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1. HyperLogLog algorithm - from Flajolet to Heule to Ertl 

HyperLogLog is a probabilistic unique count (cardinality) estimator of streams of values with 

duplicates. It stores a sketch of the data in a concise structure and is very accurate for small cardinalities, 

keeps constant accuracy rates for up to very high cardinalities. 

Intuition. A random bit-string of length n can be seen as the outcome of n independent binomial trials 

with p = 0.5. Let k be the position of the first 1-bit, i.e. the bit string starts with (k-1) 0-bits before the 

first 1-bit. Since the bits are independent, the probability of k is the product of the probabilities, 0.5k. For 

example, k = 6 means that the bit string starts with 000012, and the probability of a random bit-string 

conforming to the pattern is 0.56 or 1/64 (Table S1).  

k Patternk Pk Ek 

1 1xxxxxxxxxx..x 0.5 2 

2 01xxxxxxxxx..x 0.25 4 

3 001xxxxxxxx..x 0.125 8 

4 0001xxxxxxx..x 0.0625 16 

l 0l-11xn-l 2-l 2l 

Table S1: The probabilities observing the first 1-bit at position k in a random bit string. Ek shows the 

expected number of bit-strings we have to observe until seeing one with Patternk, and is 1/Pk. 

 

Inversely, the expected number of independent bit-strings until we see k, Ek is 2k. If we knew only the 

maximum number of k, kmax, in a stream of independent random bit strings, the best guess at the 

cardinality of the stream is 2kmax. Note that this statistic discounts duplicates, as duplicates have the same 

value. To achieve high precision, HyperLogLog first distributes the stream hashes into 2p=m registers 

based on the first p bits. The latter 64-p bits are used to determine kmax of that register (assuming 64-bit 



hashes). The final estimate is calculated as harmonic mean of the estimates of all registers. The relative 

error of the estimate is about 2-p/2 (see Fig. 2 in the main text). 

Algorithm and Implementation. Using 2-bits per base, k-mers up to 31 base pairs can be stored in 64 

bits. As k-mers are neither random, nor independently distributed, we hash the k-mers to distribute them 

uniformly. Good hash functions (a) distribute the input evenly across the output range, and (b) create 

very different outputs for close inputs (avalanche effect). If both properties are fulfilled for the input (k-

mers from different genomes), then we can expect to see precise estimates. 

KrakenUniq implements a version of HyperLogLog with the following modifications: 

 

• 64-bit hashes are created by the fast finalizer of the MurMurHash3 algorithm (Appleby, 2017) 

• For smaller cardinalities (up to 2p-2) we use a sparse representation that encodes hashes with a much 

higher precision [1] 

• The final estimate is calculated form the register values based on an improved formula [2]  

• The counters can be easily merged for parallel execution. KrakenUniq gives sets of reads to workers, 

which return HLL sketches in addition to the classification results. The sketches of each taxon are merged 

into their master sketches by taking the maximum of all register values 

Computing the estimate. KrakenUniq implements the recently derived improved estimator for 

HyperLogLog sketches [2]. Previously proposed methods, including [3] and [1], require empirically 

determined thresholds to account for biases and switching between linear counting and HLL estimator. 

However, as [2] shows, the empiric bias correction does not always work.  

The raw estimate �̂�#$% of Flajolet is based on the harmonic mean of the estimates of the individual 

registers, times a bias correction factor 𝛼'. Following the notation of [2], C:=(C0, …, Cq+1) is the 

register histogram, where Ck is the number of registers in M that have the value k. 



�̂�#$% =
𝛼'𝑚*

∑ 𝐶-2/-
012
-34

 

While this works well when the true cardinality λ is in the range 2p << λ << 2p+q, the estimator is 

severely biased outside of this range. To account for small range errors, the Flajolet estimator uses linear 

counting [4] below a threshold of 2.5 ∙ 28: 

�̂�9:$;; = 𝑚 log𝑚 𝐶4⁄  

While the linear counting estimate is very accurate up to that threshold, the raw estimate that is used 

above the threshold is still very biased. This can be seen in a big spike in errors in the Flajolet estimate 

(Fig. S1). Heule et al. propose empirically determined bias tables to get rid of the bias. Using observed 

biases in big amount of random data, they provide correction factors along 200 interpolation points 

when the raw estimator is in range ~28 < �̂�#$% < 5 ∙ 28 . Mostly this correction manages to get rid of 

the bias (Fig. S2), however in some ranges the bias persists (Fig. S2).  

For large range errors, Flajolet proposes a correction factor when hitting raw estimates above 1 30⁄ 2E* 

(with 32-bit hashes). That factor, however, does not solve the problem but just flips the bias in the 

opposite direction [2]. When using 64-bit hashes and counting way below 264, though this bias can be 

largely ignored [1]. 

