), 852–854.

- ⁴ Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51 (14), 3470-3473.
- ⁵ Sibasish, P.; Sankha, P.; Surajit, S. *Tetrahedron Lett.* **2011**, *52* (46), 6166-6169.

⁶ Szostak, M.; Spain, M.; Procter, D. J. Nat. Protoc. 2012, 7 (5), 970–977.