Supplementary materials

Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat and feed samples

Xian ZHANG^{1,2}, Ke HE¹, Yun FANG³, Tong CAO², Narayan PAUDYAL²,

Xiao-feng ZHANG³, Hou-hui SONG¹, Xiao-liang LI², Wei-huan FANG^{†1,2}

¹China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health

Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China

²Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China

³Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310012, China [†]E-mail: whfang@zju.edu.cn

Item	Ochratoxin A	Zeralenone	
Diameter of GNPs	40 nm		
NC membrane	Sartorius UniSart CN140		
Conjugated pad	Ahlstrom 6613		
Sample pad	SB08		
Volume of GNPs-labeled mAbs	$4 \ \mu l/cm^2$	16 μl/cm ²	
Concentration of test lines	1 µl of OTA-OVA, (0.3 mg/ml)	1 µl ZEN-BSA (0.1 mg/ml)	
Concentration of control line	1 µl of goat anti mouse IgG (0.3 mg/ml)		

Table S1 Optimal conditions of the dual flow immunochromatographic assay

Table S2Buffer types, optimum buffers, and optimum concentrations of additives in the dual flowimmunochromatographic assay

Duffare	Ontinum hufford	Optimum types and concentrations of buffer	
Duffels	Optimum buriers	additives (w/v)	
Coating antigen buffer	50 mM phosphate buffer saline (PBS, pH 7.4)	_	
Sample and conjugate pads pretreated buffer	10 mM phosphate buffer saline (PBS, pH 7.4)	2% OVA (w/v), 2% sucrose (w/v) and 0.02% NaN ₃ (w/v)	
Golds-labeled antibody resuspension buffer	2 mM borate buffer (BB, pH 7.4)	1% BSA (w/v), 6% sucrose (w/v), 0.2% PEG 20000 and 0.05% sodium azide (w/v)	
GNPs-labeled antibodies storage,	50 mM borate buffer	5% (w/v) trehalose, 1% OVA (w/v) and	
dilution and conjugation buffer	(BB, pH 8.0)	0.02% NaN ₃ (w/v)	

-, no additives

Table S3 Comparison of results of gold nanoparticles-based immunochromatographic assay published in the past

Target analyte	Limit of detection (ng/ml)	Working range (ng/ml)	Ref.
OTA	500	-	(Cho et al., 2005)
OTA	1	-	(Anfossi et al., 2012)
OTA	0.05	-	(Zhang et al., 2018)
OTA	0.20	-	(Majdinasab et al., 2015)
ZEN	100	-	(Luo et al., 2013)
ZEN	15	-	(Ji et al., 2017)
ZEN	0.84	-	(Sun et al., 2014)
ZEN	2.5	-	(Shim et al., 2009b)
DON and ZEN	ZEN: 6	-	(Huang et al., 2012)
ZEN and FB_1	ZEN:0.35	ZEN: 0.94-7.52	(Wang et al., 2013)
OTA and ZEN	OTA: 0.77, ZEN:1.20	-	(Sun et al., 2016)
OTA and ZEN	OTA:2.5, ZEN: 5	-	(Shim et al., 2009a)
AFB ₁ , OTA and ZEN	OTA:0.5, ZEN:1	-	(Li et al., 2013)
OTA and ZEN	OTA: 0.32, ZEN: 0.58	OTA: 0.53–12.16 ZEN: 1.06–39.72	This study

-, not mentioned

References

- Anfossi L, Giovannoli C, Giraudi G, et al., 2012. A lateral flow immunoassay for the rapid detection of ochratoxin a in wine and grape must. *J Agric Food Chem*, 60(46):11491-11497. https://doi.org/10.1021/jf3031666
- Cho YJ, Lee DH, Kim DO, et al., 2005. Production of a monoclonal antibody against ochratoxin a and its application to immunochromatographic assay. *J Agric Food Chem*, 53(22):8447-8451. https://doi.org/10.1021/jf051681q
- Huang Z-B, Xu Y, Li L-S, et al., 2012. Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. *Food Control*, 28(1):7-12. <u>https://doi.org/https://doi.org/10.1016/j.foodcont.2012.04.035</u>
- Ji F, Mokoena MP, Zhao H, et al., 2017. Development of an immunochromatographic strip test for the rapid detection of zearalenone in wheat from jiangsu province, china. *PLoS One*, 12(5):e0175282. <u>https://doi.org/10.1371/journal.pone.0175282</u>
- Li X, Li P, Zhang Q, et al., 2013. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin b1, ochratoxin a and zearalenone in agro-food. *Biosensors and Bioelectronics*, 49:426-432. https://doi.org/https://doi.org/10.1016/j.bios.2013.05.039
- Luo M, Tang Y, Xiang J, et al., 2013. [preparation of anti-zearalenone monoclonal antibody and preliminary establishment of colloidal gold immunochromatographic assay for zearalenone]. *Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi*, 29(7):729-733.
- Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, et al., 2015. Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin a in agro-products. *Journal of Chromatography B*, 974:147-154. <u>https://doi.org/10.1016/j.jchromb.2014.10.034</u>
- Shim WB, Dzantiev BB, Eremin SA, et al., 2009a. One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. *J Microbiol Biotechnol*, 19(1):83-92.
- Shim WB, Kim KY, Chung DH, 2009b. Development and validation of a gold nanoparticle immunochromatographic assay (icg) for the detection of zearalenone. J Agric Food Chem, 57(10):4035-4041. <u>https://doi.org/10.1021/jf900075h</u>
- Sun Y, Hu X, Zhang Y, et al., 2014. Development of an immunochromatographic strip test for the rapid detection of zearalenone in corn. *J Agric Food Chem*, 62(46):11116-11121. <u>https://doi.org/10.1021/jf503092j</u>
- Sun Y, Xing G, Yang J, et al., 2016. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin a and zearalenone in cereal. *J Sci Food Agric*, 96(11):3673-3678. <u>https://doi.org/10.1002/jsfa.7550</u>
- Wang YK, Yan YX, Ji WH, et al., 2013. Rapid simultaneous quantification of zearalenone and fumonisin b1 in corn and wheat by lateral flow dual immunoassay. J Agric Food Chem, 61(21):5031-5036. https://doi.org/10.1021/jf400803q
- Zhang M, Yan L, Huang Q, et al., 2018. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay. *Food Control*, 84:215-220. <u>https://doi.org/https://doi.org/10.1016/j.foodcont.2017.07.035</u>