[2] describes how the biases occur due to not accounting for the fact that the register values are censored 

at 0 and q+1. Based on the expectation of the censored registers C0 and Cq+1, Ertl derives an improved 

formula for the estimator without bias:  

�̂�F#G; =
𝛼H𝑚*

∑ 𝐶-2/-
0
-32 + 	𝑚𝜎(𝐶4	𝑚) + 𝑚2/0𝜏(1 − 𝐶012/𝑚)	

, 

with 

𝜎(𝑥) ≔ 𝑥 +T 𝑥*U
H

-32
2-/2	,	



𝜏(𝑥) ≔ 1 − 𝑥 −T V1− 𝑥*WUX
H

-32
2/-,	

𝛼H: = 1 2 log2⁄  

As seen in Figures S1 and S2, the improved estimator of Ertl does not demonstrate any bias. 

Furthermore, using the sparse representation of Heule et al. for smaller cardinalities gives great precision 

for lower cardinalities. 

 

Performance testing: The HyperLogLog implementation was tested both on random numbers (Figures 

S1 and S2) and actual database k-mers (Figure 2 in the main text). The plots were created with R [5] 

and ggplot2 [6]. All code for recreating the estimates and plots is available at 

https://github.com/fbreitwieser/krakenuniq-manuscript-code. 

  



 

Figure S1: Comparison of relative errors with Flajolet, Heule and Ertl estimators with varying values of 

p. Black line: median relative error, orange lines 68.2% percentiles, yellow lines 95% percentiles. As 

expected, the relative error goes down with higher precision values. For both Heule’s and Ertl’s 

estimator we use sparse representation for cardinalities up to 2p-2 (p’= 25). Note that the empirical bias 

correction of Heule and the mathematical correction of Ertl both get rid of the big spike apparent for 

Flajolet, when the estimator switches between linear counting and HLL counting. Data from 100 

simulated random number runs (64-bit Mersenne Twister seeded with system entropy). 
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Figure S2: Comparison of Heule and Ertl estimators with sparse representation and variable y-axis. At 

certain precisions and cardinalities, the empirical bias correction values of Heule are not working well. 

For precision 16, bias is present around cardinalities of 15,000, and for precision 18, bias is present 

around cardinalities of 150,000 to 1,000,000. Legend: Black line is median relative error, orange lines 

encompass 68.2% of the estimate errors, yellow lines encompass 95% of the estimate errors. Data from 

100 randomly simulated runs of numbers. 

 

Heule Ertl++

precision 10
precision 12

precision 14
precision 16

precision 18

102 103 104 105 106 107102 103 104 105 106 107

−5%

0%

5%

10%

−4%

−2%

0%

2%

4%

−2%
−1%

0%
1%
2%

−1.0%

−0.5%

0.0%

0.5%

1.0%

−0.50%
−0.25%

0.00%
0.25%
0.50%

Cardinality

R
el

at
ive

 e
rro

r



2. Dataset analysis 

2.1 Building of std and nt databases 

KrakenUniq includes the new krakenuniq-download script to download and dust genomes from specific 

domains from RefSeq and Genbank. For example, the following command downloads the genomic and 

RNA sequences for all chromosome-level assembled genomes in the category ‘vertebrate_mammalian’ 

with taxID 9606 - which gives the two human genomes GRCh38.p11 and CHM1_1.1.1: 

krakenuniq-download --db DB_DIR --fna rna,genomic 

refseq/vertebrate_mammalian/Chromosome/taxid9606 

For the reanalysis of the data, we made two databases, ‘std’ and ‘nt’, both with a k of 31.  

(A) ‘std’ (downloaded and built October 26, 2017): Includes artificial sequences from UniVec and 

EmVec, all complete viral, archaeal and bacterial genomes from RefSeq, the two human genomes 

mentioned above, and viral strain sequences. All microbial sequences were dusted with NCBI 

dustmasker. Command line: 

krakenuniq-download --db DB_DIR taxonomy contaminants 

krakenuniq-download --db DB_DIR --dust --include-viral-neighbors refseq/viral/Any 

krakenuniq-download --db DB_DIR --dust refseq/archaea refseq/bacteria 

krakenuniq-download --db DB_DIR --fna rna,genomic 

refseq/vertebrate_mammalian/Chromosome/taxid9606 

 

krakenuniq-build --db DB_DIR --build --taxids-for-genomes --taxids-for-sequences --threads 

10 

The database contains 8113 genomes from 3048 prokaryotic species and 139477 sequences from 7295 

viral or viroid species. The database construction took 18 hours with 10 threads and uses 169 GB of disk 



space + 8.1GB for the index. The samples were run on a machine with four Intel Xeon CPUs E7- 4830 

(eight cores each) and 1TB of RAM. Number of sequences and unique k-mers in this database: 

Name Rank TaxID # of sequences # of k-mers 
k-mer 

duplication 
Bacteria superkingdom 2 15382 1.35E+10 2.27 

Homo sapiens species 9606 232355 2.67E+09 2.49 
Archaea superkingdom 2157 369 4.75E+08 1.26 
Viruses superkingdom 10239 139477 2.94E+08 4.47 

synthetic 
construct species 32630 9740 2.39E+06 3.91 

 

(B) ‘nt’ is based on the microbial part of nt, downloaded from 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz on February 23, 2018. The nt sequences were filtered based 

on the taxon list provided by Kaiju [7] at https://github.com/bioinformatics-

centre/kaiju/blob/master/util/taxonlist.tsv. The table below shows the included taxa and the number of 

sequences and distinct k-mers in their clade: 

Name Rank TaxID # of sequences # of k-mers 
k-mer 

duplication 
Bacteria superkingdom 2 6549136 1.72E+10 2.67 

Fungi kingdom 4751 3836040 4.85E+09 1.76 
Alveolata no rank 33630 472264 8.47E+08 1.68 

Apicomplexa phylum 5794 299510 6.97E+08 1.77 
Archaea superkingdom 2157 326186 6.64E+08 1.38 
Viruses superkingdom 10239 2050013 5.42E+08 6.49 

Euglenozoa no rank 33682 150499 3.19E+08 2.09 
Kinetoplastida order 5653 146387 3.14E+08 2.1 
Stramenopiles no rank 33634 330637 3.12E+08 1.47 

Chlorophyta phylum 3041 159680 2.35E+08 1.2 
Amoebozoa no rank 554915 133625 1.45E+08 1.23 
Rhodophyta no rank 2763 60582 6.93E+07 1.52 

Choanoflagellida order 28009 21662 4.46E+07 1.08 
Parabasalia no rank 5719 57906 3.74E+07 1.47 
Entamoeba genus 5758 41528 3.45E+07 1.44 

Cryptophyta class 3027 29269 3.40E+07 1.09 



Haptophyceae no rank 2830 41463 3.08E+07 1.44 
Heterolobosea class 5752 16885 2.40E+07 1.07 

Apusozoa no rank 554296 10877 2.07E+07 1.06 
Fornicata no rank 207245 14657 9.35E+06 1.45 

Rhizaria no rank 543769 19683 8.83E+06 2.07 
Jakobida no rank 556282 459 1.39E+06 1.09 

Glaucocystophyceae class 38254 352 6.69E+05 1.16 
Syndiniales order 88547 2317 3.39E+05 2.12 

Oxymonadida order 66288 472 2.35E+05 2.24 
Malawimonadidae family 136087 43 1.58E+05 1.04 

Centroheliozoa no rank 193537 295 1.34E+05 1.59 
Telonemida order 589438 177 8.36E+04 1.21 

Palpitomonas genus 759891 14 8.20E+04 1.06 
Collodictyonidae family 190322 22 7.55E+04 1.52 

Picozoa phylum 419944 104 6.48E+04 1.21 
Tsukubamonadidae family 1084709 9 5.54E+04 1 

Katablepharidophyta class 339960 248 4.57E+04 2.36 
Breviatea no rank 1401294 21 1.92E+04 1.03 
Trimastix genus 137418 13 1.29E+04 1.03 

 

Command line: 

make -f KRAKENHLL_DIR/microbial-nt-db/Makefile DODUST=0 nt 

The resulting database is 234GB in size plus 8.1 GB for the index. 

2.2 Kraken and KrakenUniq command lines 

For all comparisons of Kraken and KrakenUniq, the databases were preloaded with kraken --preload. 

The following command line was used for KrakenUniq: 

krakenuniq --db DB_DIR --threads 10 --report-file SAMPLE.krakenuniq.report.tsv --fastq --

gzip SAMPLE.fq.gz > SAMPLE.krakenuniq.tsv 

and Kraken v1.0 was run on the same database with: 

kraken --db DB_DIR --threads 10 --fastq --gzip SAMPLE.fq.gz > SAMPLE.kraken.tsv 



kraken-report --db DB_DIR --threads 10 --report-file SAMPLE.report.tsv --fastq --gzip 

SAMPLE.fq.gz > SAMPLE.kraken.tsv 

Note that the standard output can be turned off by adding --output off to the command line, which leads 

to a much better runtime. 

 

2.3 McIntyre et al., 2017 [8] dataset analysis 

Results for Blast, Clark, Clark Spaced, Diamond, Gottcha, Kraken, LMAT, MetaFlow, MetaPhlAn, 

NBC and PhyloSift were downloaded from https://pbtech-vc.med.cornell.edu/git/mason-

lab/benchmarking_metagenomic_classifier (files species_results_formatted.tar.gz and 

genus_results_formatted.tar.gz). We reran the samples with KrakenUniq with the two new databases std 

and nt, as well as the Kraken database ‘orig’ used in the original comparison of the benchmarking paper. 

Note that that ‘KrakenUniq orig reads’ and ‘Kraken’ results are mostly the same, but there are slight 

differences as the authors of the benchmarking paper did taxonomy mapping on the results files, too, to 

achieve a fairer comparison between the methods. 

Taxonomy fixes for test datasets 

We had fix the truth tables of 13 datasets due to changes in the NCBI taxonomy since the publishing of 

the datasets. The types of change were merging of species into an existing species, moving of a species 

to a different genus, moving of subspecies to a different species/genus, and mistaken taxa in the original 

truth tables. Note that there was no automated way to update the tables - only the subset of merged 

species is recorded in the NCBI taxonomy dumps. For all other cases, manual investigation was 

necessary. We validated all changes and made sure that the other methods had the right truth sets, too. 

Note that new databases are penalized in some cases in other ways. For example, the species 

Nanoarchaeum equitans (LC5) previously had a genome in RefSeq, and was detected in the Kraken 

analysis of McIntyre et al. But this genome has since been suppressed in RefSeq, and thus is not part of 



the ‘std’ database. There are also some discrepancies that we did not fix, as they do not apply to all 

methods equally. For example, the species Borreliaella bavariensis (species taxID 664662, genus taxid 

64895) is under its old genus Borrelia (genus taxID 138) in the ‘orig’ database, but under Borreliaella in 

the truth sets. While some tools (Blast, Diamond, LMAT, MetaPhlAn) detect Borrelia in higher 

abundance, others (Clark, LMAT, NBC, PhyloSift, original Kraken results) detects correctly 

Borreliaella.  

- LC5: Anabaena variabilis (taxID 1172) of the dataset Huttenhower LC5 has been merged to Trichormus 

variabilis (species taxID 264691, genus taxID 264688). 

- ds.7 

o Both Desulfurococcus fermentans (taxID 228748) and Desulfurococcus kamchatkensis (taxID 

477693.7) have been merged into Desulfurococcus amylolyticus, taxID 94694. 

o Chlamydia pneumoniae phage CPAR39, taxID 117575, has been merged to Chlamydia virus 

CPAR39, taxID 1986029 

o The subspecies Polynucleobacter necessarius subsp. asymbioticus (subspecies taxID 576611) 

was promoted to its own species Polynucleobacter asymbioticus (species taxID 576611) 

o The subspecies Desulfovibrio aespoeensis Aspo-2 (subspecies taxID 643562, species taxID 

182210, genus taxID 872) was moved to the genus Pseudodesulfovibrio (same subspecies taxID, 

same species taxID, genus taxID 2035811)  

o [Clostridium] sticklandii (species taxID 1511, genus taxID 1481960) was moved to the genus 

Acetoanaerobium (same species taxID, genus taxID 186831) 

- HC1, LC3, UnAmbiguouslyMapped_ds.7: Spirochaeta smaragdinae (genus taxID 146) was moved into 

the genus Sediminispirochaeta (genus taxID 1911556, same species taxID). In HC1 and LC3, S. 

smaragdinae is the only species of the genus Spirochaeta/Sediminispirochaeta, while ds.7 has other 

Spirochaeta species that stay in their genus.  



- UnAmbiguouslyMapped_ds.nycsm: Enterobacter aerogenes (species taxID 548) was moved to the genus 

Klebsiella (genus taxID 570, same species taxID). Other Enterobacteria species that stay in their genus 

are in that dataset, too. 

- HMP_even_454, HMP_even_illum, ds.gut, ds.hous2: Propionibacterium acnes was moved to the genus 

Cutibacterium (genus taxID 1912216, same species taxID). In ds.7, other Propionibacterium species (that 

stays in its genus) are present, while in the others C. acnes is the only species of the genus 

Propionibacterium/Cutibacterium. 

- Carma: [Haemophilus] parasuis was moved to the genus Glaesserella (genus taxID 2094023, same 

species taxID 738). This change happened between the times the ‘std’ and the ‘nt’ databases were built - 

thus the changes in this dataset apply only to ‘nt’.  

- HC1, LC2: Peptoclostridium difficile was moved to the genus Clostridioides (genus taxID 1870884, same 

species taxID). 

- ds.hous1: The subspecies Phaeobacter gallaeciensis 2.10 (taxID 383629) was moved to the species 

Phaeobacter inhibens (species taxID 221822, same subspecies taxID).  

- The following changes were made to the general truth tables. These reflect mistakes in the truth tables, 

and we should get more accurate estimates for all methods using the corrected versions: 

o LC1:  

§ Vibrio harveyi (species taxID 669) was updated to Vibrio campbellii (species taxID 680). 

All methods identify V. campbellii at high levels, and only two (LMAT and PhyloSift) 

identify V. harveyi at very low levels (V. campbellii was detected by both methods at 6 

and 3000 times higher levels, resp.). The strain of the reads was identified with 

KrakenUniq as Vibrio campbellii ATCC BAA-1116, which was previously known as 

Vibrio harveyi ATCC BAA-1116. 

§ Prosthecochloris vibrioformis (species taxID 1098, genus taxID 1101) was updated to 

Chlorobium phaeovibrioides (species taxID 1094, genus taxID 1091). The former species 

was identified only once at very low abundance, while the later was identified by Blast, 



CLARK, Diamond, Gottcha, Kraken, LMAT, MetaFlow, MetaPhlAn, NBC and Phylosift 

at high abundances. The strain of the reads was identified as Chlorobium phaeovibrioides 

DSM 265 by KrakenUniq, which was previously known as Prosthecochloris vibrioformis 

DSM 265.  

o RAIphy: Aster yellows phytoplasma (species taxID 35779) was updated to Aster yellows 

witches'-broom phytoplasma (species taxID 229545, same genus). No method identified the 

former species, several methods (Blast, Clark, Gottcha, Kraken, LMAT, NBC) identified the 

later. 

We provide patch files for the truth sets in https://github.com/fbreitwieser/krakenuniq-manuscript-code.  

 

[Table S3 is in a separate file]. 

 

Table S4: F1 score and recall of KrakenUniq compared other classifiers on simulated test datasets 

(n=21). 

 Genus Species  
 F1 Recall F1 Recall Avg 
KrakenUniq nt kmers 0.99 0.99 0.96 0.90 0.96 
KrakenUniq nt reads 0.99 0.98 0.96 0.90 0.96 
KrakenUniq orig reads 0.98 0.96 0.97 0.92 0.96 
ClarkM1Default 0.98 0.95 0.96 0.92 0.96 
KrakenUniq orig kmers 0.98 0.94 0.97 0.93 0.95 
KrakenFiltered 0.99 0.93 0.97 0.92 0.95 
Kraken 0.99 0.93 0.97 0.92 0.95 
KrakenUniq std kmers 0.98 0.97 0.94 0.88 0.95 
LMAT 0.99 0.94 0.96 0.87 0.94 
KrakenUniq std reads 0.98 0.95 0.94 0.88 0.94 
ClarkM4Spaced 0.98 0.93 0.94 0.83 0.92 
BlastMeganFilteredLiberal 0.97 0.80 0.96 0.87 0.90 
Gottcha 0.93 0.85 0.91 0.82 0.88 
BlastMeganFiltered 0.94 0.76 0.92 0.81 0.86 
DiamondMegan 0.93 0.77 0.82 0.67 0.80 



DiamondMegan_sensitive 0.93 0.77 0.82 0.67 0.80 
Metaphlan 0.82 0.63 0.79 0.61 0.71 
NBC 0.82 0.62 0.72 0.53 0.67 
PhyloSift90pct 0.84 0.56 0.75 0.32 0.62 
PhyloSift 0.84 0.54 0.75 0.32 0.61 
MetaFlow 0.55 0.44 0.50 0.37 0.46 

 

 

 

Figure S3: Reads versus k-mers on a biological and a simulated dataset (left and right panes, resp.) on 

the genus and species level (upper and lower panes, resp.). While the biological dataset does not have 

many species, there is nearly perfect separation between ‘true’ and ‘false’ taxa in the simulated dataset. 

 

Dataset availability 

• Sequence data and ‘truth sets’ for the test datasets is available at https://ftp-

private.ncbi.nlm.nih.gov/nist-immsa/IMMSA/  
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• Results for the classifiers are available at https://pbtech-vc.med.cornell.edu/git/mason-

lab/benchmarking_metagenomic_classifiers 

 

2.4 Synthetic community sampled from SRA isolate experiments 

We generated a complex artificial bacterial community from actual sequencing reads by sub-sampling 

reads from isolate sequencing experiments. To get high-quality data, we used isolate sequencing 

experiments that contributed to completed genomes that are part of RefSeq. We downloaded the 

assembly summary for all bacterial genomes in RefSeq from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt and filtered it down to the 

latest complete genome assemblies that had a BioSample accession (8078 assemblies). Using NCBI 

eutils, we downloaded the BioSample summary in XML format to get the links to SRA experiments. 

Using a custom script from 

http://bioinfo.umassmed.edu/bootstrappers/guides/main/python_get_sra_run_ids.html, we gathered the 

SRA run information for all 2605 BioSample’s with SRA experiment information. For each SRA 

experiment, we downloaded one SRA run which was Illumina-generated, paired-end and publicly 

accessible, and classified the reads with KrakenUniq against the ‘std’ database (in total, we classified 

1259 runs). Runs that had at least 75% of the reads assigned to the correct species with more than one 

million reads were picked for sub-sampling. We sampled between one hundred and one million reads, 

logarithmically distributed, from each picked run, which totaled 34.3 million paired reads from 259 

species. Using seqtk, we randomly sampled about 100 thousand, 200 thousand, 500 thousand, one 

million, two million and five million reads with mostly the same species composition but less deep 

sequencing for further analysis. 

 



Dataset availability 

The simulated read datasets are available at: 

ftp://ftp.ccb.jhu.edu/pub/software/krakenuniq/SraSampledDatasets/  

 

 

2.5 Salzberg et al., 2016 [9] dataset analysis 

 

 

Dataset availability 

• Data for the patient datasets (without human reads) is available at: 

https://www.ncbi.nlm.nih.gov/bioproject/314149.  

Sample 
Number of 

reads 

Speed (Mbp/m) Wall time (m:s) Max memory (GB) 

kraken 
kraken 

uniq speed-up kraken 
kraken-
report 

kraken 
uniq 

speed-
up* kraken 

kraken 
uniq increase 

PT1 12,022,284 487.89 730.99 49.83% 4:35.75 0:55.40 3:11.18 -42.27% 122.74 123.07 0.27% 

PT2 8,294,101 483.66 602 24.47% 8:02.34 1:23.18 5:21.21 -43.20% 113.16 113.50 0.30% 

PT3 17,669,644 508.34 698.39 37.39% 5:20.30 0:49.66 4:20.68 -29.54% 132.56 132.93 0.27% 

PT4 29,101,779 467.33 812.55 73.87% 8:09.75 1:15.19 5:57.75 -36.67% 117.43 117.78 0.29% 

PT5 26,919,065 467.43 798.05 70.73% 8:29.84 1:38.30 4:56.05 -51.32% 119.61 119.97 0.30% 

PT6 27,261,739 450.36 776.24 72.36% 8:31.67 1:32.81 5:13.75 -48.10% 119.68 120.04 0.29% 

PT7 19,065,574 558.09 819.82 46.90% 8:24.83 1:32.52 5:12.86 -47.63% 116.45 116.82 0.31% 

PT8-S1 6,385,699 436.51 725.32 66.16% 3:07.28 0:43.75 2:02.68 -46.90% 104.54 104.87 0.32% 

PT8-S2 7,661,802 430.89 726.14 68.52% 2:23.71 0:38.51 1:37.75 -46.36% 109.25 109.58 0.31% 

PT9 26,500,914 436.63 722.26 65.42% 2:51.90 0:41.73 2:00.31 -43.68% 124.42 124.78 0.28% 

PT10 21,319,274 411.94 656.13 59.28% 9:09.45 1:33.31 5:44.53 -46.40% 118.19 118.53 0.28% 

Table S5: Runtime and memory usage for Kraken and KrakenUniq on patient samples [9] running with 10 
threads, precision 14 on the std database. * For kraken, kraken-report was run after classification, and the 
combined time was compared to KrakenUniq (which generates the report while classifying).  



           A: Human polyomavirus 2 in PT5 (NC_001699.1) 

 
             B: Elizabethkingia genomosp. 3 in PT7 (NZ_CP014337.1) 

 
               C: Mycobacterium tuberculosis in PT8 (NC_000962.3) 

 
            D: Human gammaherpesvirus 4 in PT10 (NC_009334.1) 

 
Figure S4: Re-alignment of sequencing samples to specific genomes confirms the observations from the 

k-mer counts that the reads are pretty randomly distributed across the genomes. The reads were 



extracted with krakenuniq-extract-reads, aligned against the reference genome with bowtie2 [10], 

processed with samtools [11], and visualized with Pavian [12]. 

 

Investigation into the likely source of false positives  

Without manual investigation it is hard to tell the source of reads that give false identifications. We 

investigated the false positive identifications in the patient samples listed in Table 4 by extracting the 

reads and manually searching them against the nt database with NCBI’s blastn: 

• 122 reads classified as Clostroides difficile in PT3: most of these match 16S rRNA sequences in 

uncultured bacteria. 

• 101 reads classified as HCV in PT4: The reads map to many human BAC and fosmid clones and small 

nucleolar RNAs (snRNA), with the only non-eukaryotic hits corresponding to a recombinant HCV strain 

that we also detect. Since it seems that this sequence is not part of the human reference genome, 

KrakenUniq assigned it to the HCV strain. That virus entry actually contains a fragment from a human 

snRNA, as annotated in the virus sequence entry JF343788.1: “derived from isolate HC-J6; chimeric with 

small nucleolar RNA U3 fragment”. 

• 936 reads classified as Akkermansia muciniphila in PT5: most matches are to 16S rRNA genes in 

uncultured bacteria, environmental samples. Very few hits go to Akkermansia muciniphila, however we 

cannot say for certain what the source of this sequence is. 

• 63 reads classified as Human betaherpesvirus 5 in PT10: these are matches to the phiX-174 sequence. 

Even though we have phiX-174 in our database as a contaminant, the algorithm assigned it to HHV5, 

possibly because the reads seem to be chimeric. Notably, the phiX-174 sequences match to many other 

sequences in the nt database that are annotated as apicomplexans, flies, flatworms, nematodes, as well as 

various bacteria. 

 



We also tested whether the reads are of low complexity using dustmasker. Notably, these reads are not 

of low complexity, probably because we excluded low-complexity k-mers from the database by masking 

genome sequences. 

 

Table S6: Synthetic constructs (vectors, adapters, primers) and common laboratory and skin 

contaminants in the pathogen identification sample. Note that the microbes have a high number of 

unique k-mer per read which indicates that the reads are randomly distributed on their genomes, and that 

probably the whole genomes are present in the sequenced sample. Data extracted with Pavian [12]. 

Taxon synthetic 
construct (32630) phiX174 (374840) Delftia (80865) 

Cutibacterium 
acnes (1747) 

Escherichia coli 
(562) 

Sample reads kmers reads kmers reads kmers reads kmers reads kmers 
PT1 48386 1103 91868 9660 8 612 2 330 519 28369 
PT2 4582 566 4359 2944 19 3190 15 3532 28 1823 
PT3 52948 1355 12147 4694 238 23769 61 7815 147 5976 
PT4 31285 1308 22084 7321 0 0 80 7575 160 6306 
PT5 29022 1849 53401 9405 0 0 461 9918 336 11569 
PT6 12956 1203 43250 9124 1 66 52 2391 283 9221 
PT7 268182 1702 13933 5462 301 19070 1430 130773 108 3844 

PT8-S1 15601 620 7 118 3 191 2 148 0 0 
PT8-S2 719 529 0 0 0 0 3 237 0 0 

PT9 6851 951 17562 6378 9 603 220 21028 115 4241 
PT10 33833 811 17028 5794 0 0 23 2224 115 4389 

 

3. Storing strain genomes with assembly project and sequence accessions 

Kraken stores a NCBI taxonomic identifier for each k-mer in its database. This strategy worked well 

when new taxonomy IDs were assigned to each new microbial strain in GenBank. However, in 2014 the 

NCBI Taxonomy project stopped assigning new IDs to microbial strains; since then, only novel species 

get new taxonomy IDs (Federhen, et al., 2014). New microbial genomes, therefore, have the taxonomy 



ID of the species, or the taxonomy ID of a strain that was added before 2014. Microbes that have been 

intensively surveyed, such as Escherichia coli or Salmonella spp., have hundreds of genomes indexed 

with the same taxonomy ID, and are thus indistinguishable by Kraken. An alternative way of identifying 

bacterial strains is to use the Bioproject, Biosample and Assembly accession codes [13]. KrakenUniq 

thus adds new nodes to the taxonomy tree as children of the assigned taxon. A taxonomic node may also 

be added for each sequence; e.g., specific bacterial chromosomes or plasmids. Those new nodes in the 

taxonomy tree are given taxonomy IDs starting at 1,000,000,000. Having these extended nodes can help 

identify specific strains as well as bad database sequences (see Table 2 and Table S7). 

 

The additional information can be useful to detect the source of false positive identifications, too. In the 

reanalysis of the patient samples [9] with database ‘std’, Salmonella enterica is detected in every sample 

with up to 233 reads. This species was not detected in the original analysis, and its ubiquity as well as a 

very low k-mer count hint that it is a false-positive hit or contaminant. If the only available information 

was the taxonomy ID, the search for the source of these hits would be difficult: There are 349 complete 

genomes in RefSeq for Salmonella enterica (taxonomy ID 28901) and still 23 complete genomes for the 

strain Salmonella enterica subsp. enterica serovar Typhimurium (taxonomy ID 90371). Table S7 shows 

a part of the report KrakenUniq generated for PT8. Most of the reads going to Salmonella enterica hit 

one specific plasmid in one strain assembly. With standard Kraken output, neither the number of unique 

k-mers nor the sequence ID would have been known, and additional investigation such as re-alignment 

of the reads would have been required.  

Reads 
Taxon 
Reads Kmers TaxID Rank Name 

233 0 41 590 genus Salmonella 
233 0 41 28901 species ·Salmonella enterica 
232 0 33 59201 subspecies ··Salmonella enterica subsp. Enterica 



204 0 19 90371 no rank ···Salmonella enterica subsp. enterica serovar 
Typhimurium 

203 0 8 100001485
0 

assembly ····GCF_001617585.1 Salmonella enterica subsp. 
enterica serovar Typhimurium strain=RM9437 

203 203 8 100001485
2 

sequence ·····NZ_CP014577.1 Salmonella enterica subsp. enterica 
serovar Typhimurium strain RM9437 plasmid 
pRM9437, complete sequence 

Table S7: Part of KrakenUniq output for PT8 [9]. Salmonella enterica is likely a false positive 

identification, and this is indicated by two factors: (1) the unique k-mer count is low. (2) The majority of 

reads hit a plasmid of one specific strain.  

 

To enable both features, call krakenuniq-build with the options --taxids-for-genomes and --

taxids-for-sequences. There is an important drawback to enabling these options: The pseudo-

taxonomy IDs - e.g. 1000014850 in Table S7 - are unique to the database build. Special precautions 

have to be taken when comparing results from different databases, or when using hierarchical mapping. 

 

4. Integrating viral strain genomes in the database 

The RefSeq project curates viral genomes [14], which are included in the default databases of many 

metagenomics classifiers. RefSeq includes only one reference genome per viral species, and classifiers 

that use RefSeq (Kraken and others) therefore only consider those genomes. However, there are 

thousands of viral strain sequences in GenBank, and the chosen reference genome is often an established 

but old strain. For example, for HIV-1 the reference is a genome assembly from 1999 (AC 

GCF_000864765.1), and for JC polyomavirus the reference is the strain Mad1 (AC GCF_000863805.1) 

assembled in 1993. As many viruses exhibit high strain variability, including just the reference genomes 

in the Kraken database leads to a loss of sensitivity in the detection of strains. 

 



KrakenUniq's database-building script includes the viral strain genomes from the NCBI viral genome 

resource [14], which maintains a list of ‘neighbors’ to the viral reference genomes. This list has 112,148 

sequences from viral strains, as compared to the 7497 viral genomes in RefSeq (as of October 2017). 

For example, there are over 2500 additional sequences for HIV-1, and over 640 for JC Polyomavirus. In 

total, these sequences add 100 million (+33%) novel k-mers to the database with k=31. Based on 

simulated reads from these viral sequences, 21.2% of the reads would not be classified when searching 

against a database which includes only the RefSeq viral reference genomes. 

 

5. Hierarchical read classification with multiple databases 

KrakenUniq allows using multiple databases hierarchically in order of confidence. In the following 

example each k-mer is matched first against the HOST, then the PROK, then the EUK_DRAFT 

database. 

 

krakenuniq --db HOST --db PROK --db EUK_DRAFT  

 

Note that the KrakenUniq databases need to share the same taxonomy database. If taxonomy nodes are 

added for genomes or sequences during the database build (parameters --taxids-for-genomes and --

taxids-for-sequences), the databases have to be built consecutively using the taxDB file from the 

previous build. 

 

 

6. Switching from Kraken to KrakenUniq 



KrakenUniq can be used as drop-in replacement to Kraken on a Kraken database. The first run will take 

longer as KrakenUniq builds its own taxonomy index and counts all k-mers in the database. Note that 

certain features, such as assembly and sequence identifications, require a full database download and 

build using KrakenUniq, but the unique k-mer counting works out of the box with a standard Kraken 

database. Note that --report-file on the command line is a required option.  

 

krakenuniq --db DB --report-file REPORT_FILE --output KRAKEN_FILE 

 

The output file of KrakenUniq is identical to Kraken. The report file has a couple of modifications - 

namely a header and three additional columns. 

 

• kmers: number of unique k-mers 

• dup: average number of times each unique k-mer has been seen 

• cov: coverage of the k-mers of the clade in the database 

 

7. New taxonomy database format 

KrakenUniq has a new taxonomy format based on code from k-SLAM [15]. The taxDB file lists the taxa 

in the following form: 

 

Taxonomy ID<tab>Parent Taxonomy ID<tab>Rank<tab>Scientific Name 

 



KrakenUniq reports all 27 ranks defined in the NCBI taxonomy, instead of just five abbreviated ranks in 

Kraken (‘D’ for superkingdom, ‘O’ for order, ‘P’ for phylum, ‘F’ for family, ‘G’ for genus, ‘S’ for 

species). For example, there are species groups and subgroups, subfamilies and varietas. 
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